@
& =y
SISO
~— e N N —
A Publication of Hewlett-Packard Desktop Computer Division

PERIPHERAL
ARMS APTS.

P R R ey
R N M




How do computers communicate,

PERIPHERALS

\

h

Iy

by Steve Leibson,

yommem, \ A DDREDS ’J)ﬂ

Desktop Computer Division

A modern computer is capable of
processing incredible amounts of
information or making thousands of
decisions every second. But without
communication to the outside world
these gyrations are of little use. This is
the purpose of I/O; to link the
computer to operators or processes
that require the problem-solving
power provided by data processing
equipment.

[/O is an abbreviation, it stands for
input/output and represents
communications between a computer
and the world surrounding it. In order
to understand the various means used
to effect these communications, we are
going to start at the core of the system,
the computer itself, and work our way
out to the rest of the world.

A general purpose computer is
composed of two main components: a
processor and memory. The processor
is the engine of the system, following
sequences of instructions which cause
it to process data. Instructions and data
are stored in the memory for the
processor’s use. The processor and the
memory are linked together by three
sets of lines called busses; the address
bus, the data bus and the control bus.
The computer memory is organized
into thousands of locations, each
having its own unique address and
capable of storing one piece of data or
one instruction in a sequence. It is the
processor’s job to differentiate
between instructions and data.

or, what is 1/O?
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Information in the \
memory may be accessed
by the processor by placing
the proper signals on the =
address bus. These signals
represent an address that
indicates the memory location
in which the processor is
interested. The processor also must
signify whether it wishes to extract
information into this location. This
signaling is performed on the
control bus. The control bus
also contains signal lines to
synchronize the processor and

- memory. In either case, the

information passes between memory
and the processor over the data bus,
which is capable of transmitting
information in either direction.

Since both data and instructions
pass over the data bus, the processor
must interpret the information
correctly. This is achieved through
timing cycles internal to the processor.
In order to obtain its next instruction,
the processor performs an instruction
fetch. It then performs the operations
necessary to execute the instruction.

The current location being
accessed for instructions is held in a
register within the processor called the
program counter. The instruction thus
obtained may cause the processor to
again access memory, this time to

obtain or to place data in the memory.

Such operations are caused by exe-
cuting memory reference instructions.
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The computer is now able to
perform the operations involved in
running a program: it can obtain
instructions from the memory, it can
access the memory for data, process
the data, and place this processed data
back into the memory. A problem now
arises; how do the program and the
data get into the memory and how
does the operator obtain the results of
the processing? It is precisely this
problem which is addressed by I/O.

A complete computer system, such
as an HP desktop computer, is not
merely composed of a processor and a
memory. Peripheral devices such as a
keyboard, display, printer and tape
storage device are also included.
These peripheral devices connect the
computer to the outside world. The
keyboard, display and printer allow
communications with a human
operator while the tape storage device
provides for storing and retrieving
programs.

How are these devices connected
to the processor-memory combination
residing inside of the computer? There
are currently two methods in use. The
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first is to place
these devices on the
memory bus already discussed. Thus
the peripheral devices ‘‘appear” to the
processor as memory locations. Data
can be sent to or obtained from the
peripherals using memory reference
instructions. This configuration is
called memory-mapped I/0 because
some portion of the computer memory
has been allocated to peripheral
devices.

The advantage of this system is
that the existing processor instructions
now serve the dual purpose of
interfacing to memory and to /O
devices. The disadvantage is that the
full range of the memory is not
available for program and data
storage. The maximum memory size
of the computer has been reduced.

A second method of implementing
I/Oin a computer is to create a new
bus, the I/O bus. The I/0 bus is very
similar to the memory bus. There is an
address bus, called the peripheral
address bus to differentiate it from the
memory address bus, there is a second
set of data lines and there is a
peripheral control bus. The signals on
these I/O busses may be similar to
those of the memory bus or they may
be very different. This system has the
advantage of full memory capability at
the expense of creating a new set of
instructions for the processor called
1/0 instructions.

Let us briefly discuss instructions
before going on. The memory
reference and I/O instructions belong
to a class of instructions called
processor or machine instructions.
This dlass of instructions is used for
controlling the operation of the
computer at the very lowest level
because the instructions cause the
processor to perform very simple tasks
such as obtaining one piece of
information from memory or
dispatching one character to a
peripheral device.

The typical operator of a computer
would have a tremendous
programming task if all problems had
to be solved by writing programs at
this level of complexity. Therefore the
computer supplier generally provides a
systemns program or operating system
which in effect implements a new set
of instructions with far greater
capability. This new set of instructions
is called a high-level language because
the instructions, now referred to as
statements, allow programming on a

- much higher level of complexity.

Digital Signals

We have discussed briefly the sets
of lines called busses and stated that
the processor and other systems
components send signals along these
busses. That implies that these busses
are metallic carriers upon which
voltages may be impressed and
currents caused to flow, which is
correct.

The simplest signal which might be
sent along such a conductor is the
presence or absence of voltage or
current flow. This would then be a
binary signal because it may only
assume two states: present or absent.
In the case of a voltage related signal,
the voltage is either there or it isn’t: the
voltage is either X volts or zero volts.
Voltages are measured with reference

to a zero point, usually called ground.
The ground is often a heavy
conductor interconnecting all
components of the computer system.

Binary signals are the primary
means of communications in
computer systems because the
circuitry required to generate and
detect mere signal presence or
absence is much simpler to construct
than circuits concerned with “how
much’’ signal is present. This circuit
simplification allows the construction
of highly complex processors because
simple binary circuits require less room
than other types and therefore large
numbers of them may be constructed
in small spaces. This is the key to the
construction of large scale integrated
circuits which incorporate thousands
of circuits on a small chip of silicon.

Busses are simply sets of parallel
conductors upon which binary signals
are impressed. The most common
binary signal at present is the “TTL”
level set. ““TTL,” which stands for
Transistor-Transistor Logic, is the
name of a family of integrated circuits
that are used as the building blocks of
computer systems. These digital
circuits not only define the presence or
absence of voltage as proper binary
levels but define regions of voltage as
proper levels. These regions are:

High region = 2 volts to 5 volts

Undefined = .8 to 2 volts

Low region = 0 to .8 volts

Thus we have a hardware system
for transmitting signals as long as the
circuits that send and receive the
signals agree on the levels to be used.
As we shall see later in this series, one
of the tasks of I/O is to convert levels
used by one portion of a system to
those used in another portion.
Unfortunately, not all peripheral
devices use “TTL” levels. The
computer busses that we discuss
will all use these levels, however.



Data Representations

Now that the signal levels have
been established, an agreement must
be made on what they represent. For
instance what is the digital
representation of an “A” or how is the
number 123 represented? The
alphabet from which the “A” was
obtained can assume any of 26 values:
“A” through “Z”. Numbers may
assume an infinite number of values.
How can all of these values be
represented with only two levels: on
and off?

The answer is to use more than
one signal line, to create a bus. If we
were to use eight lines with each line
able to assume one of two levels, then
two to the eighth power or 256 values
could be represented. This is sufficient
to represent all of the characters in the
alphabet, both upper and lower case,
plus the other printed characters and
punctuation marks on the typewriter,
along with a few other characters.

With eight lines, values need only
be assigned to each symbol to be
represented, and as long as both the
sender and receiver agree on what
each value represents, communication
can occur. Thus the second task of /O
is to assure agreement between sender
and receiver, or at least to convert
from one set of values to the other.

In addition, not all devices
communicate on the same number of
lines. Some use a single wire (plus
ground) and send one binary ‘‘bit” of
information at a time. The receiver
assembles these sequential bits of
information back into parallel
representation. Some devices need
only to send numerals, which may be
represented with ten values requiring
only four digital signal wires. Other
forms of representation may require
16, 24, 32 or 64 lines making universal
interconnection very difficult. The
interfacing among these devices must

somehow adapt one system of
representation to another for
communication to be accomplished.

Summary

It would simplify matters greatly if all
devices could agree on data
representation, format, signal levels,
timings or even the number of wires to
be used for interconnection. Attempts
at such standardization have been
made but due to the swift pace of
technological development some
standards are obsoleted before they
are published. In addition,
compromises always need to be made
and different systems require different
compromises. Older equipment also
needs to be interconnected since the
replacement of a computer should not
mandate a complete system
replacement.

Fortunately, present technology
can reach backward as well as
forward. The representational
adaptations may be made by the
computer itself; computers excel at

" changing one value into another. The

hardware incompatibility can be
overcome with interface circuitry
which links the computer’s memory or
I/0 bus to the I/0 of the peripheral
device. The techniques for
accomplishing this interconnection are
the topics to be covered in future I/O
articles. K]

Steve Leibson, lead engineer,
received his BSEE from Case Western
Reserve University in 1975. He has
been with the Desktop Computer
Division of HP for 3.5 years. His efforts
include work on the 9878A 1/0
Expander, 98036A Serial Interface
Card, 98224A Systems Programming
ROM, and the System 45.



Leibson on I/O part II

The I/O bus

by Steve Leibson

Picture a void.
Totally empty. Black.

Now place a computer
processor into this void.
~ But without memory to hold
program instructions and data, the
processor is useless. So we will provide
a memory and some wires to connect
the processor to its memory. Our
creation floats in the void quietly
running its program, performing its
assigned task in the scheme of things.
Suddenly, it arrives at THE answer —
but alas, we have given it no voice, no
170 with which it can announce the
conclusion.

In the first installment of this series,
we discussed several basic concepts
relating to computer systems and I/0O
(Input/Output). We are now ready to
provide the computer with a voice,
some means of supplying the answers
to the questions asked of it by some
programmer.

Bus is a set of conductors

The first order of business is to
create an I/0 bus leading from the
processor to the outside. As we
discussed last time, the I/O bus is a set
of conductors carrying signals that
represent the information which the
computer is trying to transmit from the
processor to the interface.

In addition, several conductors
carry control signals that make it
possible for the computer to signal the
recipient at the other end of the bus
when the data on the bus is valid and
should be accepted. The recipient
must also have some signals to
communicate to the processor its
readiness to accept data and its
operational status. Finally, a signal is

needed to dictate the direction of data
flow on the I/ O bus since we want the
computer to receive as well as transmit
data.

Our figure of the data bus shows
that it has a number of connections.
The topmost connection represents a
group of 16 data lines, and is shown
with arrowheads at both ends. This is
the peripheral data bus. It is capable of
carrying data in either direction,
depending on the immediate need.
Under the data lines is a single wire
called ‘‘strobe”. This wire is a
synchronizer and is used by the
computer to signify that data is
available.

/O wire is the traffic cop

The next line is called I/0 and
controls the direction of data flow. It is
the traffic cop of the I/0 bus, allowing
bidirectional data flow, but only in one
direction at a time. The recipient
signals the computer on two wires
called “‘status” and “flag”. Status is a
very simple signal, used to represent
the presence or absence of the
recipient. It is impossible to
communicate with a device that isn’t
there.

“Flag” is a more complex signal
and to explain it requires a brief study
of speed. In the scheme of things
electronic, computer processors are
very fast. The only moving parts inside
a processor are the speedy electrons
carrying the digital signals.
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On the other
hand, the devices
with which the
computer may have need
to communicate are very often
mechanical in nature. Disc and tape
mechanisms, printers and plotters all
have moving parts which take
relatively long periods of time to
perform their assigned tasks.

Taking a printer as an example, let
us examine the interchange between
the computer and this peripheral
device.

The computer first addresses the
printer using the last set of wires on the
I/0O bus, the “peripheral address” bus.
If there is a device at the selected
address, it will respond on the status
line and inform the computer of its
presence.

The computer will place the
information it wishes to transmit on the
data lines, set the I/O line to “output”
(data direction is always from the
computer’s perspective) and finally
cause the strobe line to clock the
information into the printer. If the
printer is operational, it will accept the
information and print it.

A serial printer, similar in operation
to a typewriter, would have to move to
the next character position, select the
proper character and mechnically fire
some mechnism to strike the paper
and leave a mark.

All these proceedings may take .01
of a second or so. That may not seem
like too much time but processors
generally execute an instruction in
.000001 second. From the processor’s
perspective, the printer is taking
forever. Fortunately, computers are



patient and will wait if told to do so.
Our example computer will
courteously wait for a signal on the flag
line, which informs it that the printer
has finished the task assigned.

Processor interrupts

If it seems wasteful that such an
expensive tool as a computer should
have to wait most of the time on -
slower equipment, you are definitely
thinking ahead. In a future article, we
will explore a different communictaion
mechanism known as interrupt. This
feature allows the processor to go on
about its business after transmitting a
piece of information, later to be called
back when the printer is ready for
more,

"~ We have already covered the
peripheral address lines, though only
briefly. Computers generally
communicate to several peripheral
devices. There are two ways to
accomplish this. The first is to have a
complete [/O bus for every peripheral
device connected to the computer.
Such a scheme would rapidly create a
rat’s nest of wires resulting in a totally
unproduceable system.

Our I/0 bus has a set of lines
called peripheral address lines that are
used to specify the device in which the
computer is currently interested. This
greatly simplifies wiring the system
together and results in major cost
savings. It does limit the computer to
communicating with only one
peripheral device at a time, but for
most computer processors that is the
limit anyway.

Peripheral lines for multiplexing

The peripheral address lines allow
the I/0 bus lines to be shared or
“multiplexed”” by many devices. Each
device must have its own unique
address or conflicts will arise when two
devices try to use the information at
the same time. For instance plotters
are very useful for graphing data but

Our examplé corﬁputer will courteously wait
for a signal on the flag line.

are terrible program storage devices.
Therefore, when accessing the disc
storage device, the computer would
prefer that the plotter ignored the
transactions on the 1/0 bus.

Clearly each peripheral device
must have a unique address. But it is
more advantageous for each to have
several unique addresses. Think of the
peripheral device as an apartment

- building having a unique street

address. Apartment one gets the daily
newspaper, mostly general
information, while apartment two gets
the Wall Street Journal which reports
information relevant to the economic
running of the country. Both
apartments receive information, but of
differing types.

A peripheral device must also
receive varying types of information. A
printer not only has characters to print,
but also information relating to the
running of the printer such as: line
spacing, number of characters to print
per line and print font to name a few.
We therefore create subaddresses
within the peripheral device so that
information of different types can be
directed to the relevant section of the
peripheral.

The peripheral address lines are
split into a “‘select code” to specify the
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penpheral’s address and a ‘“‘register
code to specnfy the subaddress. A

“register” is a location which will
temporarily hold information until it
can be used by the peripheral.

Setting up subaddresses

For our purposes, it may be
sufficient to create four subaddresses
within each select code. And being
obstinate as all computer designers
are, we will call these addresses 4,5,6
and 7 because nobody likes to start at
zero. These are four registers which
serve as portals to the peripheral
device.

_ Four registers requnre two lines to
specify the register address, since two
lines can take on four states. These
states are:

State of State of  Register
line #1 line #2 Addressed
0 0 4
1 0 5
0 1 6
1 1 7

(Remember that digital signal lines can
take on only two states: on and off or
((1’7 and ‘(O,") ]

Although we have four registers,
we still have a complication. The data
lines which carry information to and
from these registers are bidirectional
and therefore the registers must be
also. Actually, what we must have is a
total of eight registers. _

Four input registers contain
information for the computer to input
and four éutput registers receive
information from the computer. We
will select between these two sets of
registers based on the state of the [/O
signal line. Remember that the I/0 line
was used to specify the direction of
data flow over the data lines and is
ideal for selecting between the input
and output register sets.

We have now completed
construction of a simple I/0 bus which
can be used to convey information



between the computer and external
devices. Itisn’t the most advanced I/0O
bus but it will satisfy our present needs.
We wiill be upgrading this “‘bunch of
wires” in the future but first there is a
more pressing problem to solve.

Introduction to interfaces

Our I/0 bus happens to be a
subset of the [/O bus used in the
Hewlett-Packard Desktop Computers
9825A, System 35 and System 45. It
would be most convenient if all
peripherals were available with
circuitry installed in them that directly
interfaced to our I/0 bus.

Unfortunately, the reality of the
situation is far from the ideal. Our bus
is parallel-oriented, meaning every
binary digit (bit) of a piece of
information such as a character is
available simultaneously on the 16
data lines.

Not all peripherals use 16 bits of
parallel data, some do not have
parallel data lines at all but send and
receive one bit of data at a time in a
serial fashion. No peripherals use the 8
register scheme exactly as discussed
above and some do not even use the
same voltage levels to represent 0 and
1. This can present quite a problem to
the person attempting to interface a
computer to a peripheral.

Interfaces act as translators

It is necessary to interpose some
specialized circuitry between the [/O
bus and the peripheral device to adapt
the signals from one to those of the
other. This specialized circuitry is
called an interface. The interface is the
actual recipient of the [/O bus. The
interface acts as an intermediary,
translating between the two interfaced
devices.

If every peripheral manufactured
in the last decade required a different
interface, it would be impossible for a
computer system to communicate with
even a small fraction of the range of
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Think of the peripheral device as an apartment
building having four unique subaddresses.

devices available. Fortunately, a large
number of devices can be interfaced
using only four basic types of
interfaces: parallel I/0, serial 1/0,
HP-IB and BCD.

The parallel interface connects to

the peripheral with a set of wires very

- similar to those in our [/ O bus, less the
address lines. This interface is the most
common among current peripherals.
Major variations involve the physical
connector used, and the sense of the
control and data lines (Does zero volts
mean a 0 or a 1?). A flexible parallel
interface is available with several
connectors as well as with an
unterminated cable so that a custom
connector may be installed. It is
adjustable as to logic senses used and
even logic levels used.

The serial interface takes the data
from the I/0 bus and serializes it into a
stream of bits. Incoming serial data is
converted to parallel data and sent to
the computer. One type of connector
is usually encountered, though not
always. Many specialized control lines
exist in this type of interface because
serial I/0 is found in the specialized
data communications environment
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where special channels are used for
long distance communications.

HP-IB is a relatively new interface
standard. It is formally known as IEEE
488-1975 and the signals, connector,
logic levels and logic senses are well
defined. This interface allows
connection to a large number of
devices in a very simple manner; the
cable connector is simply bolted to the
connector on the peripheral device.

The hardware connection is not in
question and the software for
communication can be directly
addressed. As a bonus, one interface
can be used to service up to 14
peripheral devices. The HP-IB
{(Hewlett-Packard Interface Bus) is also
known as the General Purpose
Interface Bus (GPIB).

Older instruments use a different
type of interface known as BCD. Data
is dealt with four bits at a time to form
numerals. This interface is used
predominantly by instrumentation
where the data to be transferred is only
numeric.

In future articles, we will be
examining these various interfaces in
depth. We will find that in order to
interface many devices to our /0O bus,
we will be fighting problems of lack of
information, faulty information and
worst of all — faulty assumptions. In
the process of this examination, we will
develop the means for overcoming
these problems and finally provide that
“computer in a void” with a voice.
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The parallel interface

by Steve Leibson, Hewlett-Packard
Company, Desktop Computer
Division

Computers are information
processing machines and thus require
paths for raw data to enter and for
processed information to exit. In
modem computer design, a very
common technique is to create one
universal path that leads both into and
out of the processor. That path is the
170 bus.

This concept simplifies computer
design but brings a complication:
whatever the design of the 1/0 bus,
the computer will be incompatible with
a large number of peripheral devices.
Some will be too old and use different
signal levels, some will have varying
data formats and most will be slow
enough to seriously degrade the
computer’s performance if it must wait
on every data transaction.

The complication is solved through
the use of interfaces which act as
transformers of voltage levels, data
formats and transaction speeds, thus
allowing a computer to communicate
with a vast array of peripheral devices.

Data lines in parallel

A very simple peripheral will often
have interface requirements which are

very similar to the [/O BUS. Data is
transferred over a set of data lines
using a signal line to indicate when the
next chunk of information is ready.
The peripheral indicates its readiness
to accept another piece of data on
another signal line.

This type of interface is a parallel
interface, so-named because the data
lines are in parallel and data is
transferred several bits at a time. The
HP 98032A is a parallel interface

- designed for the 9825A, System

35A/B, and System 45A/B desktop
computers. The [/O bus described in
the Mar-Apr, 1979 issue of Keyboard
is the I/0 bus of the above-named
computers, so we will be using the
98032A 16-bit Interface as the model
for our discussion of parallel interfaces.

The I/0 bus has 16 bidirectional
data lines. Data is handled in 16-bit
chunks and flows over these lines
either into or out of the computer, but
not in both directions at the same time.

The 98032A splits the I/0 bus into
two sets of data lines: 16 output lines
and 16 input lines. The configuration is
more compatible with unidirectional
peripherals. Unneeded lines are left -
unconnected. Out of 32 data lines only
eight might be used by a
unidirectional, eight-bit peripheral.

As mentioned above, interfaces
are sometimes used to transform
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voltage levels used on a computer I/0O
bus to those required by a peripheral.
Our I/0 bus uses “TTL” levels
meaning that a low level is represented
by a voltage between 0 and 0.7 volts
and a high level is between 2.0 and
5.5 volts. Since the input lines of the
98032A parallel interface are built
using TTL integrated circuit logic,
these voltages are required on the data
inputs of the interface to represent
high or low logic levels.

The data outputs have been built
with transistors, however, and can
withstand 30 volts for a high level. The
low level is still around zero volts.
Remember when discussing logic
signal lines that only two signal levels
are allowed, one designated high and
the other low. If the high level
corresponds to a logic one, the signals
are said to be positive-true logic. If a
low level signal corresponds to a logic
one, it is called negative-true logic.
Logic zero would correspond to low or
high levels respectively.

We have now established:

1. The I/0 bus data lines, which
are the conductors used to
transfer data between the
computer and the interface.

2. The interface input and output
lines, which are the conductors
used to transfer data between
the interface and the peripheral.



Handshake lines serve to synchronize
the interface and the peripheral. The meaning
of each line depends on the direction in which data is flowing.

Register architecture

In the previous article, we
established that each interface would
have a unique address on the 1/0 bus
and would be selected via the
peripheral address lines of the I/O bus.
Each interface was further subdivided
into registers which could be
individually addressed by a register
code. The register model contains
eight registers. Four of the registers are
output registers, receiving data from
the computer. The remaining four
registers are input registers, supplying
data to the computer. Each register
has a special function which is defined
by the interface. The 98032A Interface
makes the following definitions:

Input registers

Register code Function
R4 Data input
R5 Interface status
R6 High byte data input
R7 (Not used)
Output registers
Register code Function
R4 Data output
R5 Interface control
R6 High byte data output
R7 Data transfer trigger

The R4 registers are the primary
means of data transfer in the interface.
The R4 OUT register is directly
connected to the interface output data
lines and the R4 IN register is
connected to the interface input data
lines. When the computer places
information into the R4 OUT register
of a 98032 interface, the data pattern
appears on the data output lines. A
reading of the R4 IN register provides
an image of what is in the interface’s
R4 input register which may or may
not represent the current state of the
interface’s input data lines.

Note that the R7 OUT register is
called the data transfer trigger. When
used in conjunction with the R4
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The peripheral handshake

registers, the R7 OUT register forms a
handshake mechanism which effects
data transfer between the fast
computer and the slower peripheral.
Before discussing data handshake
however, four more registers need to
be discussed. The R5 IN register
contains several pieces of important
information. Only the lower eight bits
of this register have been
implemented. The meanings of these
numbered bits are as follows:

Interface status (R5 IN) register
7 6 54 3 2 1 0
INT DMA 1 O IID IOD STI1 STIO

The INT and DMA bits are used for

. 1I/0 operations called interrupt and

direct memory access respectively.
These are advanced /0 techniques
and will be discussed later in this
series.

Bits five and four are interface
identification bits. The 10 pattern
identifies the 98032A interface as a
type two interface, 10 being two in
binary notation. Software in the
computer uses the interface identity to
decide how to communicate with the
interface.

The IID and IOD bits are also used
by the computer software. IID stands
for invert input data while IOD stands
for invert output data. These bits allow
the computer-interface combination to
communicate with peripherals using
either positive-true or negative-true
logic on the data lines.

Itis important to note that the data
inversion occurs in the computer and
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not in the interface, and that the
computer may choose to ignore these
bits in certain classes of [/O
operations.

Another two bits

The two remaining bits of the
interface status register, STI1 and STIO
are directly connected to two input
lines. These two lines are general
purpose and can be used for any
user-defined function.

Interface control is effected
through the R5 QUT register. The bit
pattern for this register is as follows:

Interface control (R5 OUT) register

7 6 5 4
INT DMA RESET AHS

32 1 0
X X CTL1 CTLO

The INT and DMA bits are used in
the interrupt and direct memory access
modes mentioned earlier. The RESET
bit is used to place the interface in the
initial, power-on state. In addition,
when the RESET bit is set, a reset
signal is sent out on one of the 98032A
peripheral lines.

The AHS bit is the auto handshake
bit. When this bit is set, the R7 DATA
TRANSFER TRIGGER is not needed.
This mode is useful for higher speed
operations and is usually used by the
internal software only. Bits three and
two are unused.

The CTL1 and CTLO bits are
directly connected to output lines.
These lines are separate from the
output data lines and may be used to
control the peripheral device. Such an
application might be to latch the door
of a printer while it is printing.

The R6 registers are data registers
similar to the R4 registers. When the
98032 is set to the ‘‘byte’” mode, the
upper eight of the 16 data lines, in
both directions, are allocated to the R6
registers instead of the R4 registers.
This splitting of the two sets of 16 data



lines into four sets of eight data lines is
useful for some peripheral devices with
unusual protocols.

Peripheral handshaking

Placing data on the output lines or
reading the levels of the input lines
connecting the interface to the
peripheral device is not sufficient for
smooth data flow. A set of signals
signifying “new data ready’’ and
“ready for new data” is needed.

These two lines are called
handshake lines and serve to
synchronize the interface and the
peripheral. Each controls one line, but
the meaning of the line depends on
the direction in which data is flowing.
We will call the line controlled by the
interface PCTL for peripheral control
and the line controlled by the
peripheral PFLG for peripheral flag.
We now have enough connections
between the interface and the
peripheral to discuss handshaking.

Data output

Output is the simpler of the two
data transactions. As mentioned
before, the computer may place
information in the R4 OUT register,
setting the interface data output lines.
It may then perform an R7 OUT
operation, starting the handshake
mechanism.

The interface recognizes the R7
OUT operation and causes the PCTL
signal line to change from the clear
state to the set state. The transition is a
signal that “‘new data is ready’’ and
that the peripheral should accept this
new data.

The peripheral responds by
changing the PFLG line from ready to
busy, signifying that the data has been
recognized and is being processed by
the peripheral.

From the time that the computer
performs the R7 OUT operation to the
time that the peripheral returns to the
ready state after processing the

Interface
Acknowiedges
Request

/O BUS High
FLGLINE Low

Control Clea
PCTL
Control Set x
Busy
PFLG :
Ready
Computer
Requests
Translation

Peripheral Request
Acknowiedges  Fulfilled
Request

Handshaking between the computer and the interface, and between the interface and the peripheral
involves the same basic sequence of events. The diagram shows related changes on three key lines.

information, the interface is busy
transferring the information placed in
its R4 OUT register.

It is extremely important that the
computer not access the R4 QUT
register before the transaction has
been completed. For this reason, the
interface and the computer have a
handshake mechanism also. While the
interface is busy with a transaction, it
will indicate this situation to the
computer on the interface flag line.

Data input

Data input from a peripheral is a
slightly more complex operation
because it is a three-step transaction.
The computer first performs an R4 IN
operation, reading the interface’s R4

. INregister. This operation is a dummy,

and the information obtained is
discarded because the interface did
not have time to request a piece of
information from the peripheral. The
initial R4 IN serves to place the
interface into the input mode and to
set the peripheral I/0 line to input.

The computer then performs an
R7 OUT operation. As in the data
output transaction, this causes the
interface to set the PCTL line,
signifying to the peripheral device that
a piece of data has been requested.

The peripheral signals that it is
busy and performs whatever
operations are necessary to obtain the
requested data. It then places the
information on the data input lines and
sets the PFLG line to ready.

When the peripheral returns to the
ready state, the transition on the PFLG
line holds, or “latches’ the states of
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the data input lines into the R4 IN
register and causes the interface to
signal ready on the flag line. The
computer, which has been waiting for
the interface to signal ready, now
performs a second R4 IN operation.
The transaction is complete.

“Latched” lines

There may be times when
peripherals are so simple that they are
incapable of performing the two-wire
handshake. In these instances the
PFLG and PCTL lines may be tied
together so that the interface
handshakes with itself. This results in
16 “latched” output lines and 16 input
lines which may be read on demand.

Most peripherals using the parallel
interface use only eight bits. This
allows two raised to the eighth power
or 256 combinations. If these
combinations are treated as character
codes, then numerals, upper and
lower case letters, punctuation marks
and other characters can be
represented.

There are notable exceptions
however. The 9885 Flexible Disc
Drive uses the full 16 bits because
Hewlett-Packard desktop computers
are organized as 16-bit machines. The
9862A Plotter uses 12-bit instructions.
Many analog-to-digital converters
come in 10-, 12- or 16-bit sizes. All of
these applications are served by the
single 98032 16-bit Interface.
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The standard interface

CONTROLLER
LISTENER
TALKER

PO OO POGIB W LRNOT
A W P A B e A B
(ol ol bl L X L L X X

1

by Steve Leibson,
Heuwlett-Packard Company,
Desktop Computer Division

Computer designers constantly
strive to implement the latest parts and
the fastest logic in new and different
configurations. This characteristic has
created a volatile situation in the
computer industry. Additionally,
designers of peripherals to be
connected to the computers are
creating entirely new classes of
devices.

The end result is a multitude of
interfaces, all of which have been
optimized for the instrument to which
they belong. But very few of them are
compatible with each other.

Adopting a standard

The situation is similar to the
American railroads of the early 1800s.
Dozens of track gages existed and cars
of one railroad could not travel on the
tracks of another. Just as the railroads
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‘quickly standardized the track gages,

the computer industry agreed on an
interfacing standard that the Institute
of Electrical and Electronic Engineers

{IEEE) subsequently published in

1975.

It was the first comprehensive,
nearly universal interfacing standard
for computers and instrumentation.
That first version, IEEE Standard
Digital Interface for Programmable
Instrumentation, or IEEE Std
488-1975, was revised in 1978, and
now is called IEEE Std 488-1978.

This standard defines a
general-purpose interface, designed
for instrumentation systems requiring
limited-distance communications. The
intent of IEEE 488-1978 is to pin
down as many variables in an interface
as possible without defining the actual
use of the interface.

In addition, the interface is defined
without reference to the hardware
circuitry required to implement the
interface. This allows newer products
to take advantage of newer

technologies, permitting faster, less
expensive construction of devices and
systems.

In the previous article in this series,
we discussed the parallel interface.
That interface had 16 input and 16
output lines, to make possible
interfacing to as many different devices
as possible. A very popular version of
the parallel interface has no connector
at the end of the cable. The system
builder must add the appropriate
connector for his peripheral, since
there is no standard for either the
connectors or how the pins in the
connector are to be used.

Connector and pin usage are
precisely specified in IEEE standard
488, as are signal levels, both voltage
and current, and signal timings. Thus a
system becomes a ‘‘remove-from-the-
box-and-plug-together’” operation.
The hardware of interconnection is
defined so that two interconnected
instruments can communicate,
although understanding is not
guaranteed by the standard.



HP’s enhanced version

Hewlett-Packard has its own
implementation of the IEEE standard,
called the Hewlett-Packard Interface
Bus, or HP-IB. HP-IB is a combination
of the hardware specified by the IEEE
standard plus a communication
technique that makes it possible for
instruments to understand each other,
and for the designer to understand
what is happening in the system.

The standard is so general that
almost any instrument or peripheral
can be purchased in an HP-IB version.
Voltmeters, power supplies, printers
and plotters are only a few of the
available devices. All may be
connected together on the same bus.

Unlike the parallel interface, which
connects a single device with an HP
desktop computer, the HP-IB interface
makes it possible to connect to as
many as 15 devices. HP-IB is indeed a
bus, similar in concept to the I/0 bus
that the interface cards plug into on the
computer.

Controlling, talking, and listening

On the I/0 bus, only two entities
reside; the computer and the interface.
The computer always controls the /O
bus, and the interfaces react to
commands from the computer.

Three types of devices exist on the
HP-IB; controllers, talkers and
listeners. These entities are actually
attributes, and may exist alone or in
combination within any given device.
For example, the HP-IB interface
allows a desktop computer to be a
talker, a listener and a controller. A
voltmeter might be only a talker, only
able to supply data to the system,
while a printer may be only a listener,
only able to accept data from the
system. Additionally, these functions
may be active or not at any given time.

Figure 1 illustrates how an HP-IB
system might work. The lines on the
right of the figure represent the signal
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lines of the HP-IB. There are a total of
sixteen signal lines, divided into three
groups. The first group is composed of
eight data lines, forming the data bus.
These lines are bidirectional and carry
information and messages between
devices.

The data byte transfer control
group is composed of three lines called
DAV (dava valid), NRFD (not ready
for data) and NDAC (not data
accepted). As the name of each of

these lines implies, this group is used
to control the flow of information over
the data lines. The five remaining lines
form the general interface
management group. These lines are
used for control and status information
pertaining to the HP-IB devices
attached to the bus.

Assigning roles

Four devices are shown attached
to the HP-IB in figure 1. Device Ais a
controller, a talker and a listener. As a
controller, it may assign the role of the
active talker to any device on the bus
capable of being a talker, including
itself. As a talker, it can supply
information to other instruments 6n
the bus, and, as a listener, it can
receive information from a talker.

Although device A is shown as the
only controller in this example, more
can be accomodated in an HP-IB
system. Only one controller can be
active at a time, however, to prevent
conflicts. A controller that is designated
system controller becomes active at
power-up. All others must remain
passive until control is passed to them.
The IEEE standard specifies the signals
and timings necesasry to do this.

Device B is both a talker and a
listener. It can be addressed by the
controller and made an active talker.
The active talker has control of the
DAV control line in the data byte
transfer control group. Device C can
only be a listener, and can be
addressed by the controller and made
an active listener. Device D is only a
talker and can be made an active
talker by the controller.

Active listeners have control of the
NRFD and NDAC lines in the data
byte transfer control group. The active
talker drives the data lines and the
active listeners read the information.
To avoid conflicts, only one talker is
allowed to be active at a time, but
several listeners may be active
simultaneously.
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HP-IB is a combination of the hardware specified by the IEEE standard
plus a communication technique that creates an enhanced version of IEEE 488.

Transferring information

The potential existence of several
active listeners receiving data
simultaneously presents a problem.
The active listeners may not be
capable of accepting data at the same
rates. The speed of information
transfer must be controlled by the
slowest active listener in order for data
not to be lost. The data rate
sequencing is controlled by an
electronic voting system called ‘‘open
collector.” The transfer of information
takes place as follows:

1. All active listeners indicate on the
NRFD line their state of
readiness to accept a new piece
of information. The line is usually
connected to a voltage through a
resistor. This resistor causes the
line to assume the same voltage
on both sides of the resistor if
there are no loads on the line. If
an active listener is not ready, it
tums on a transistor connected
between the NRFD line and
ground. The tumed-on transistor
acts like a short, pulling the
voltage of the NRFD to ground.
The active talker will not transmit
the next data byte until the
voltage on the NRFD line
reaches its high voltage
condition, when all of the active
listeners have become ready and
have released the NRFD control
line.

2. The active talker, having put
valid data on the data lines at
least two microseconds
(0.000002 seconds) ago, asserts
the DAV line by pulling it low.
Two microseconds is a settling
time to allow the data to reach
valid logic voltage levels.
Assertion of the DAV line is a
signal for the active listener(s) to
read the information on the data

~ bus.

3. During the previous portions of
the data transfer, the NDAC line
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has been held in the low state by
the active listeners. When DAV is
asserted and the active listeners
accept the data, they will release
their hold on the NDAC line.
When the last active listener
releases its hold, the line will be
pulled high by a resistor.

4. The active talker waits until it
observes the NDAC line in the
high state, signifying that all
active listeners have accepted
the byte. It then releases the
DAV line to end the transfer. The
release of the DAV line is the cue
for the active listeners to again
pull down on the NDAC line in
preparation for the next data
transfer.

A timing diagram of the complete
handshake is shown in figure 2. Note
that control of data transfer is effected
by the active talker and active
listener{s). Once the controller has
configured the bus, it takes no part in
the data transfer.

Configuring it out

Now that we have examined how
data is transferred on the HP-1B, let us
consider the operation of
configuration. One of the general
interface management lines is called
ATN (attention). This line, run by the
active controller, signifies whether the
information on the data lines is for
control or data transfer.

When the controller wishes to
configure the HP-IB, it asserts the ATN
line. This causes any active talker to
relinquish the DAV line. The
transmission of control information is
similar to that for data, but the active
controller takes the place of the active
talker and both talkers and listeners
accept the information.

The active talker and active
listeners may be designated during the
transmission of this control
information. The information is on the
data lines. The following table shows
what these values are:



One of the best features of the IEEE standard
is that a system user need not know any of this information.

Bit number 76543210
bus command X00CCCCC
listen address XO01LLLLL
talk address X10TTTTT
secondary address X11SSSSS

Note that bit 7 is not used (DIO 8).
Bits 6 and 5 are used to designate one
of four classes of control information.
A bus command (bit5 = 0, bit 6 = 0)
is used to directly control the devices
on the bus. Such functions as
triggering of devices and passing
control require bus commands. Listen
addresses (bit5 = 1, bit 6 = 0) are
used to activate listeners. A listener
that observes its listen address on the
bus when attention has been asserted
becomes an active listener. The state
of other listeners remains unchanged.

Unlistening

Thirty-one listen addresses are
possible, from 0100000 to 0111110.
The last code in the listen address
class, 0111111, is the unlisten _
command. All active listeners become
inactive when an unlisten is sent. Talk
addresses (bit 5 = 0, bit 6 = 1), are
similar to listen addresses except that
the definition of an active talk address
causes any other active talker to
become inactive, since only one active
talker at a time is allowed.

The 1011111 pattern is the untalk
command, leaving no active talkers on
the bus. Secondary addresses (bit 5 =
1, bit 6 = 1) are used to address
subunits within a device. Some
devices may provide more than one
simultaneous function and require
more extensive addressing than the
talk and listen addresses provide.

The remaining four lines in the
general interface management group
are used to control the interface
sections of the HP-IB devices. IFC
(interface clear), is used by the active
controller to override all bus activity
and put the HP-IB into a known state.
Such an action is abortive to any data

transfers in progress and is used
when something has gone wrong.

REN (remote enable) is a line that
allows the HP-IB to control a device.
The active controller indicates whether
an addressed listener will use
programming information sent to it by
a talker by using REN.

EOQI (end or identify) is used in two
ways. It may be asserted by the active
talker to designate the last byte in a
data transmission, and it is used during
a parallel poll, discussed later. SRQ
(service request) is a line which a
device may use to get the attention of
the active controller. Note that this is a
request, not a demand, and may be
ignored by the active controller until
there is time to service the request.

When the controller decides to
acknowledge the service request, it has
to discover which device on the bus
issued the request. Since all devices on
the bus share the SRQ line, all service
requests look alike.

Polling along

There are two ways the active
controller can determine the address
of the requesting device. Both
methods are polls. A poll is a request
for status information. The active
controller may request the status of a
device individually, by addressing the
device as a talker, and sending the
device a serial poll enable command,
one of the bus commands sent while
ATN is asserted. The active controller
can then obtain eight bits of status
information about that device. Serial
poll disable must then be sent to return
the device to the data mode.

For faster decisions, a parallel poll
may be made. The active controller
asserts ATN and EOI, thus requesting
a parallel poll. Up to eight devices may
respond, each one using a different
data line (DIO1 to DIO8). If a device is
requesting service, it will pull down on
its data line, signifying that condition.

You don't have to know

One of the best features of the
IEEE standard is that a system user
need not know any of the preceeding
information. It is built into the
definition of the interface and is
supposed to work correctly for any
device built to the IEEE specifications.
What, then, does the sytem user need
to know?

The actual messages and data
formats sent are not specified. They
are service dependent. For example, a
voltmeter wishes to inform the desktop
computer that it is reading +1.433
volts at its input. When it becomes the
active talker, what should it send?
Since most computers recognize the
ASCII character set, it would be nice to
send ASCIIL. The only decisions left are
the format and the order of the digits,
least-significant to most-significant, or
the opposite.

" Most computers prefer the
most-to-least-significant order, and the
voltmeter would send
+,1,.,4,3,3,CR,LF. The CR and LF
characters stand for carriage retum
and line feed, two characters used to
terminate a transmission.

The definition of messages and
message formats leaves the area
of the IEEE standard and enters the
realm of HP-IB, which is the HP
implementation of the standard. And
that removes yet another level of
interfacing problems from the
shoulders of the system user. [
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Leibson on 1/O

The BCD interface

by Steve Leibson,
Hewlett-Packard Company,
Desktop Computer Division

This series has discussed two
interfaces in common use today:
bit-parallel and HP-IB. Both devices
share common characteristics,
including bidirectionality and message
handling in portions (characters).

When instruments were first
connected to computers, instruments
by themselves did not have the
electrical sophistication in their
circuitry for either of these interfacing
techniques. A different method of
connection, called binary coded
decimal (BCD), was used.

Computer bears burden

This method allows the burden of
the intelligence for the interface to
reside with the computer, which
somehow has to accept all of the
information in parallel. But interface
designers created the required circuits,
and the BCD interface remains
popular in instrumentation. It provides
a link to older instruments that have
been reliably turning out data for
years. BCD also is generally simple to
design into a current instrument.

Equipment which uses the BCD
interface usually measures some
physical parameter such as voltage,
current or weight. These instruments
send information to the computer, but
do not receive information from it.
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Thus, the BCD interface is
unidirectional. Information flows only
from the instrument to the computer.
Control lines may be available from

. the computer to actuate ranges or

control other aspects of the readings,
but they are not used for messages.

Using 10 binary codes

BCD is simply a coding method
which takes the ten decimal numerals
0 through 9 and encodes these into 10
binary codes. The encoding is the
binary sequence 0 through 9 as
follows:

Binary code
Bit3 Bit2 Bitl Bit0

Numeral

HHMOOO0OO0OO0OOOO
OO EFRMMHOOOO
COHHOOHHOO
HOFEOMROHO=O
WONONNHWN-=O

Note that the encoding is simple
binary and that four binary digits (bits)
are required to represent 10 numerals.
Also note that codes 1010 through
1111 are not used. Because of this,
BCD coding is not as efficient as pure
binary coding. This inefficiency allows
simple decoding for display to human
operators.

An analogous situation is that of a
calendar. Each page contains five
weeks, which is more than enough to
hold any month. The extra spaces for
days are left blank, which is inefficient.
But because people block the days of
the year into months, the convenience
of separating the months into different
pages more than makes up for the
blank spaces.

Each digit of a reading therefore
requires four signal wires to transmit
the binary values associated with that
digit. Since all digits are available on
the I/0 connector simultaneously, the
connector may have as many as 40 or
50 signal pins on it for a
high-resolution instrument.



At its inception, BCD interfacing was a big success. The
tedious job of taking data was greatly simplified.
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Figure 1

Implementing BCD

Why is the BCD interfacing
technique easy to implement in these
measuring instruments? The answer
lies in the circuitry used to actually do
the measuring. A diagram of a typical
measuring instrument is shown in
figure 1.

Input to the instrument, such as
voltage, current or weight, is fed to an
electronic circuit that converts the
physical parameter to a signal that
represents that parameter. This signal
may be either a square wave with a
frequency that is controlled by the
physical parameter, or a pulse with a
duration that is controlled by the
parameter.

If the signal is a frequency, it is fed
to the input of a counter which counts
for a precisely-controlled length of
time. If the signal is a pulse, it controls
a counter which counts the oscillations
of a precise square wave.

In either case, a count is obtained
which is proportional to the input
parameter. A small input generates a
small count, and a large input

generates a large count. The count
drives the digits in a display. If the
count is binary, it is difficult to read
because people don’t think in binary,
computers do. Fortunately, it is

_ possible to build a BCD counter.

If several BCD counters are
cascaded, they are able to produce
outputs that are easily displayed. This
works in much the same manner as
the odometer of a car. Each wheel of
the odometer has the numerals 0
through 9 printed on it. Each time a
wheel on the odometer makes a full
turn, it advances the wheel to the left
of it by one count.

In a chain of BCD counters, each
time a counter advances from 9 to 0, it
advances by one the next counter on
the chain. Each BCD counter has four
signal lines that represent the state of
the counter. The signal lines are used
to drive one digit of a display. When
the digits from all of the counters are
combined, they form the complete
reading of the instrument.

The preceding explanation is true
for a wide range of measuring

instruments that have digital displays.
Most use a counting technique to
convert a physical quantity into a
digital display.

Adding a printer

The first accessory instrument
designers added to digital
instrumentation was a printer. This
made it possible for an unattended
instrument to log its own readings.
Signal lines are brought out from the
counters in the instrument to drive the
print wheels in the printer. Each digit
has its own wheel in the printer.
Signals from the BCD counter control
the position of the print wheel when it
hits the paper.

Extra signals are only required for
this interface to tell the printer when
the data on the BCD lines is valid
{print command), and to allow the
printer or other external device to
control the rate at which readings are
made {external trigger). These two
wires form a handshake mechanism
between instrument and printer.

Automating experiments

At its inception, BCD interfacing
was a big success. Experiments which
had required an attendant to write
down the readings could now be
automated. Printed logs could be
obtained for production testing. The
tedious job of taking data was greatly
simplified.

Now if a printer could do all that,
just think what could be done by
replacing the printer with a computer.
Data would no longer have to be
punched on cards or entered by hand.
The eyes and ears of a computerized
process control loop were about to
come into being.

BCD at HP

Let’s look at a BCD interface for a
Hewlett-Packard desktop computer
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(figure 2) and see how it works. The
98033A BCD Interface is used with
the 9825A/S, System 35A/B and the
System 45A/B. It has several inputs
that connect to the instrument. There
are enough signal wires for an
eight-digit mantissa with a sign bit and
a single-digit exponent, with a sign.

In addition, there is a bit to
represent overload or overflow and
four bits for a function code. When the
computer takes a reading, the interface
card scans its input lines and
transforms the BCD digits, all available
in parallel, into a string of ASCII
characters which the computer reads
one at a time.

Sixteen characters form one
reading as shown in figure 2. In this
way, the reading may have as many as
eight digits in the mantissa, and a
single-digit exponent. This is usually
more than sufficient to handle a BCD
instrument. Unused digits can be wired
to always read zero.

Interfacing flexibility

Since there is no standard for BCD
interfacing, the 98033A provides
flexibility in the interpretation of the
signal wires. It can be configured for
either positive true logic, where logic
0=0 volts and logic 1 =+5 volts, or
negative true logic, where logic 1=0
volts and logic 0=+5 volts. Note that
the voltage levels 0 and +5 are TTL
standard, a logic family introduced in
the late 1960s and currently
dominating logic design.

Character numbers 10, 13 and 16
(“E”, “," and “LF”’) are generated
within the 98033A Interface. They aid
the computer in deciphering the
meaning of individual digits coming
from the instrument. The “E” is a
prefix that indicates an exponent will
follow. The comma separates the
reading from the overload bit and the
function code. “LF” is a line feed
character that terminates the message.
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Intelligence in the 98033A replaces
that which might otherwise be
required in the instrument’s interface.
This interface serves as an electrical
link to the past. It provides a data path
between today’s computers and earlier
interfacing instruments. It also eases
the burden for instrument designers
who may not be able to justify
development costs for a more complex
interface.




Leibson on I/O part VI

The unstandard interface:

by Steve Leibson
Hewlett-Packard Company
Desktop Computer Division

The fact that the computer
represents a relatively new technology
may lead you to believe that /O does
also. The first electronic computers
appeared in the 1940s, and serious
work in computer data
communications did not start until the
next decade.

But when engineers did begin to
connect computers to other devices,
they used a technology that originated
in the previous century — serial I/0.

Encoding for machines

The first electrical device used
extensively for communications was
the telegraph. Samuel Morse
improved the telegraph mechanically,
but more importantly, he devised the
Morse Code. This was the first really
practical encoding of the symbols
humans use for communications into a
machine-transmittable form.

Symbols are represented in the
code by a series of dots and dashes,
each character having its own unique
representation. The dots and dashes
may be considered the predecessors to
the ones and zeros of the modern
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serial I/O

character codes we use in computer
data communications.

Improvements of the telegraph led
to printing telegraphs that required no
human operator to decipher the
codes. New codes and more advanced
machines were devised, culminating in
the teletypewriter.

By the time of the teletypewriter,
dots and dashes had become ones and

" zeros. Morse code was discarded in

favor of codes that assigned the same
number of bits to each character. This
made it much easier for machines to
decode. By the time electronic
computers were invented, there
already existed a wealth of technology
for electronic data communications.

At first, teletypewriters served as
1/0 devices between humans and
computers. The keyboard and printer
of the teletypewriter provided a
low-cost data entry and display
mechanism. As technology
progressed, terminals and faster
printers replaced the teletypewriters,
but retained serial I/0 interfacing.

Transmitting over one wire

The basis for serial data
communications is the transmission of
information over a single wire.

Interfacing techniques previously
discussed in this series have relied on
several parallel wires to carry
information between devices. Each
wire carries a single bit of a character
composed of multiple bits.

When long distances are involved,
the cost of running several wires in
parallel becomes prohibitive. Serial
interfacing is the solution.

Time sharing was born when
computers became sufficiently
powerful to handle several tasks
simultaneously. Since computers were
still very expensive, it was necessary to
spread their cost over many users.

The problem then was how to
connect users at several locations to
the central computer facility. Stringing
wires to each location was too
expensive. Fortunately, such
communication lines already existed.
They belonged to the phone system.

Building a standard

Unfortunately, these connections
were not necessarily wires. They could
just as easily have been satellite or
land-based microwave links, since
these also made up the phone system.
All were designed to carry voice
signals, not computer data.



In addition, phone companies
were extremely unhappy at the
prospect of finding all kinds of strange
signals in their networks. Because
teletypewriters did not have
standardized interfacing requirements
the voltages involved could range
anywhere from 6 to 140 voits. A
standard was required.

The Electronic Industries
Assodiation (EIA) standard RS-232C
resulted. This standard was specifically
developed to do one thing. It defines
the electrical characteristics for an
interface between a piece of data
terminal equipment (DTE) and a piece
of data communications equipment
(DCE). DTE is the terminal for the.
timeshare user, while DCE is a
modulator-demodulator (modem)
which encodes the computer data into
voice-like signals that are permissible
on the phone system.

Figure 1 is a picture of the wires
associated with the RS-232C
standard. Note that there is actually
more than one wire involved. Pins 2
and 3 are the data-carrying wires,
called transmitted and received data.
Pin 7 is a signal ground serving as a
signal current return path. These three
wires are sufficient for communications
between DCE and DTE.

What are all the other wires for,
then? They serve as control wires
between the DTE and DCE and are
there merely for establishing and
maintaining communications with the
computer. Let’s ignore them for now.

Examining data wires

Let us examine the data wires
more closely. Information is sent out
on the transmitted-data line while
signals are received on the
received-data line.

~ Note that this is not the same as the
HP-IB interfacing standard discussed
previously. On that interface, one set
of data lines carried information in
both directions. Technology had not

Direction Name O Name Direction
§ 1O Earth Ground N.A.
To DCE Secondary Transmitted Data 1-O14 , O Transmitted Data To DCE
To DTE Transmit Clock {}-O15 304l Recei
To DTE Secondary Received Data {{-O16 . - Recelved Data To DTE
To DTE Receiver Clock —H-017 g'_ Iciequest to send To DCE
Unassigned -}|-018 o_-_ Dlear to send To DTE
To DCE Secondary Request to Send —{-O19 7 B Lat? Set Ready To DTE
To DCE Data Terminal Ready —H-O20 8&: ogic Ground N.A.
To DTE Signal Quality Detect —{-O21 Carrier Detect To DTE
To DTE Ring Detect {1-022 9O1~ Reserved
To DCE Data Rate Select ___023100—-— Reserved
To DCE Transmit Clock _024“0_-_ Unassigned
~ Unassicned i 1201~ Secondary Carrier Detect To DTE
g %-_ Secondary Clear to Send To DTE
O -
Figure 1
5 Transmitted Data I I >
DTE ‘ Received Data 3 DCE
(terminal) (modem)
Signal Ground
7 7
Figure 2

progressed sufficiently for RS-232C to -

have bidirectional signal lines.

Who transmits on the transmitted
data line? All of the names for the
RS-232C signals are from the
perspective of the DTE. So the DTE
transmits on the transmitted data line
and the DCE receives on it.

. Similarly, the DTE receives data on
the received data line and the DCE
transmits on it. Figure 2 should clear
up any confusion about this.

Now let’s get confused again. We
have a computer and a printer. We are
going to connect them using their
“standard” RS-232C cables.

 But which of them is the DTE and
which is the DCE? More specifically,

which is going to transmit on pin 2 of
the connector and which on pin 3?
Neither the computer nor the printer is
a terminal or a modem.
Manufacturers of these instruments
may offer cables to allow their
equipment to look like either DTE or
DCE. More often however, the
RS-232C connector is installed on the
rear panel of the instrument and no
choice is possible. In the case of two
instruments of the same type, a
crosswire cable may have to be
assembled to get signals on the correct
wires, Usually this task falls to the user.
We have just covered one source
of incompatibility between pieces of
RS-232C equipment: plug-to-plug. In
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order to discuss other potential
problems we must understand the
data signal.

First, the data signal levels are not
like those of the interfaces we have
discussed previously. Those interfaces
were based on TTL integrated circuits.
That logic family is based on 0- and
5-volt signals.

RS-232C was a standard long
before TTL and so uses different
voltage levels. A positive voltage
between 5 and 25 volts is used to
represent a logic 0 while a negative
voltage between —5 and —25 volts is
used to represent a logic 1.

These levels are only for the data
lines which use negative true logic.
The control lines all use positive true
logic and so a positive voltage
represents a logic 1 and a negative
voltage represents a logic 0.

Because the bits of a character are
separated by time, a waveform is
produced when transmitting a
character. Such a waveform for
transmitting the character “E” is
shown in figure 3. The ASCII code for
“E” is 1000101 in binary and is
transmitted least significant bit first.
The data line idles in the ‘1" state.

Waiting for the start bit

A start bit is always sent first to
mark the beginning of the character.
Then data bits are sent in order from
least significant to most significant,
each bit remaining on the line for a
precisely-arranged length of time
called a bit time.

The receiver, alerted to the
incoming character by the start bit,
times the incoming signal and samples
the state of the data line as close to the
center of the bit as it can. Naturally,
both the transmitter and receiver must
agree on the length of time each bit
will be given on the line or the
transmission will be garbled by
samplings taken at the wrong times.
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This bit time determines the
maximum rate at which bits may be
transmitted and thus defines the “bit
rate”’ at which this particular serial
interface is running. Standard bit rates
are 50, 75, 110, 134.5, 150, 300, 600,
1200, 1800, 2400, 3600, 4800 and
9600 bits per second.

Following the data bits in the
transmission, there may be a parity bit,
used for error detection. If a noise
pulse should affect the data line at the
wrong time, a bit in the transmission
could be misread.

If the transmitter keeps track of the
number of 1s in the character being
transmitted, it could set the parity bit
so that the total was either always even
(even parity), or always odd (odd
parity). The receiver can also keep

" track and use the parity bit to

determine whether the transmission
was received in error.

The last bits to be transmitted are
the stop bits. These bits carry no
information but allow the receiver time
to prepare for the next character.
There may be 1, 1.5 or 2 bits. Since
this period is really just a resting time,
fractional bits are allowed.

Picking up the pieces

Now, what might go wrong? There
are several parameters on which the
transmitter and the receiver must
agree. The bit rate has already been
mentioned. In addition, the parity
{odd, even or none) and the number
of stop bits both have to be the same
in the transmitter and the receiver.

Character codes also have to be
considered. Our example used the
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ASCII code that is the most commonly
used character code today. ASCll is a
seven-bit code. Other codes do exist
however, and may include 5 bits
(Baudot and Murray), 6 bits (IBM
Correspondence Code) and 8 bits
(EBCDIC). The RS-232C standard
makes no mention of what character
code should be used.

Now that we have our computer
and printer connected so that they use
the proper wires and they agree on bit
rate, parity, number of stop bits and
character codes, you may feel that the
problem has been solved. — Not so.
The printer uses the ASCII character
set, has odd parity, and one stop bit. In
addition, it has a switch for setting the
bit rate up to 9600 baud.

Well, that’s fine. We set the switch
to its fastest setting so that our
equipment doesn’t waste a lot of time
sending characters. We also set the
computer to the same settings so that
both the transmitter and the receiver
agree on all of the parameters.

Finding the problem

We then write a program on the
computer to send one line of print to
the printer and it works! Finally, we list
out the program on the printer so that
we have a copy of our triumph.
Unfortunately, several characters are
lost in the transmission. We try again
with equally dismal results. We run the
program once more, and now that line
prints perfectly. What is going wrong?

First, let's consider the data rate at
which the computer is sending
information. We are using ASCII (7
bits) plus a parity bit, a stop bit, and a



Surely RS-232C must have a handshake mechanism also —

but no, this is not always true.

start bit for a total of 10 bits. We are
transmitting these 10-bit pieces of
information at 9600 bits per second,
which translates into 960 characters
per second.

The printer manual specifies that
the printer can print 175 characters per
second. We are sending information to
the printer at more than five times the
rate it can print them! The printer does
have an internal buffer for 127
characters. After that, the transmitter
must wait to allow the buffer to
partially empty.

When we ran the program, fewer
than 127 characters were sent to the
printer and the printer’s buffer could
handle the data rate. Listing the
program sent more than 127
characters to the printer and the buffer
overflowed, causmg some characters
to be lost.

In previous articles, we discussed
interfaces that had handshake
mechanisms which prevented
transmitters of information from going
too fast for their receivers. Surely
RS-232C must have a handshake
mechanism also — but no, this is not
always true.

Returning to figure 1, we will now
consider the other RS-232C signals.
We are looking in particular for two
sets of handshake lines, one for the
transmitted data line and the other for
the received data line.

" Aha! Pins 4 and 5, request-to-send
and clear-to-send, look like prime
contenders. And many printer
manufacturers have fallen into this
trap. According to the strict RS-232C
definition, the DTE asserts the
request-to-send line when it has some
data to transmit. It then waits for the
DCE to assert the clear-to-send line
before transmitting.

"~ That is one half of a traditional
handshake. The problem is that the
DCE is not allowed to drop the
clear-to-send line until DTE has
dropped the request-to-send line.

Take a long drink

The situation is similar to taking a
drink from a garden hose with a friend
controlling the spigot. It’s easy to start
the flow, but you had better be
prepared to take either a long drink or
a short shower.

The DTE and DCE signals were
intended as a handshake between the
terminal and the modem to allow the
terminal to request control of the
communications link from the modem.
[t also makes it possible for the modem
to tell the terminal when control has
been acquired.

Some manufacturers have ignored
this strict definition and used the
clear-to-send line as a handshake line
anyway. Others avoid the definition
conflict by using the
data-terminal-ready or data- set-ready
line (depending on whether they are
emulating a terminal or modem).
None of these lines was intended for
the purpose of handshaking
characters, however, and use by one
instrument does not guarantee

~ recognition by the other.

Let us consider the possibilities of
using the clear-to-send line. If the
printer drops the clear-to-send signal
in the middle of a character, what.
should the computer do?

If it stops immediately in the
middle of a character, the character is
certain to be garbled. If it waits till the
end of the current character to stop, it
may overrun the receiver’s buffer.
Because this possibility is not covered
in the standard, the results are not
predictable without carefully reading
manuals for both instruments.

Finally, consider the device that
started this discussion, the
teletypewriter. The RS-232C standard
at least defines signal levels and a
pinout on a connector. There are no
standards for teletypewriters. The
serial transmission concepts are the
same with start and stop bits, data bits

and parity bits, but the signal interface
is called current loop.

Instead of positive and negative
voltage levels to represent logic 0 and
1 levels, current loop uses the absence
or presence of current. Presence may
be either 20 or 60 milliamps
depending on the teletypewriter
model. There is no standard connector
or pinout for teletypewriters.

Despite all of these problems,
designers of serial interfaces for
computers strive to include current
loop capabilities in their designs.
Where RS-232C is limited to 50 feet
for a direct connection, current loop
can be run much farther. In addition,
the teletypewriter interface has been
around for many years and several
instruments still useful to connect to
computers use it. Teletypewriters
remain a cost-effective solution as a
combination printer and terminal.

Handle with care

As you can see, serial interfacing
needs to be approached more
carefully than other forms of hardware
interfacing techniques. There are
several factors that are far from being
standardized.

As technology progresses, serial
interfaces become more adept at
covering an ever-widening range of
hardware. Unfortunately, this still
doesn’t guarantee an efficient interface
in every application, because serial
I70 remains the unstandard interface.
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Leibson on I/O Part VII
Interrupt 1/O: getting the attention
of the processor

by Steve Leibson, -
Heuwlett-Packard Company,
Desktop Computer Division

What do you think is the most
important part of the telephone? The
dial? The receiver? The cord?

| submit that it is the bell. If the
telephone had no way to summon you
when a call came in, you would have
to.check it periodically to see if there
was someone on the line.

The inconvenience of lifting the
receiver every few seconds would
quickly make the instrument seem
very irritating. Fortunately, telephones
do have bells, which interrupt you
when someone calls.

Waiting for peripherals

Early in this series we discussed the
relative speeds of computer processors
and peripheral devices. The mismatch
in speeds necessitated the creation of

handshake lines that the processor
could check to see if the peripheral
was busy. Without these lines, the
speedy processor would inundate the
poor peripheral with data.

The use of these handshake lines is
the simplest form of /0. The
computer spends much of its time

Keyboard Jan-Feb/80

patiently waiting for the peripheral to’

get ready for the next transaction.

Interrupting

The above situation is quite
satisfactory if there is nothing else for
the computer to do. Frequently,
however, there are many other things
the computer could be doing, and the
use of handshake 1/0 is inefficient.

. Fortunately, an alternative exists in

most modern computers. It is interrupt
I70.

First, let's decide what it is that we
will be interrupting. The computer is
continuously executing a program in
its memory. If there is no user program
currently running, then at least the
operating system is executing.

Thus, we have two levels of
programs in the computer. The highest
level is the user program, usually
written in a high-level language such
as BASIC.

Microprocessors currently cannot
run a BASIC program directly, and so
have a second, lower-level program
which interprets the BASIC
statements. This lower-level program
is written in machine code, instructions
that can be directly executed by the
processor. This program is called an
interpreter. -

Interrupts are hardware
mechanisms for forcing the processor
to leave the part of the program it was
executing just before the interrupt and
start execution at a different location in
memory. This interruption takes place
at the machine-code level. It is a very
useful mechanism for synchronizing
external events with the computer
program, but it must be used carefully.
Let's take an example.

Suppose that a user program
asked the computer to compute the
value of 2.5+2.5, print the answer on
a teletypewriter and then compute the
value of 3+3. The computer would
first execute the routine in the BASIC
interpreter that performs floating point
addition to produce the result: 5.00.

This creates a total of six characters
to print: 5,.,0,0, carriage return and
line feed. We can assume that the
addition takes two milliseconds.
Teletypewriters print ten characters
per second, so the printing of six
characters will take approximately 600
milliseconds (actually a litfle longer
because the carriage return requires
extra time).

Handshake 1/0 requires the
computer to wait out the full 600
milliseconds before performing the
second addition. The alternative



BASIC programs do not require an interrupt service routine for HP desktop computers,
because the routine is in the interpreter.

offered by interrupt 1/0 is that the
characters to be printed can be placed
in memory somewhere, in an area
designated as the I/O buffer.

Interrupting machine code

The first character to be printed
then is sent to the teletypewriter,
causing the interface to the peripheral
to “‘go busy,” transferring the -
character to the printer. Now the
computer can proceed to the next
BASIC statement, confident that when
the teletypewriter has finally printed
the first character it was given, it will
become ready for the next one. At that
time the interface will interrupt the
processor and ask for another
character.

Note that it is the machine code
interpreter that is interrupted and not
the BASIC program. The flow of
execution of the BASIC statements is
not changed, but the interpretation of
the program into machne code is
stopped while the computer outputs
another character. This illustrates the
use of interrupt for buffered /0.

The writer of the BASIC program
does not have to write an interrupt
service routine for Hewlett-Packard
desktop computers because the
routine has been provided in the
interpreter. This is quite convenient
because many factors must be
carefully handled in such a routine.
The interrupt forces a branching in the
machine code program to a different
location.

If the processor does not
remember where it was before the
interrupt, it cannot return and will be
“lost,” unable to continue operating
properly. Most processors
automatically save the address of the
location being executed before the
interrupt, and a return from the
interrupt is sufficient to restore that
address.

If the interrupt service routine uses
any of the internal registers in the

processor, it must first carefully save
the contents of these registers and then
restore them at the end of the interrupt
service routine. This must be done,
because it is difficult to tell what
information in these registers was
important to the program that was
interrupted. By saving and restoring
the registers, the processor is left as it
was found and the interrupted
program will not be affected.

Interrupting BASIC

Sometimes, the buffered I/0O
routines are not sufficient for handling
the problem. Some problems require
more complex action from the
computer than the transfer of a piece
of information. In these instances, it is
necessary to interrupt the BASIC
program itself and branch to an
interrupt service routine written in
BASIC.

Interrupting the BASIC program is
considerably more complex than
interrupting the machine code
program. BASIC statements can affect

_ large portions of memory such as

those used to store the values of
variables. If a variable is being
changed just as the interrupt comes in,
and the BASIC interrupt service
routine also uses that variable, the
wrong value or a garbled value may be
used in the interrupt service routine.

Waiting for
the end of the line

To prevent such problems from
arising, Hewlett-Packard desktop
computers force BASIC-level interrupt
service routines to wait until the end of
the current line has been reached
before the actual branching occurs.
This is called end-of-line branching.
The interrupt can be logged in at any
time during the execution of a BASIC
statement, but the granting of the
interrupt is withheld until the end of
the line.

Machine code, or low-level
interrupts, are generally called
hardware interrupts because the
processor hardware performs the
interrupt request granting and the
subsequent branching. Interrupts of
the BASIC, or high-level program, are
called software interrupts because
several instructions in the operating
system are required to log in the
low-level interrupt, request the
end-of-line branch and then take
control of program flow at the end of
the line.

Finally, let's consider what is
actually meant by the interrupt. A
classic example of misunderstanding
interrupt occurs whenever a first-time
writer of interrupt service routines tries
to use interrupt for input. The typical
programmer will enable the interface
to interrupt and expect that when the
interrupt comes, the interface will have
the desired piece of data.

Unfortunately, the interface
actually interrupts whenever it is not
busy. Since the interrupt service
routine did not make the interface go
busy by requesting acquisition of
the data before enabling the interrupt,
the interface interrupts immediately, as
it had nothing to do.

The interrupt service routine then
ends up with no data or old data. The
key is that to properly use interrupts,
the first data transfer is performed
before enabling interrupts, and
subsequent transactions are
performed under interrupt. @
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Leibson on I/O Part VIII

DMA: the I/O superhighway

DMA

The TI/O Super
Highway
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by Steve Leibson
Heuwlett-Packard Company
Desktop Computer Division

The articles in this series have
described the hardware and circuitry
necessary to interface peripheral
devices with computers.

All the discussions thus far have
assumed that the computer processor
is in control of the data transfer
process. This is true for many of the
devices interfaced. The processor is
usually fast enough that the peripheral
device determines the data transfer
rate.

Some devices, however, are too
fast for processor-controlled I/0.
These devices are capable of data
rates approaching the speed of the
computer memory and require a
different I/O technique. The technique
for interfacing such fast peripherals is
called direct memory access (DMA).

In the previous article, we
discussed interrupt I/0O, which is used
for interfacing wth devices so slow that
itis very inefficient to have the

Keyboard Mar-Apr/80

processor wait for the completion of
each I/ O transfer.

Instead, the processor initiates a
transfer and then continues with other
processing. When the peripheral

" device is ready for the next

transaction, it interrupts the processor
and reminds it of the previous I/0O
committment.

The interrupt I/O technique is
used as a software transformer to
match the slow peripheral with the fast
processor. If the peripheral device is
faster, the computer processor may
only be able to execute the few
machine instructions necessary to
perform the 1/0 transfer before the
peripheral is ready for another. Here
there is a good match between the [/O
software and peripheral speeds, and
programmed [/ O is sufficient for the
task.

Speedy peripherals

Ultimately, there is a class of
peripherals too fast for even the few
instructions needed to perform
programmed I/O. As long as these

peripherals are not faster than the
computer’s basic memory cycle, there
should be a method for performing the
required I/0. There is and it is called
direct memory access (DMA).

In order to discuss DMA and how it
works, we must return to the model of
the processor-memory-1/0 system
discussed in the first article in this
series. Recall that the processor is
linked to the memory via a set of lines
called a memory bus and to the [/O
interfaces via an 1/0 bus.

Both busses require the processor
to generate address signals and control
signals to synchronize the flow of data
over these busses. Generally, [/O
consists of taking information from the
interfaces through the 1/0 bus and
transmitting this information to the
memory using the memory bus or vice
versa.

Inefficient throughput

During this transfer the processor is
also using the memory and memory
bus to supply machine instructions so
that it knows how to effect the data



Interrupt Request

transactions. If we assume that it takes
only nine machine instructions to
perform one data transaction, we can
see that the effective I/ O throughput is
only 10% of the rate that the memoy
could support.

That is, for every 10 memory
cycles, nine are used to instruct the
processor and only one is used to
place data for I/0. Only very simple
data transactions can be performed
with nine machine instructions. If
formatting or code conversions are
necessary, many more instructions are
needed.

Bypassing the processor

The only way to speed up the I/0
process is to eliminate the slowest link
in the data path. For high-speed
peripherals, the slowest link is clearly
the processor itselfl How can we
eliminate the processor when that is
the component that links the I/0 and
memory busses and is required for the
generation of the signals that actually
make these busses work?

The answer is to build a specialized
circuit that is designed to transfer data
at the full memory speed. Because the
only function this circuitry must
perform is this transfer, the capability
may be wired into the circuit and
instructions from memory are not
needed and do not reduce the
effective memory bandwidth.

If we place this specialized circuitry
so that it, too, bridges the I/0 and
memory busses and if we also give it
the capability of generating the
address and control signals required
by these busses, then we have a
machine that is capable of performing
I70 at the full memory speed. This
specialized circuitry is called a direct
memory access or DMA machine. All
that remains is to select which device
will have control of the busses, the
processor or the DMA machine.

Controlling DMA
Normally, the processor will have

Memory Memory Bus Processor Interfaces
170 Bus
Interrupt Request
Processor
Bus | B
M us us
emory Memory Bus Request Grant /0 Bus Interfaces
DMA
Machine DMA Request

Diagrams above illustrate the differences between a system that does not include a direct memory

access machine, top, and one that does, bottom.

control of the busses because the DMA
I/ O must be infrequent enough to
allow at least some processing to be
done. It is therefore necessary for the
DMA machine to acquire bus control
from the processor whenever
necessary.

The processor can enable the
DMA machine to request bus control,
but it is the interface that must actually
request service through the DMA
machine. Only the interface knows
when the attached peripheral requires
DMA service. Thus we must add some
connecting signals between the
interface and the DMA machine, and
between the DMA machine and the
processor.

DMA handshake
The interface must have some

" means of requesting service from the

DMA machine. A signal called DMA
Request (DMAR), added to the
collection of signal lines on our I/0O
bus, will be sufficient. Upon receipt of
this request, the DMA machine must
request bus control from the
processor.

The processor may decide that the
time of the request is inopportune and
wish to hold off the transfer of control
temporarily — This is a job for the
everpresent handshake!

We will create two handshake lines
called Bus Request and Bus Grant.
The DMA machine will ask for bus
control with Bus Request and wait to
actually take control until it receives a
signal on Bus Grant. Thus the
processor can maintain control of the
memory and address busses as long as
required.

Burst and cycle-steal

The DMA that we have been
discussing is called burst DMA because
data transfer is done in a burst where
the DMA machine totally controls the
I/0 with the full speed of the memory
bus at the expense of completely
halting any processor activity.

If half the memory bus bandwidth
is sufficient to solve the high speed I/0
problem, another type of DMA can be
emploved. Called cycle-steal DMA,
the DMA machine alternates control of
the busses with the processor, each
unit using every other memoy cycle.
Cycle-steal DMA allows the processor
to operate at 50% efficiency while still
providing relatively high speed I70.

At this point in the I/0 series, we
have discussed the basic hardware
needed for interfacing computers to
peripherals. We have covered the four
basic interfaces: Parallel, BCD, HP-IB,
and Serial and we have discussed
specialized I/0; interrupt and DMA.
Now that we have our devices talking,
we will discuss how to overcome the
language barrier. Next issue: character
codes. [
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Character codes
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by Steve Leibson
Heuwlett-Packard Company
Desktop Computer Division

Language is quite possibly the
most powerful component of
civilization. Humans could not
purposefully organize without shared
language. Furthermore, the roots of all
major human languages are verbal
rather than visual.

Speech, our verbal use of
language, would not be possible
without the evolutionary heritage
humans share that has produced our
marvelously complex vocal tract, with
lips, teeth, tongue, larynx and other
organs we need to produce sound
which others may understand. But the
hardware of speech is not sufficient for
shared understanding — a common
language is also required.

Computer’s alphabet

This series has been discussing the
hardware components with which
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computers are built, allowing them to
communicate with other machines. It
is now time to discuss the languages

_ computers use to communicate with

other machines, rather than the
equipment they use to do it.

Wanted: standard code

As covered previously, digital
computers use a binary language for
their internal communication. There
are several methods for representing
data intemally in a computer,
however, and it would be
advantageous if there were some
standard language that computers
could use for communicating with
other equipment.

In addition, it is important that such
a language be compatible with human
communications, since some of the
devices that the computer will be
communicating with are intended to
interact with people. Printers and CRT
terminals are examples of this type of
equipment.

History of codes

The problem of creating a code, or
computer language, that corresponds
to an alphabet existed prior to the
advent of computers. Even before
electricity was harnessed for
communications, man-made devices
such as flags and semaphores were
used to send messages.

Samuel Morse perfected the first
code for electric data transmission, the
Morse code. This set of dots and
dashes is capable of representing the
English alphabet and Arabic numerals
so that intelligible messages may be
interchanged between remote stations.

Early in this century, interest
developed in replacing human
telegraph operators with machines.
Morse code was too difficult to
mechanically decode, due toit's
variable length per character.

But the idea of a standardized code
was retained. The dots and dashes
evolved into the concept of bits. Each
bit could either be a ‘1" or ‘0",



b ———————— 0 0 0 0 1 1 1 1
B, bs °0 0‘ 10 ll 00 ol ‘0 11 ) )
iy BaTba[ba 15, o@ Mnemon'lcand Mnemanfcand

s P Loy 0 )] 2 3 4 S 6 7 Meaning' Meaning®

olofolo 0 NUL DLE <p 0 @ P \ o NUL Null DLE Data Link Escape (CC)
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In this table of ASCII characters, the most significant three bits are shown at the head of each column, in both binary and hexidecimal. The least significant
four bits are shown for each row. To determine the ASCII code for an upper case H, use the most significant three bits of column four, 100; and the least
significant four bits from row eight, 1000; to form the binary code 1001000. Columns 0 and 1 are non-printing control characters. The rest are printable
except for the last character, DEL, which is the delete character.

represented by either the presence or
absence of an electrical signal.

" The first code to use bits for
machine communications used five
bits to encode the alphabet. Five bits
allowed 32 characters to be
represented. Since the English
alphabet has 26 characters, and at
least ten numerals also need to be
represented, it seemed that there
would be a problem. There were not
enough codes to go around.

Shift codes

The problem was solved by having
two special codes that did not
represent characters. Instead, these
codes were shift codes. One code,
called Letters, caused all following
codes to be interpreted as letters of the
alphabet. The other code, called
Figures, caused all following codes to
be interpreted as numerals and
punctuation marks.

Such special codes were called
shift codes because they shifted
between different character sets. There
were two five-bit codes that were in
wide use, called Baudot and Murray.

These codes were very similar in
concept, but varied in some
assignments of codes to characters.
The existence of two competing codes

led naturally to the first /O
incompatibility problems.

Aflaw :

Character codes that relied on shift
characters for proper operation were
troublesome, because the
interpretation of the incoming codes
relied on the previous history of the
message. Unless the receiving device

" knew which character set to use, there

was a 50% chance of erroneous
decoding.

Clearly, five bits were not enough.
A code that could represent all the
printable characters, and which did not
rely on previous transmissions for
unabiguous decoding, was needed. In
addition, some sort of expandability
was desired to prevent another dead
end system.

Modern codes

By the time the need for this new
code was felt, and the technology
which could handle more complex
codes became feasible, many
manufacturers were involved in
constructing electronic equipment
which might also use the code.
Whenever the need arose for such
standardization, there were two
methods of satisfying it.

A single manufacturer could simply
go out and invent a solution and
expect the rest of the industry to
follow. This was the route taken by
IBM, which invented the EBCDIC
{Extended Binary Coded Decimal
Interchange Code) character code.
EBCDIC is an eight-bit code allowing
256 characters to be represented.
Since there aren’t that many printable
characters, there are some unused
codes in EBCDIC.

ASd ‘ :

The other method for obtaining a
standard was through compromise in a
committee: Other manufacturers did
meet in order to develop a national
standard called ASCII (American
Standard Code for Information
Interchange).

ASCll is a seven-bit code allowing
128 characters to be represented. This
includes the alphabet, both upper and
lower case, the numerals O through 9
and punctuation marks such as the
period and the question mark.

In addition, several codes exist to
control the operation of the device
receiving the message. Codes
representing Carriage Return and Line
Feed are evident to anyone who uses
a typewriter. Other control codes
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Just as differences in language can create communication problems for humans,
character code incompatibility can render an otherwise operable interface useless.

include Form Feed, Bell and
Horizontal and Vertical Tabs. These
codes are clearly for control of various
printing devices, although
manufacturers of some products have
used these codes for other machine
dependent actions. _

Finally, there are codes used to
control how the receiving device will
interpret subsequent data. There are
two shift characters, called Shift In and
Shift Out, used to switch between
character sets (English letters aren’t the
only kind, you know). There are also
control codes that delimit text; STX
(Start of Text) and ETX (End of Text).

"~ ASCII has been a very successful
character code. Thousands of
instruments and computer-related
products use this code for I/0. Even
IBM now offers equipment that uses
ASCIL Several interfaces have been
covered in this series, and all except
the BCD interface may be used to
transmit and receive ASCII code.

Planning the escape

The planners of ASCII tried to
foresee as many different applications
as possible. That is the reason for
including the various control codes.
They recognized that technology’s
advance could not be totally predicted
and therefore gave themselves an
escape clause.

One of the ASCII characters is
called the “‘escape’ character. This
character designates that the
characters following have a special
meaning.

The intent in creating the escape
sequence was to extend the range of
the character set by selecting from a
range of available sets. Graphics,
nationalized character sets, and special
application sets have been developed
for selection with certain escape
sequences. Escape character
sequences allow for a much richer
variety of characters than the simple
shift in/shift out scheme of the five-bit
codes.
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The now common CRT terminal
has provided the escape sequence its
widest application, however. The
inclusion of microprocessors in
terminal design has greatly augmented
CRT capabilities. The serial
communications link to these terminals
has not been changed in years. One
data channel to the host computer is
all that is available.

Ordinarily, any characters that are
received via this channel are printed
on the terminal screen. But capability
for character and line deletion, display
enhancements such as inverse video
and underlining, and even control of
tape drives in the terminal does not
exist in the ASCII standard. The
escape sequence allows for these new
capabilities.

Creativity

Manufacturers of CRT terminals
are now adding increased
performance to their products via
escape sequences. Unfortunately,
since the actual effect of these
sequences is not covered in the ASCII
standard, the terminal designers have

felt free to create their own standards.

For example, one major feature
now found on most CRT terminals is
cursor positioning. The ability to place
a cursor anywhere on the screen
directly is important for many types of
form-filling applications. There are
about as many escape sequences for
performing this task as there are CRT
terminal manufacturers.

They all work similarly. The host
computer sends the terminal an
escape character. This is followed by a
second character indicating that the
escape sequence is for cursor
positioning. Two more characters
follow, giving the X and Y positions for
the cursor. Usually the sequence is
self-terminating, meaning that four
characters including the escape are all
that the computer need send.

After receipt of the fourth
character, the terminal performs the

action requested and prints any further
characters received. Note that the
ASCII characters in the escape code
sequence are not interpreted as
printing characters, but as control
characters. The escape character has
the effect of temporarily converting all
ASCII characters to control.

Code conversion

The majority of computer
equipment uses ASCII character
representation today. Unfortunately,
some of the older equipment still in
use may not.

Interfacing to these devices
requires that the ASCII characters the
computer would like to send must be
converted to the characters that the
peripheral would like to receive. Here
we are assuming the hardware
interfacing requirements have already
been met.

In addition, some modern
peripherals may have odd
requirements that can be met only
through code conversion. An example
is a printer that automatically inserts
line feeds whenever it receives a
carriage return. Unless the application
calls for double spacing, the printout
won’t be as desired, since many
computers send both carriage return
and line feed to denote the end of a
line of text.

One solution to this problem is to
have the computer convert all line
feeds to non-printing characters, such
as ‘“nulls.”” Most peripheral devices
ignore the null character, which is the
ASCII zero.

Character codes are yet another
source of incompatibility in the world
of 1/0. Just as differences in language
can create communication problems in
humans, character code
incompatibility can render an
otherwise operable interface useless.

Fortunately, if the computer has a
language that is rich in I/O capability,
even this language barrier can be
overcome.
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Leibson on I/O part X

f&-2 The software of I/O

AN

by Steve Leibson
Hewlett-Packard Company
Desktop Computer Division

One of the most critical parts of a
computer system is the human
operator. During the development of
a system, the programmer will
communicate with the machine
through a programming language.

This language could be at the
machine level, though that practice is
growing less'common. More likely, it
will be at a high level, through a
sophisticated programming language
provided by the machine '
manufacturer.

After the system software is
developed, people will use it for
accomplishing tasks. The computer
must be able to interface with these
people in a concise manner. They
are not concerned with the software
running the system, but with the
results produced. This article will
address high-level software of I/0.

Representing information

There are many different kinds of
information in the world, such as
prices, quantities, voltages, written
documents, drawings and
innumerable other forms.
 Information is one of
humankind’s most powerful tools.
One of the reasons that computers
have become such a major factor in
current human endeavor is their
information processing power.

Yet for all this capability,
computers can only store information
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in two forms: numbers and
non-numbers. There are no prices,
inventory quantities or voltages in a
computer memory. There are only
the two forms with which a program
associates these values.

There are no pages in my text
editor program, but only character
data that is processed by the
software to print pages. The
software of [/O is a tool that instructs
the computer how tc accept data
from the outside world and how to
provide internally stored data to the
world.

Storing information

We must first study how
information is stored in the computer
in order to use the software I/O.
Numbers are usually stored in
something called internal format.

The author of the programming
language for the computer decided
the best way or ways to represent .
numbers inside the machine. The
ones and zeroes that make up the
number are probably not easily
recognized as a number. For
example the number 21 in 16-bit
binary is 0000000000010101.

In addition, though we have
many ways of writing numbers such
as $2.69, 6.02*10°23 and 3.14159,
the computer will have only a limited
number of numeric types.

The most common numeric types
are integer and floating point. But in
whatever type a number is stored,
we want the computer to print the
number out in the format that makes

the most sense to humans.

Bank tellers will laugh if our
payroll program prints checks that
read 6.02E2 dollars. We won’t find it
funny, however, when that number
is interpreted as six dollars and two
cents instead of six hundred two
dollars.

Formatting

Most high-level languages make it
possible for the computer to input or
output numeric values in the form
desired. This is called formatting.

The capability may come as a
format statement or as a format field
within a statement that causes the
computer to output information. In
either case the format specification
describes exactly how the number is
to be output or input. :

We may use the above check
writing example to demonstrate
formatted I/O. Suppose our program
has the following statement in it:

210 PRINT Pay

That is a very simple program
statement. The computer, being the
simple machine that it is, will print
the value of the variable Pay, in
whatever format the computer is
currently using. '

If the machine is in fixed 2
format and Pay =602, we get
“602.00” printed, just what we want.
If the machine is in fixed O format,
we get 602", which is close.
However, if the machine is in
FLOAT 9 format, we get
“6.020000000E + 02”. This last



The best way to learn how to perform formatted I/O
in a given language is to read the manual — several times.

printout is not even close to being
acceptable.

Finding a solution

What can we do about this
PRINT statement to prevent
unacceptable output from the
program? A first attempt might be to
change the default format of the
machine just before the print
statement:

200 FIXED 2
210 PRINT Pay

This approach is taken by
programmers who don’t know about
or don’t want to learn about
formatting their output. The
disadvantage of this approach is that
when the state of the machine is
altered, all subsequent printing will
be done in the fixed 2 format unless
another FIXED or FLOAT statement
is executed. We are also missing the
dollar sign that precedes the number
on the printout.

The program could be changed

to:
200 FIXED 2
210 PRINT “$”,Pay
Now we get “$ 602.00” on the

printout. Clearly the machine is just
not understanding what it is we want.

The means for telling it exactly
how the number is to be printed is
the format field in the PRINT USING
statement.

Now we can change the program
to:

210 PRINT USING “A,000.00”;$",Pay

The printout reads “$602.00” which
is exactly what was desired.

Just as different computer
languages have different statements
for performing similar functions,
format techniques vary widely from
language to language. Even differing
dialects of one language, such as

BASIC, may vary as to how
formatted 1/O is performed

The best way to learn how to
perform formatted /O in a given
language is to read the manual —
several times.

Stringing things together

As mentioned earlier, not all data
can be represented in numeric form.
Text, such as magazine articles, is
best represented as a linear array of
characters. Such arrays are usually
called strings. This data type is useful
for storing letters, instructions and
even command sequences for some
instruments. -

The previous article in this series
discussed character codes. They are
used to represent text data in a form
that may be transferred from
machine to machine. Each character
is represented by five to eight bits.
The most popular code is ASCII,
which is a seven-bit code. ]

Eight bits is a very convenient
size for data storage in most modern

- digital computers. Therefore, strings

are usually composed of eight-bit
parcels of data. Since ASCII is only
seven bits, one bit of each string
character is usually wasted.

Input and output of strings is
much simpler than for numerics. The
internal representation for strings is
what the printout might look like —
almost. The exception to this
statement is the terminator.

Input of a string must stop at
some point so that the data can be
processed. The terminating character
tells the computer when it has
reached the end of the message.

A common default terminator is
the line-feed character. It is so
common that most input statements
default to terminating upon receipt of
a line feed. Most output statements
automatically add a line feed at the
end of a string output.

Just as with numeric /O,
everything runs fine until you don’t
want the defaults any more. At some
time, you will have to read data in
from a device that outputs carriage
return as a message terminator.

Or perhaps you will have a
printer that needs an ENQ character
as a terminator instead of a line feed.
Eventually, a situation will arise
where the defaults won’t work.

What can we do? It’s time to use
a format statement again.Suppose
we have a device that requires only a
carriage return as a message
terminator. The program might
contain the following statement:

200 PRINT A$

This program will output the
string A$ and follow it with the
carriage return and line feed
characters. Since the device we are
outputting to will terminate one
message on the carriage return, it will
interpret the line feed as the start of
a new message. ’

This may be suppressed by
changing the program to:

200 PRINT USING “#";A$,CHR$(13)

The “#” specifier tells the
computer to refrain from adding any
embellishments to the string being
output. The CHR$(13) is a carriage
return, which is the proper
terminating character. Again, the
formatting capabilities of the
language have allowed us to specify
exactly what we want the I/O to do.

The software of /O is an -
extremely important topic in
interfacing. It is the interface between
the computer user and the computer.

By understanding how to
communicate system /O needs
through explicit software statements,
a user can make a ‘“‘dumb”
computer work as the flexible
problem solver it was intended to be.
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Leibson on I/O part XI

Interrupts and buffers

5 L__L_
rogram
Argea @

by Steve Leibson
Hewlett-Packard Company
Desktop Computer Division

In our discussions about /O
hardware, we considered the needs
of a wide range of peripheral
devices. Some devices are much
slower than internal computer
processes, some are about the same
speed and some are faster than the
computer can comfortably handle.

We discussed the three hardware
handshakes associated with these
three classes of peripherals. Slow
devices are best handled by interrupt
{see Jan/Feb 1980 issue). Only when
the device is ready for another data
transfer is the processor interrupted
so that it can service the peripheral.

Medium-speed devices can
interact with the processor directly,
since they will not degrade system
performance. High-speed devices
require special hardware for Direct
Memory Access (DMA) because the
processor alone is not fast enough to
service them (see Mar/Apr 1980).

The hardware to perform
interrupt I/O and DMA is useless
unless there is software to support
the capability. In the previous article,
we discussed formatted I/O and
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referred only to the simpler
handshake or programmed I/O. Most
computers support this type of /O
even if it is only by using the PRINT
statement.

Hewlett-Packard desktop
computers support interrupt [/O in
two ways: user interrupt service
routines and buffer transfers. DMA is
supported only through buffer

. transfers.

Processor interrupts

High-level languages frequently
have subroutine capabilities. In HPL,
subroutines are invoked with
the “‘gsb’’ statement. Return to the
main program is accomplished using
“ret”. BASIC uses the corresponding
statements GOSUB and RETURN.

User interrupt service routines are
a variation of the subroutines. After
interrupts are enabled, the subroutine
is invoked because a peripheral
interrupts.

The subroutine is written in the
high-level language of the computer
and is terminated with an interrupt
return statement such as “iret” in
HPL. The following HPL program
fragment illustrates how user
interrupt service routines are written:

|
Buffer
Transfers

10: 1>l
11: oni 6, “send”
12: eir 6

87: “send’”: wtb 6,A$[LI]
88: [+ 1—Lif I<=len(A$);eir 6
89: iret

Line 10 sets a counter that points
to individual characters in string A$.
Line 11 directs the program to line
87, labeled ‘“‘send”’, when an
interrupt occurs. Line 12 enables the
interface hardware and software to
accept interrupts.

Line 87 sends a single character
from string A$ each time the user
interrupt service routine is called.
Line 88 increments the counter | to
the next character and re-enables
interrupts if there are more characters
to transmit. Line 89 forces a branch
back to the main program.

Getting bitten

There are several things to note
from this example. The “eir 6”
enables the interface. The meaning
of an interrupt is that the interface is
not busy. The first interrupt will occur



immediately after the computer
executes line 12.

Novices at interrupt routines are
always bitten by this the first time
they write one. If the interface has
not been made busy by sending it a
character before interrupts are
enabled, interrupt is immediate.

Note that a counter must be kept
by the program to keep track of
where the next character will come
from in A$. Also note that interrupts
must be re-enabled in the interrupt
service routine if the transfer is not
finished.

This is necessary because the
“eir” is canceled when it is invoked.
That prevents the interrupt service
routine from being interrupted.

Buffers are better

High-level-language program
lines are slow compared to the
processor’s machine code speed.
Only low data rates can be
supported with user interrupt service
routines. Buffer transfers are a much
better choice for data transfers,
leaving user routines to service
special situations.

Buffers are blocks of computer
memory allocated for [/O (see Figure
1). Data passes through the buffer on
the way into or out of the computer.
Enabling of interrupts and character
counters is automatic.

Data transfers can be terminated
on a count as in the above example
or by a character match for buffered
input. The following example
performs the same task as the first,
but uses buffered I/O.

10: buf “OUT”,100,1
11: wtb “OUT”,A$
12: tfr “OUT”,6

As you can see, this is much
simpler. Line 10 creates a buffer
of 100 characters, line 11 fills the

Filled Under
Program Control

Emptied Under
Program Control

Output
Buffer

Transfers Out
Under Interrupt
Control

Transfers In

Input Under Interrupt
Buffer

Control

Figure 1.

buffer with the contents of string A$
and line 12 sends the data to the
peripheral. The 1 at the end of line
10 specifies an interrupt buffer.

Why is this technique superior to
simply writing out the data directly to
the peripheral? Line 12 only initiates
the data transfer. After that process is
started, the program will continue
with line 13. When the peripheral
interrupts, it will automatically be
given the next character. Meanwhile,
the computer is executing the rest of
the program.

Conversely, the routines used by
the buffer transfer interrupt service
routines are in machine code and are
restricted. Their affect on the system
is well known because all they are
allowed to do is data transfer.

Buffer interrupts are allowed any
time they are enabled. Thus,
interrupt buffer transfers can be
much faster than user interrupt
service routines for data transfer.
They are also easier to use.

Limit: one DMA

End of the line

Interrupt buffers are faster than
user interrupt service routines for one
primary reason. The only safe place
to interrupt a high-level language
program is at the end of a line. In
the execution of a line of high-level
language code temporary locations
are set up, addresses are calculated
and a whirl of activity is taking place.

An interrupt routine must be able
to return to where the program left
off after the interrupt is serviced. If
the user routine accesses variables
being used by the main program, or
worse yet, changes them, there could
be disastrous results.

That is why high-level language
interrupts are restricted to the end of
a line. Things are safe there.

Once you understand interrupt
buffer transfers, DMA buffers are
easy because they work the same
way. A buffer is set up, filled and
transferred. The syntax is the same
too. The only parameter that
changes is the buffer type.

Only certain interfaces can
support DMA transfers and only
certain devices require DMA service.
Since DMA requires special
hardware, Hewlett-Packard desktop
computers have one set of DMA
hardware. Thus, only one DMA
transfer may be active at one time.

Buffered /O is a real
convenience. It is another way of
taking I/O hardware such as interrupt
and DMA circuitry and making the
capability available in an easy-to-use
form. (&
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Leibson on 1/O part XII

How high is the ground?

by Steve Leibson

It is a paradox that of all the
signal wires used in interfacing, the
most complex is the one that seems
the most simple.

Ground wires are usually ignored
in the design of computers and
interfacing circuitry. No signals are
intentionally impressed on them.

Often, the number of ground
wires in an interface cable is
determined by how many conductors
are left over after signal wires have
been allocated. This type of interface
design can lead to signal
degradation, loss of data and even
destruction of equipment,

Why do designers include ground
wires in the first place? Electricity
flows in loops. Current must always
return to its point of origin according
to the laws of physics.

If we want to send a logic signal
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to a peripheral device we will be
sending it in the form of a current.
This current must have a return path
of low impedance so that the full
signal strength is observed by the
peripheral device. Any impedance in
the pathways will diminish the signal
observed by the peripheral.

One reason to provide a ground
is to supply a low-impedance signal
return path. This type of ground is
called a logic ground because it is
associated with the logic signals.

Plug problems

A second type of ground serves
to ensure that the devices at either
end are at or near the same
potential. One of the “laws’ of
interfacing states that there are never
enough sockets on a wall power
outlet to supply a complete computer
system. At least one device will be

plugged into another wall outlet
several feet away.

Most computer devices now are
sold with three-pronged power plugs
and use the third wire of the power
outlet as an earth ground. This
“earth ground” is used as a safety
ground to keep the voltage of
exposed metal parts within strict
safety limits.

Unfortunately, due to haphazard
wiring practices, there may be several
volts of potential difference between
the third wire of one electrical outlet
and the third wire of an electrical
outlet only a few feet away in the
same room,

This potential difference is usually
not large enough to pose a hazard to
humans but can be death to a
computer system. Signal levels for
most interfacing systems today are
five volts. A potential difference of
only two or three volts can destroy



all trace of a signal. A potential
difference of twenty or thirty volts
can destroy circuitry.

A safety or earth ground between
devices can minimize this potential
difference. One again, we seek the
lowest impedance possible so that
the potential difference is as small as
possible.

Ground tools

Now that we have good logic and
safety grounds between our
computer and our peripherals, we
can relax, right? Probably not.
Chances are we have created a
ground loop.

Figure 1 shows a system with just
such a problem. The computer and
the peripheral are tied together with
three grounds. There is a logic
ground for the signal return, a safety
ground for potential minimization
and the third wire grounds in the
power cords.

The safety and third wire grounds
are connected together intentionally.
That loop cannot be avoided. The
logic grounds in both devices are
connected to third wire ground which
is common in computer design.
Loops are formed between logic and
safety, logic and third wire and third
wire and safety grounds.

Two sources of problems exist for
this system. First, current may be
flowing in the third wire conductor
due to a faulty or leaky device
someplace else in the power system.
This will cause a voltage difference at
the two power outlets A and B. That
is why we installed the safety ground,
to add a low impedance path and
minimize this difference.

The third path

The current sees the dual paths
of third wire and safety grounds and
the voltage difference will indeed be

Device A Device B
Earth Ground
Logic Logic Ground Logic
Third Wire Ground
\w
Q
Qutlet A QOutlet B
/7777
Figure 1
Power Supply Line
Output
Ground
Figure 2

small. Unfortunately, the current will
also see a third path to flow through,
the logic ground.

Logic grounds are not typically
designed to carry power fault
currents. They have higher
impedance. Thus a large current
flowing through signal ground may
prevent communications.

Since we put the grounds in to
allow the logic signals to be received
reliably, how do we prevent ground
loops from destroying that reliability?
The best method is to plug all
devices in a computer system into
one electrical outlet.

This assumes that there is

enough current capacity on that
circuit to supply the computer and all
of its peripherals with power. If there
are not enough sockets on the outlet,
use a power strip. The third wire

ground in a power strip is short, well

defined and will be of low
impedance.

EMI

Now that we have eliminated the
effects of ground loops and our
system is performing flawlessly, we
can relax. Unfortunately, we notice
that whenever the computer system
is on, there is a lot of static on our
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radio. Worse, our neighbor down the
hall notices the same effect on his or
her radio. Welcome to the world of
electromagnetic interference (EMI);
the second problem in interfacing
grounding.

Figure 2 is a picture of the output
stage of a typical logic circuit. There
is a transistor connected between
ground and the output signal line
and another transistor connected
between the power supply and the
output signal line. '

If both transistors are turned on
at the same time, a large current will
flow and destroy the circuit. If only
the top transistor is turned on, the
output voltage will be close to that of
the power supply. If only the lower
transistor is turned on, the output
voltage will be close to ground
potential. The signal is switched by
changing which transistor is on and
which is off.

Computing antenna

When this switching takes place,
both transistors will be partially on
for a brief period of time. One is
partially on, going off and the other
is partially off but turning on.

At this instant, a large current is
allowed to flow from the power
supply to ground through both
transistors. This current spike will
make the ground jump a bit through
the small but finite impedance of the
ground line.

There are literally thousands of
these output circuits in a computer,
switching constantly. All are
adding their share of noise to the
logic ground. This noise is carried out
to the interface cable and over to the
peripheral on the logic ground wires
we ingeniously ran between the
devices in our computer system.

The voltage spikes in the ground
are too small to affect the interface
logic signals but the interface cable
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acts as an antenna and transmits this
noise for all to receive. The
thousands of output circuits team up
to form a low voltage but high
current signal. The actual logic
signals are much lower current and
don’t cause as much trouble.

Solutions

There are two solutions to this
problem. The first involves the use of
low impedance ground planes in the
computer and peripherals to
minimize the ground noise. The
second to to shield the interface
cabling to prevent the noise from
escaping. Both of these techniques

are used in Hewlett-Packard desktop
computers. ] ‘

Finally, interface designers are
attacking the ground loop and EMI
problems using a new interfacing
technology: fiber optics. Glass optical
fibers carry modulated light signals
between devices. There are no
grounds, thus no loops. There are
also no “‘antennas’ to pick up and
transmit noise. .

Currently, fiber optic interfacing
costs more than the conventional
interfaces we have covered in this
series. Some applications requiring
long distance or good noise
immunity are already using this
interfacing technology. Many more
applications will use fiber optics in
the future.



An I/O Glossary For
Hewlett-Packard Desktop
Computer Users

by Steve Leibson, Hewlett-Packard,
Desktop Computer Division

One of the most difficult problems
encountered when entering a new
technical field is that of jargon. Every
discipline seems to have developed its
own unique vocabulary, and the world
of computer I/0 (input/output) is no
exception. To aid the computer user
inexperienced in such matters, this /O
glossary is presented.

A

accumulator a register inside the
computer processor used to store operands
to-be operated upon and to receive the
results of such operations. A computer may
have several accumulators.

alphanumeric pertaining to a device,
systemn, character set, etc. that is capable of
representing letters and numbers.

ASCII (American Standard Code for
Information Interchange) a seven bit
code capable of representing letters,
numbers, punctuation marks and control
codes in a form acceptable to machines.
analog a characteristic that is continuous in
form as opposed to digital, which is
characterized by discrete levels.
analog-to-digital (A to D) conversion a
process which quantitates an analog
quantity and produces a digital
representation of this quantity.

APL a high level computer language which
is strongest in the procedural/algorithmic
area. Spedially developed mathematical
operators are used.

assembler language a low level computer
language used for implementing higher
level functions. One assembler statement
produces one machine instruction.
asynchronous device a unit which
operates at a speed not associated with any
particular portion of the system to which it
is connected and is therefore not a
time-critical component.

asynchronous data communications a
serial I/O protocol in which each byte
transmitted is self-sufficient and bears no
exact time relationship to preceding or
succeeding bytes.

background program that portion of the
resident computer program which is run
when no immediately pressing needs exist
in the system. ‘
base the radix or number of characters in
particular number system. The decimal
systemn is base 10.

BASIC language (Beginners All-purpose
Instruction Code) a high level language
which is particularly easy to learn. The
American National Standards Institute
(ANSI) has standardized a minimal set of
BASIC. Hewlett-Packard has a set of
BASIC statements that is compatible across
a wide range of machines.

baud rate (bit rate) the rate in bits per
second at which information is transmitted
over a serial data link.

BCD (binary coded decimal) a four-bit
system of coding the numerals O through 9,
leaving the six most significant codes
unused.

benchmark a test program used to
compare the relative speeds of two or more
systems.

bidirectional lines links between devices
in a system that may carry information in
either direction, but not both
simultaneously.

binary a number system of radix 2, using

- the numerals 0 and 1.

bit (binary digit) a single digit of a binary
number..

binary synchronous (BISYNC) a
synchronous data communications
protocol that is byte oriented.

bipolar an integrated circuit technology
characterized by high speed, medium
power and wide availability.

bit rate see baud rate.

BPS (bits per second) see baud rate.
buffer, hardware a register or set of
registers used to temporarily store
information, usually to act as a transition
medium between a fast and a slow device.
buffer, software a location or set of
locations in memory given a name by the
resident program and used to hold
information until it can be utilized.

bus (buss) a set of hardware lines that may
be used to connect several devices
together for communications purposes.
byte a group of eight bits.

C

card, interface a device that converts a
computer I/0 bus into some standard /O
configuration (eight or sixteen bit parallel,
BCD, RS-232, IEEE-488, etc.).
character one of a set of elements in a set
used together with other elements in the
set to express information.

character set a group of elements, which
taken as a whole can express all of the
information desired in a particular system.
checksum a gquantity, usually following a
string of characters, used in several
error-checking algorithms.

chip, integrated circuit an electronic
component comprised of a large number
of basic devices all combined on a single
silicon chip.

CMOS (Complementary symmetry
metal-oxide semiconductor) a logic
family of integrated circuits characterized
by extremely low power, medium speed,
wide availability and static discharge
susceptibility.

clock a periodic signal used throughout a
systermn for timing and synchronization.
code, machine the basic instructions of a
computer processor.

compiler a program having a high level
language program as its input and machine
code as its output.

complement, ones the inversion of every
bit of a binary number, i.e. all ones are
changed to zeros and all zeros to ones.
complement, twos a ones complement
plus one.

compute bound a program which is
speed-limited by the computations being
performed.

control character an element of a
character set which may produce some
action in a device other than a printed or
displayed character. A character may
become a control character in some
systems by a special preceding character or
set of characters.

controller the device in a system that
dictates the occurrence of events in that
system.

control line a line in a data link which
causes information to be transferred.
CRT (Cathode Ray Tube) a popular
display device used in computer systems to
display multiple lines of text or graphics.



D

data bus a set of lines for carrying data or
characters between devices.

data communications generally taken to
mean serial data /O but may include any
I/0 between digital devices.

data set a device used to encode digital
data onto voice phone lines. Also called a
modem.

data terminal a class of devices
characterized by keyboards and CRT
displays.

decimal pertaining to the number system
with ten numerals.

digital a quantized method of representing
a quantity or information.
digital-to-analog (D to A) conversion a
technique for converting a quantized
representation of a quantity into a
continuous signal.

DMA (Direct Memory Access) an /O
technique for transferring data between a
device and memory without the aid of the
computer processor. Special hardware is
required to operate the memory
independently.

driver, hardware a circuit used for
impressing a signal on a conductor.
driver, software a program that is used to
transmit information to a device using a
device-dependent protocol.

DTL (Diode Transistor Logic) a logic
family, compatible with TTL, now extinct.

E
EBCDIC (Extended Binary Coded
Decimal Interchange Code) a special IBM
character set.
emulator a circuit or program that imitates
another circuit or program in real time.
erasable programmable ROM (EPROM)
an integrated circuit used to store programs
or data which may be erased. Usually used
in development work.
exponent the power of ten used in
scientific notation.

F

fan in the load a logic circuit input places
on a signal line.

fan out a measure of the drive capability of
a logic circuit output.

firmware a program placed into ROM.
Hewlett-Packard places the operating
systems of desktop computers in firmware.
flag line a line in a data link used to signal
the status of a device.

foreground job a portion of a program that
has highest priority and runs whenever
possible.

full duplex a characteristic of serial I/O
where data may flow between two devices
in both directions simultaneously.

gate the minimal logic element.

GIGO (Garbage In Garbage Out) the
usual explanation for “Why doesn’t my
program work?”’

ground, earth or safety a wire that is at
earth potential, or at least is supposed to
be.

ground, logic a level that is used as a
reference for digital signals in a system. Not
necessarily at the same potential as earth or
safety ground.

half duplex a characteristic of serial I/O
where data may flow between devices in
only one direction at a time.

handshake may be either hardware or
software and characterizes a protocol for
transferring information between devices.
hardware the circuitry in a system.
hardware interrupt a mechanism by
which the computer processor may be
interrupted from what it is doing to perform
a more urgent task.

Hewlett-Packard Interface Bus the
Hewlett-Packard implementation of the
IEEE 488-1975 Instrumentation Bus used
to interface multiple devices together with a
well-defined hardware protocol.
high-level language a computer language
characterized by powerful statements and
highest ease of programming.

HPL (High Performance Language) a
high level computer language
implemented in the 9820, 9821 and 9825
Hewlett-Packard desktop computers.
Characterized by extensive I/O
capabilities.

I
IEEE (Institute of Electrical and
Electronic Engineers) a professional
organization that has produced several /O
standards.
initialization a process which takes place
whenever the state of a device or program
must be known at startup.
input a process of transferring information
into a computer.

input/output (I/O) a set of processes for
information transfer.

interface the boundary between two
devices or programs.

interpreter a program which executes a
high-level language directly.

interrupt a disruption in the normal flow of
a process.

inverter a logic element that outputs a one
for a zero input and outputs a zero for a
one input.

1/0O bound a program that is speed-limited
by the information interchange taking
place between devices in a system.

K

k 1024 used in specifying memory size.

K - 1000 used in specifying resistance and
dollars.

kluge a concoction of hardware and
software which is neither pretty nor
producible.

L

latch a logic device which is used for
memory.

LCD (liquid crystal display) a display
device characterized by extremely high
visibility in high light levels and no visibility
in darkness.

LED (Light Emitting Diode) a display
device characterized by high visibility in
darkness and less visibility in high light
levels.

logic a group of circuits that perform
Boolean arithmetic and memory functions.
LSI (Large Scale Integration) highly
dense logic circuits on single chips.

machine code the instructions executed
by the computer processor.

mainframe the physical computer without
devices attached by external cabling.
mantissa the significant digits of a number
in scientific notation.

mass memory a device for
semi-permanently storing data and
programs in a readily retrievable form.
MOS (Metal-oxide Semiconductor) an
integrated circuit process characterized by
high density, medium speed and medium
power.

modem see data set.



N

negative-true logic a logic system in which
the voltage representing a logical 1 has a
lower or more negative value than that
representing a logical 0. Most parallel /O
buses use negative-true logic due to the
nature of commonly available logic circuits.
network a term used in data
communications to describe a group of
devices with varying degrees of intelligence
that are interconnected to form a large
system.

non-volatile memory a memory within a
device that will retain information even
when the device is switched off.
Implementation is usually with ROM,
PROM, EPROM, or RAM with battery
backup.

nybble half a byte (four bits). BCD data is
packed into nybbles.

o

object code a program in machine code,
the ultimate form that any program must
be reduced to before it can run on a
Pprocessor.

octal a base-eight number-representation
system using numerals 0 through 7. Used
in the creation of machine code programs
and useful in visualizing bit patterns.

ones complement arithmetic a binary
arithmetic system in which negative
numbers are created by inverting
individual bits in the binary representation
of the positive number.

open collector a type of output structure
found in certain bipolar logic families. The
output is characterized by an active
transistor pulldown for taking the output to
a low voltage level, and no pullup device.
Resistive pullups are generally added to
provide the high level output voltage.
Open collector devices are useful when
several devices are to be bused together on
one I/0 bus such as IEEE-488-1975
(HP-IB).

operating system a systems program that
provides the programmer with utilities
including I/O routines, peripheral handling
routines, and high-level languages.
output the act of providing information
from a device to the outside world.
Generally accompanied by a device that
inputs the information being output by the
first device.

overlap a mode of computer operation in
which several processes take place
seemingly simultaneously. In a
multiprocessor system, simultaneous
operation is truly possible. In a single
processor system, processes timeshare the
processor and appear to happen
simultaneously while actually occurring in a
time-sequential mode. In either case, real
time savings can be realized, especially
when extensive /0O to many devices of
differing speeds is taking place.

P

packed data information which has been
compressed to make optimal use of
memory. Four BCD digits can be packed in
a 16-bit memory location.

paper tape one of the oldest, slowest and
cheapest methods of storing archival
information in a computer system. Data is
stored in punched-hole sequences on a
strip of tape.

parallel /O the fastest, simplest method of
interconnecting two devices using a
minimum of circuitry. Data is transferred in
a bit-parallel format, with the width of the
interconnect bus generally equal to the
computer memory width, in bits. Eight-bit
buses are common, as they are ideal for
character code transmission.

parity an error detection method used in
/O where noise is a possible problem.
Parity is determined by counting the
number of ones in the data word. Odd
parity sets the parity bit so that the total
number of ones sent is odd. Even parity
sets the parity bit for an even number.
peripheral a device connected to the
computer’s processor and used to accept
or provide information from/to the
external environment.

peripheral processor a processor used to
interface to external devices. Generally
provided to increase program throughput
by allowing simultaneous computation and
IVO.

polling a technique used to discern which
of several devices on an /O connection
requires service. In a simple form, the
processor may periodically interrogate
each peripheral device in order to
determine the device’s status.

priority interrupt an interrupt structure in
which devices with higher priority may
interrupt the servicing of devices with lower
priority. In other systems, priority may only
be used in the arbitration of simultaneous
interrupts, disallowing interruption of an
in-process interrupt service routine.
program a series of statements defining a
process or procedure in some form that
can be used by a computer.
programmable read only memory
(PROM) a logic circuit which can be
programmed once in a special PROM
programmer and is used to store data
and/or instructions that are invariant. Also
comes in an erasable model called
EPROM.

protocol a set of conventions for
transference of information between
devices. The simplest protocols define only
the hardware configuration. More complex
protocols define timings, data formats,
error detection and correction techniques,
and software structures. The most powerful
protocols describe each level of the transfer
process as a layer, separate from the rest,
so that certain layers such as the
interconnecting hardware can be changed
without affecting the whole.

Q

queue a list of processes to be executed in
sequential order, information blocks to be
processed in sequential order, or a mixture
of the two.

random access memory (RAM) a
misnomer applied to read-write memory.
read only memory (ROM) a memory
device in which the memory locations are
set to fixed patterns when the device is
manufactured. Used for invariant programs
and data.

read-write memory memory that may be
both stored into and read from by the
attached processor. Used for storing
variable programs and data.

real time operation of a system at a speed
sufficient to perform the required tasks
within the actual amount of time in which
they must be performed.



real time clock a device which measures
time at a rate consistent with the tasks
being performed. Sometimes used for
pacing the occurrence of events within a
system.

register a device used for holding a piece
of information to be processed or
transferred.

schematic a drawing showing the
interconnection of circuits to form a device.
Generally needed when interfacing two
devices that are not plug-to-plug
compatible and sometimes for those that
are.

SDLC (synchronous data link control) a
protocol specifying a layered approach to
serial data communications.

serial I/O a type of interconnection in
which information is transferred one bit at a
time. The most common serial /O
hardware schemes are RS-232 and current
loop. Both of these are pseudo-standards
in that most interfaces implementing these
schemes work similarly but are not
necessarily plug-to-plug compatible.
simplex a unidirectional implementation of
an I/0 protocol.

software interrupt the interruption of a
user-level program in response to the
acknowledgement of a hardware interrupt
by the operating system. In high-level
language programs, software interrupts can
safely occur only at the end of a program
line.

status information pertaining to the current
state of a device.

status line a simple method of
representing some state of a device in an
interconnection scheme.

string a set of characters ordered in some
manner.

strobe a control signal used to effect
information transfers at the hardware level.
synchronous data communications a
serial I/ O hardware protocol in which
transmitter and receiver are synchronized
to a common clock signal.

synchronous device a device that transfers
information at its own rate and not at the
convenience of any interconnected device.
synchronous transfer an I/O transfer
which takes place in a certain amount of
time without regard to feedback from the
receiving device.

threshold the signal level at which a
change in logical state is encountered in a
circuit, such as 1 to 0 or O to undefined
transitions.

transceiver a circuit or device that is
capable of both sending and receiving.
transistor-transistor logic (TTL) a logic
family characterized by high speeds,
medium power consumption and wide
usage.

tristate an output configuration found in
several logic families which is capable of
assuming three output states: high, low,
and high impedance. This feature is useful
for interconnecting large numbers of
devices on the same wires while allowing
only one to control the levels of the lines at
a given time.

universal asynchronous
receiver/transmitter (UART) a logic
circuit that converts parallel information to
an asynchronous serial format, and serial
information to a parallel format. Useful for
connecting processors with parallel data
buses to serial [/O lines.

universal synchronous/asynchronous
receiver/transmitter (USART) a logic
circuit that can interconnect a parallel /O
bus to either an asynchronous or a
synchronous serial /O line.

vectored interrupt an interrupt scheme
where each interrupting device causes the
operating system to branch to a different
interrupt routine. This scheme is useful for
very fast interrupt response.

voice channel a transmission medium
originally designed for voice (i.e. a
telephone line}. Modems can be used to
impress digitial information on these
channels for long distance I/O.

w

word the basic size of a piece of
information in a computer system. Most
current microprocessors have a word size
of eight bits or one byte. Newer processors
and minicomputers may have word sizes of
16, 24 or 32 bits.

Conclusion

The terms given in this article do
not form a definitive list of words used
in the field of I/O. In addition, the
definitions given are not necessarily
universal. This glossary has been
written only to acquaint the reader
with the more commonly used terms
encountered when trying to interface
modern computer equipment.
Whenever attempts are being made to
get devices to communicate, it is
always desirable to ensure that the
human designers and users of these
devices have communicated first.
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