HEWLETT-PACKARD

MIKSAM ROM

OWNER’S MANUAL
HP-86 /87

Printed in U.S.A.

(ﬁﬁ HEWLETT

PACKARD

MIKSAM ROM
Owner’s Manual

HP-86/87

December 1982

Reorder Number
00087-90614

© Hewlett-Packard Company 1982

Contents

Section1: Getting Started ..ottt ittt iniireeerieianens 3
INEEOTUCH ON oottt ettt et i iener et rennurossssoonnnsnssessonensanessosoaninsesesnas 3
ROM NS Al atioN oo vttt ittt iiie et tenaeeereesaananeasessossassassssosssnnssssssens 3
[0 7= 2T (T o T 4
[=3 0 o= - 1 4o Yo - 5
Programmer Responsibilitiesoiiiiiii ittt it i ittt e 5

Section2: MIKSAM Statementscoiiriiiiiiitiieinrreranenrineereraens 9

Introductlon

R T LE Statement ...t e e e s
£ 2:1 €= 120 1=1 21 2 PN 13
£ 721 0= 120 7=1 1) < 14
E0) € T (=T 0 7= o | O

Statement .. 18

The I Y 71 0= 3 V-1 o | 19
Statement Summary .. 20
Parameter LiSting . oouvveere e riiiiiiiierernnnseeoneeseetssssnnsnnsrarnessanssones 21
Section 3: APPLICAtIONSovvviiiii ittt iiiiiiee e iriee s 23
TRy Lo 1173 4T o TR S 23
InitializZing Filest i it ittt ittt e iascratsetinsnnansanarasnns 24
0 Lo 11 €1 T 26
19121 =1 1T 2 V- G 28
L7« £ T T S P 30
I Y= T 1 32
File EXPANSION ottt ittt ettt eseeesnossonansesassoseseseeosssnannannannsnssssesssss 34
Key File RECOVEIY .. vtiiiiiiin ittt iatanessossanatosenoesesonnannsassns 34
Section 4: MIKSAM for Advanced Programmers 37
File S rUCTUNE ittt ittt iiens e e s eannassssasocsaannsssssssonnnssnsssosasnionnes 37
(a1 8 1 1 - T - O PP 40
Appendix A: Maintenance, Service,andWarrantyooo00n0 43
Appendix B: Extent Conversionscooiiiiiiiiiiiniiiiiiieiiiiren, 47
Appendix C: Status Codesoiviiiii it 49
Appendix D: Sample Application Programcoooviiiiiinin 63
s s =5 63

Section 1

Getting Started

Introduction

The MIKSAM ROM is used for creating and maintaining key files. MIKSAM stands for Multiple Indexed
Keyed Sequential Access Method. This means several key files can be used for supporting one or more
direct access files. MIKSAM allows up to 12 key files to be open simultaneously. The number of data files
accessed with the keys depends on the specific application.

To use the MIKSAM ROM properly, several HP products are needed. A minimal configuration includes
these items:

¢ HP 82936A ROM Drawer.
¢ OneDiscDrive.

e HP-86 or HP-87 Personal Computer.

Depending on the program files, key files, and data files associated with your application, one disc drive
may not provide sufficient mass storage capacity. Additional disc drives can be added when necessary.
The MIKSAM ROM uses 4K bytes of user memory (RAM) as a buffer. The remaining user memory is
available for application programs.

ROM Installation

The MIKSAM ROM can be inserted into any vacant slot on the ROM drawer. You can remove the
protective cap over the slot by placing the eraser end of a pencil through the circular hole underneath the
slot and pressing upwards.

Next, position the MIKSAM ROM so that the connector pins face down and the beveled edge is towards
the plug-in side of the drawer. Be careful not to touch the connector pins. Gently press the MIKSAM ROM
into the slot until it is flush with the drawer surface.

Note: Additional information is provided in appendix A of this manual, on the HP 829364 ROM
Drawer Instruction Sheet, and in section 2 of the introductory manual supplied with your computer.

Once the MIKSAM ROM has been installed and the ROM drawer is plugged into a module port, your
HP-86/87 can be switched on. To verify that the MIKSAM ROM is properly installed, press the keys (M)
OOE)A M . The following message should be displayed:

co 1EED Feachtres Software Ino., FAtlanta, Ga,

The MIKSAM ROM requires 4K bytes of user memory (RAM) to operate properly. These instructions
allow you to determine the amount of user memory remaining:

a. Execute the =0T

4 Section 1: Getting Started

b. Press (LIST).

c. The number of bytes available in user memory is displayed., This amount of user memory is
available for application programs. The 4K bytes used by the ROM are already subtracted from the
number displayed because memory for the ROM is taken when power is applied.

Do not insert or remove the ROM drawer containing the MIKSAM ROM when your HP-86/87 is
switched on. Inserting or removing drawers can result in serious damage to the MIKSAM ROM, other
ROMs, and the internal circuitry of your computer. Always check the POWER light to verify that your
HP-86/87 is switched off before inserting or removing a drawer. The computer should also be plugged
into a grounded electrical outlet.

CAUTION

Definitions

Here are some terms you will encounter in this manual:

ASCII collating
sequence

corrupt

data file

data type

header file

input parameter

key file

key-record number
pair

numeric data type

output parameter

parameter

pointer

The relative ordering of decimal codes assigned to all characters and keys on the
HP-86/87, as defined by the American Standard Code for Information
Interchange.)

A disc file condition caused by interruption of disc output operations. In a
corrupt file, data is incomplete or invalid because the extent of a specific disc
write is uncertain. A power outage can cause this situation, for example.

A direct access disc file where specific records can ‘t_ge accessed with record
numbers. The buffer for these files is set up with BASIC Fii I Gl statements.

The internal representation used for evaluating variables, constants, or
expressions. There are two data types with MIKSAM statements, numeric and
string.

A separate disc file that contains system information for accessing key files or
data files.

A constant, variable, or expression used to pass necessary data to a MIKSAM
statement. .

A disc file used to quickly access record numbers given a key or retrieve the
key-record number pairs in order. These files are created with MIKSAM
Mk E REY FI1LE statements.

The unit of information stored in the key file. The key is a string value searched
for in the key file. A record number is associated with each key for accessing the
data file.

A numeric variable, constant, or expression that can be used for passing numeric
data in MIKSAM statements.

A variable to which specific values can be returned from MIKSAM statements.
After the statement has been executed, this value can be tested in the program.

Constants or variables listed after MIKSAM statements that enable the
exchange of values between program statements and the MIKSAM ROM during
program execution. There are three types of parameters—input, output, and
update. A listing is provided on page 21.

A numeric value in one cell of a data structure that contains the address of
another cell and links different cells in the data structure together.

Section 1: Getting Started 5

record Information accessed in the data file with direct access BASIC FEEFli# and
i THTH statements. All records in a given file have the same fields although
each field can contain different information.

statement Any instruction that can be used in an executable program. MIKSAM statements
can be executed on your HP-86/87 if the MIKSAM ROM has been properly
installed.

string data type A variable, constant, or expression evaluating to a specific sequence of ASCII
characters.

update parameter A variable used for passing .data to and from a MIKSAM statement. The

updating of the variable depends on the successful execution of the statement. An
update parameter has the properties of both /nput and output parameters. .

File Operations

The following table summarizes the capabilities of MIKSAM statements for maintaining key files and
presents typical data file operations.

Statements ~ Key Files Data Files

fMEkE FEY FILE Creating key files. =~ . Initializing and expansion of files.

Purging key files. —

Opening key files. —

Closing key files. —

Adding keys. Adding records.

Deletir{g keys. Deleting records.

Find the first key. Retrieve first record.

Find the last key. Retrieve last record.

Find the next key. Retrieve records in key order.

Find the previous key. Retrieve records in reverse key order.

Find the record number of a key. | Accessing specific records.

Setting up buffers. —

Managing file space. —

Programmer Responsibilities

This manual is intended for application programmers. Knowledge of data base programming techniques
is assumed. Familiarity with indexed keyed sequential access methods is desirable. The B-tree is the data
structure used in all MIKSAM key files. It is the responsibility of the programmer to maintain direct
access files using BASIC statements. Details about these statements are provided in the HP-86/87
Operating and BASIC Programming Manual. The folloéving materials provide a background in data base
programming and file structures:

C. J. Date, An Introduction to Database Systems, Second edition, Addison-Wesley, Reading,
Massachusetts, 1977, 536 pages.

6 Section 1: Getting Started

Gio Wiederhold, Database Design, McGraw-Hill, New York, 1977, 658 pages.

Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures, Computer Science Press,
Potomac, Maryland, 1976, 564 pages.

Donald E. Knuth, The Art of Computer Programming: Volume 3: Searching and Sorting, Second
edition, Addison-Wesley, Reading, Massachusetts, 1973, 722 pages.

Additional information about MIKSAM key file structure and performance is presented in section 4.

Notes

Notes

Section 2

MIKSAM Statements

Introduction

MIKSAM statements can be executed in either program or calculator mode on the HP-86/87. All
MIKSAM statements consist of a keyword followed by one or more parameters. The parameter list can
contain constants, variables, and expressions and is used for exchanging data with the routines invoked
by MIKSAM statements.

Three types of parameters are used—input, output, and update. Input parameters are used for supplying
information to specific routines. Output parameters are assigned new values and return information to
application programs. Update parameters supply information to statements and can also return values to
a program. Here are some guidelines:

Input parameters —expressions, constants, or variables can be used. Depending on the parameter,
use either a numeric or string data type.

Output parameters —use variables in all cases. This is because values for output parameters are
returned after statement execution. Such values cannot be assigned to constants or expressions.

Update parameters —use variables with previously assigned values. Actual updating depends on the
outcome of statement execution.

All variables or expressions used for parameters must result in a defined value when evaluated. The
application program must initialize or set /input and update parameters. Values returned to output and
update parameters must also be checked. Refer to page 21 for a comprehensive listing of parameters.

In the remainder of this section, specific information is presented about each of the 13 MIKSAM
statements. Each statement description includes the parameter list, sample statements, and the status
codes that can be returned. This format is used for describing all parameters:

Parameter (parameter type, data type)

The parameter type, described earlier, can be input, output, or update. The data type can be numeric or string.
For statements to be executed properly, parameters must be supplied in the order indicated. Parameters
used with the G E 1

Lk FEY statement, for example, are listed as follows:
a. Status code (output, numeric)

b. Key file number (input, numeric)

C. Record number (output, numeric)

d. Key(update, string)

10 Section 2; MIKSAM Statements

The keyword for this statement, % E . KE'"Y, is always followed by the parameter list:

Output Input A Output Update
r——— - - -

Correct Thbll REY S0, 1, RECHUM, KEYE

Incorrect mEEb BRSSO, F LU BECHUM, K

Reason Expressions should not be used as update parameters sin e data can be returned to
them.

To access file records directly, it is necessary to supply a record number. This number corresponds to the
sequential ordering of the data file, Key files enable you to look up the correct record number in a data file
without checking any adjacent records.

FRIHT# statements. For additional information about the & EEF K'Y statement, refer to page 18.

Note: An abbreviated format can be used for entering MIKSAM statements on your HP-86/87. All
characters in the keyword except the starting character and characters preceded by an underscore can

be omitted. For example, the l<F 4 statement can be entered as % k.. Another example is

statement as 11 K . The entire keyword is shown when

entering the PMFHEE F
programs are listed. The [l _

The MAKE_KEY_FILE Statement

The MFEE _EY 1.k statement creates a key file on disc. The key file is pre-allocated and consists

entirely of record pointers and keys. Since the file is stored in the first vacant space on disc, it is
recommended that only packed or newly initialized discs be used for storing key files.

Order of Parameters:

a. Status code (ou'tput, numeric) Indicates if key file creation is successful.

b. Key file specifier (input, string) Provides the file name and mass storage unit specifier {msus) for
creating the file. No other files on the volume specified should have the same name. When the msus
is omitted, the key file is stored on the default mass storage device.

c. Key length (input, numeric) Specifies the number of bytes in the key. Values 1 through 60 can be
used. Strings of this length then need to be used for the key parameter.

d. Key file extent (input, numeric) Specifies the number of sectors for the key file. This amount of disc
space needs to be on-line. A minimum of 13 sectors is needed. The maximum extent is the number of
sectors that can be stored on one volume with your system. Note that additional sectors are occupied
by the key file when null disc spaces are used. Only the specified extent can be accessed.

Section 2: MIKSAM Statements 11

Sample Statements: [}

The number of key- record number pairs created in your key file determines the number of records that can

' F IL.E statement, this is specified in sectors. Refer to
appendix B for convertlng the number of key—record number pairs and key length to key file extent.

Status Codes
Values ' Conditions - Notes

Device address is not correct. Check msus and device address.

Invalid key length. Must be in range 1 through 60 bytes.

Invalid extent. Must be at least 13 sectors.

Not enough room for file. Purge unneeded files.

File already exists.) Must change the file specifier or delete the
existing file.

135 | Disc access error. Disc not initialized, disc door open, or select
code incorrect (page 21).
I} Successful file creation. —

The KILL_KEY_FILE Statement

This statement deletes key files. Only key files created with the FiFk L K EY FT1.E statement can be

deleted with the k. T1.L. KEY FIL.E statement. After deleting, the disc space becomes available for
other files.

Order of Parameters:

a. Status code (output, numeric) Indicates successful deletion and abnormal conditions.

b. Key file speclflar {input, stnny) Identifies the file to be deleted If the msus is not included, only the
default mass storage location is checked.

""'!IIIH'-,”! LV T O I"!hll!“
¥

Only files identified as type "} " in a directory listing can be deleted with the k. IL.L. H By FLLE

statement. The MIKSAM ROM must already be installed when the [T

12 Section 2: MIKSAM Statements

 Status Codes
Values Conditions Notes

Incorrect device address. Check msus specified.

File not E E " type. Obtain directory of disc with ROM installed.

File in parameter is not on-line. Check msus.

File is open. Execute Il 015 E KEY FILE statement,
then delete.

13 | Discaccess error. Disc not initialized, disc door open, or select
code incorrect {page 21).
K Successful deletion. —

The OPEN_KEY_FILE Statement

This statement opens specific key files and assigns numbers to them. The number is used for accessing
the file with other MIKSAM statements and must be used until the file is closed. A pointer is positioned at
the beginning of each key file when it is opened. Up to 12 key files can be open simultaneously.

Order of Parameters:

a. Status code (output, numeric) Indicates if the file is properly opened.
b. Key file specifier (input, string) Locates the disc file to be accessed. The msus can be included.

c. Key file number (input, numeric) Assigned to the file when it is opened. The numbers 1 through 12
can be used. Do not use numbers currently assigned to other key files.

If you attempt to open a file with the same name as one that is already open, a status code is set. Each file
that is opened must have a different name.

Status Codes
Values Conditions Notes
1% | File opened—it was not properly closed. Check for corrupt data.
Peripheral address not correct. Check msus specified.
Invalid file number. File number is currently in use or is not in range
1 through 12.
File is not a key file. Must be type [E "',
File in parameter is not on-line. Check msus.
File is open. —
137 | Discaccess error. Disc not initialized, disc door open, or select
code incorrect (page 21).
ki Successful opening. —

Section 2: MIKSAM Statements 13

The CLOSE_KEY_FILE Statement

FTL.E statement is used to close key files. If a specific key file is not closed, the next
T'l.E statement identifying this file will indicate that is was not closed properly. After a

L ILE statement has been successfully executed, the key file number of the closed file
can be reused to open another key file.

Order of Parameters:

a. Status code foutput, numeric) Indicates abnormal file closures.

b. Key file number (input, numeric) Identifies the file to be closed. Use the number assigned to the file

by the respective 1M _FEY 11 statement.

Sample Statements: 1. GO, 1

It is not necessary for the system to write out buffers to key files when they are closed because all output to
key files is direct. This means that individual changes to key files are written out to disc immediately.
This feature protects the key files from corruption.

Status Codes
Values Conditions Notes
11 | Invalid key file number. Must be in range 1-12.
1 File is closed. . —
13 Disc access error. Disc not initialized, disc door open, or select
code incorrect (page 21).
& | Successful closure. —

The CREATE_KEY Statement

This statement is used for inserting key-record number pairs into key files. All keys are inserted according
to the ASCII collating sequence. This means that numbers are inserted before letters and that uppercase
letters precede lowercase letters. Duplicate keys are inserted after any keys with the same value. It is the
programmer’s responsibility to maintain the logical relationship between key files and data files.

Order of Parameters:

a. Status code (output, numeric) Indicates successful insertion and whether or not file space is
becoming limited. Appropriate action needs to be taken if there is no space in the key file.

b. Key file number (input, numeric) ldentifies the file in which the key is to be inserted. Use the

c. Record number (input, numeric) Identifies specific records in data files when used with i+ i FI[1#
and F & I M T4 statements.

d. Key (input, string) Provides the string value used for inserting key-record number pairs into key
files.

14 Section 2: MIKSAM Statements

AL EEY E0] LR

Sample Statements:

If a'! . MEST FEY statement is executed after a LFEHTE _FEY statement, then the key
following the key just inserted is returned. If a key is inserted after the last key, an end-of-file condition is
returned.

Status Codes
Values Conditions Notes

1% | Space low—Iless than 12 sectors remain. Increase extent of the key file.

131 | Invalid key file number. Range 1 through 12 only.
Improper key length. Check key length entered when key file created.
Invalid record number. Evaluates to zero.

131 | Nospaceinkeyfile. Increase key file extent.
File is closed. Use FEM KEY FILE statement.
B-tree height is at maximum of seven. Reduce key length or number of keys in file.
Disc access error. Disc not initialized, disc door open, or select

code incorrect {page 21).
) Successful insertion. -

The DELETE_KEY Statement

This statement removes key-record number pairs from key files. In order for deletion to be successful, the
record number and key supplied must match a pair in the file specified. The key and record number
parameters are updated to the next key-record number pair in the file when a deletion occurs. In most
cases, disc space used by the deleted pair can be reused by the system.

Order of Parameters:

a. Status code (output, numeric) Indicates successful key deletion and error conditions.

b. Key file number (input, numeric) Identifies which key file a deletion occurs in. This should match

c. Record number (update, numeric) Verifies the pair to be deleted. This must be the record number
associated with the key. If end-of-file is encountered, this parameter is set to zero.

d. Key (update, string) Specifies the key to be deleted. The string length must mz;tch the key length
parameter used when the file was created.

Sample Statements:

appearing after the deleted key is returned. If the pair deleted was last in the key file, then the record
number is set to zero and the value of the key parameter is not changed.

Section 2: MIKSAM Statements 16

- Status Codes
Values Conditions Notes
111 | Key-record number pair not found. If key is in file, check associated record number.
Invalid file number. Must be in range 1 through 12.
Improper key length. Check key length specified when file was
created.
Invalid record number. Evaluates to zero.
135 | Fileis closed. Use LIFEM_ KE'Y FILE statement.
1A% | Disc access error. Disc not initialized, disc door open, or select
code incorrect (page 21).
I Successful key deletion. —

The SEEK_FIRST Statement

This statement places the pointer beside the first key-record number pair in the file specified. It should be
FIKEST statement is implicitly performed

used before each forward traversal of key files. The =

wheneyer a key file is opened.
Order of Parameters:

a. Status code (output, numeric) Indicates if the pointer is at start-of-file and detects abnormal
conditions.

b. Key file number (input, numeric) ldentifies the file. This parameter should be set to the value
assigned with the [IFE M FEY 1 1.E statement during the current session.

FYLE

A BEER MEWT KEY statement immediately following the ZiliEk F IF=ZT statement returns the

first key-record number pair in a key file.

Status Codes .
Conditions Notes
Invalid key file number. Must be in range 1 through 12,
File is closed. Use IFEM KEY FILE statement.’
Disc access error. Disc not initialized, disc door open, or select _ -
code incorrect (page 21).
i Successful seek. ' —

16 Section 2: MIKSAM Statements

The SEEK_END Statement

Execution of this statement positions the pointer after the last key-record number pair in a key file. This
statement is normally used before reverse traversals.

Order of Parameters:

a. Status code foutput, numeric) Indicates if the pointer was positioned correctly and detects
execution problems.

b. Key file number (input, numeric) ldentifies the file.

Sample Statements: il

FRIOR FE'Y statement initially returns the last key-record number pair in the

A subsequent '

specified file.
Status Codes
Values Conditions Notes

1#1 | Invalid key file number. Must be inrange 1 through 12.

135 | Fileisclosed. Use NFEM_KEY FILE statement.
137 | Disc access error. Disc not initialized, disc door open, or select

code incorrect (page 21).
£ Successful seek. i —

The SEEK_NEXT_KEY Statement

This statement finds the key record number pa1r following the current pair. The first key-record number
pair is returned when a : i

. ' statement is executed after file opening. A series of these
statements results in forward traversal of key files.

Order of Parameters:

a. Status code {output, numeric) Detects end-of-file and other conditions.

b. Key file number (input, numeric) ldentifies the file to find the next key-record number pair in. Use
the value assigned when the key file is opened.

¢. Record number (output, numeric) Returns the number associated with the next key. This can be
used for data file access.

d. Key(output, string) Returns the next key in a file according to the ASCII collating sequence.

If the &

, Sk FRTORE KE'Y statement, then an extra
seek is required. This is because the direction of traversal is changing from descending to ascending. The

e T B statement is preceded by a i

extra seek is required to pass over the last key-record number pair retrieved.

Section 2: MIKSAM Statements

Status Codes

17

Values Conditions

Notes

el End-of-file encountered.
Invalid file number.

Improper key length.

File is closed.

Disc access error.

5 Successful seek.

Record number and key unchanged.
Must be in range 1 through 12,

Must match key length specified during
creation.

Use DIFEMKEY _F1IL.E statement.

- Disc not initialized, disc door open, or select

code incorrect (page 21).

The SEEK_PRIOR_KEY Statement

This statement returns the key-record number pair preceding the current pair. When placed immediately

-k B statement, repeated execution of the SE [E FFR I KE™ statement results in

after a =k
reverse traversal of key files. A status code is set when start-of-file is encountered.

Order of Parameters:

a. Status code (output, numeric) Indicates successful retrieval and detects errors.

b. Key file number (input, numeric) ldentifies what file the key-record number pair is retrieved from.
Set this parameter to the value assigned to the file during opening.

¢. Record number (output, numeric). Provides the number associated with the key. The record number
can be used for accessing a data file.

d. Key(output, string) Returns the value of the preceding key.

PR IOR
CODE, &, F

Sample Statements:

Seeking prior keys usually changes the order in which keys are returned from ascending to descending.
This is the case when the last seek was for the next key. Whenever such a change occurs, an extra seek is

required to pass over the last key-record number pair returned. Also, when a ! B
statement follows a [1E L. ETE K" statement, the pointer is placed beside the key-record number pair

originally preceding the deleted pair.

Status Codes

Values Conditions Notes

i

1E11 | Pointer at start-of-file.
Invalid file number.
Improper key length.

File is closed.

Disc access error.

il Successful seek.

Record number and key unchanged.
Must be inrange 1 through 12.

Use key length file was created with.
Use DIFEM_FEY FIILE statement.

Disc not initialized, disc door open, or select
code incorrect (page 21).

18 Section 2: MIKSAM Statements

The SEEK,KEY Statement

The “FEK FKEY statement searches for a key and returns the associated record number. This record
number can be used to access data files. When a specific key is not found, the key and record number
parameters are updated to the next pair in the file unless end-of-file is encountered.

Order of Parameters:

S

a. Status code (output, numeric) Indicates if the seek is successful.

b. Key file number (input, numeric) Identifies the file to be accessed. Set this parameter to the number
assigned when the file is opened.

c. Record number (output, numeric) Returns the number associated with the key specified. This
number can be used for accessing data files. ‘

d. Key (update, string) ldentifies the key to be retrieved from the key file.

Sample Statements:

When duplicate keys exist in a file, the record number of the first key-record number pair added to the file

is returned. Repeated execution of the k. IEY statement always returns this value. To obtain

record numbers associated with remaining duplicate keys, use the SEE . _MEXT FE" statement.
Status Codes
Values Conditions . Notes
181 | Pointer at end-of-file. —
© 118 | Specified key not found. ~ Key and record number updated.
11 | Invalid file number. Must be in range 1 through 12.
2 | Improper key length. Use key length specified when file created.
File is closed. Use HMFEH _KEY _F TLE statement.
Disc access error. Disc not initialized, disc door open, or select
code incorrect {page 21).
I Successful seek. —

The SET_UP Statement

This statement is executed by the MIKSAM ROM when power is applied. However, it is recommended
that this statement be included as part of the initialization routine in application programs. This
statement should be executed only once.

Parameter:
a. Status code (output, numeric) Indicates successful buffer set up.

Sample Statements:

Section 2: MIKSAM Statements 19

LI statement causes the ROM to perform initialization and establish buffer links. A total of
ten 256-byte buffers is needed for the ROM to function properly. If sufficient memory is not available, a
status code is set.

Status Codes

Values Conditions Notes

127 | Notenough memory available. A total of 4K bytes of user memory is required.

il Successful set up. —

The M_STATUS Statement

This statement provides information about the B-tree file structure used for storing and accessing key-
record number pairs. This information can be helpful when considering changes in key length or file size,

for example. A formula relating key file extent, key length, and number of keys is presented in appendix
B.

Order of Parameters:

a. Status code (output, numeric/ Indicates successful execution of the [1 = THTLI% statement.

b. Key file number (input, numeric) Identifies the file to be accessed. Use the number assigned to the
file when it is opened.

¢. Keylength output, numeric) Returns the string length that must be used for the key parameter.

d. Accessible sectors (output, numeric) Indicates the maximum extent that can be used for storing
key-record number pairs.

e. Free sectors (output, numeric) Returnsthe number of currently free sectors in the key file.

f. Tree height (output, numeric) Indicates the current height of the B-tree. The maximum height is
seven. Refer to section 4 for specific information about key file structure.

Sample Statements: [

s TUE S HE T GHT

Status Codes
Conditions Notes
Invalid file number. Must be in range 1 through 12.
File is closed. _ Use LIFE 1 ' 1L.E statement.
ki Successful execution. —

20 Section 2: MIKSAM Statements

Statement Summary
The parameters that must be used with each MIKSAM statement are provided in the following table.

Statements Parameters

MAKE KEY FILE | status code foutput, numeric)
key file specifier (input, string)

key length (input, numeric)

key file extent (input, numeric)

EILL _KEY_FILE | status code foutput, numeric)
key file specifier (input, string)

OFEM KEY _FILE | status code foutput numeric)
key file specifier (input, string)
key file number (input, numeric)

CLOSE KEY _FILE | status code (output, numeric)
key file number (input, numeric)

CREEATE EEY status code (output, numeric)

key file number (input, numeric)
record number (input, numeric)
key (input, string)

BB status code (output, numeric)
key file number (input, numeric)
record number (update, numeric)
key (update, string)

e status code (output, numeric)
key file number (input, numeric)

status code (output, numeric)
key file number (input, numeric)
record number (output, numeric)
key (output, string)

status code (output, numeric)
key file number (input, numeric)
record number (output, numeric)
key (update, string)

status code {output, numeric)

status code (output, numeric)

key file number (input, numeric)

key length foutput, numeric)
accessible sectors (output, numeric)
free sectors foutput, numeric)

tree height (output, numeric)

Section 2: MIKSAM Statements 21

Parameter Listing

Depending on the MIKSAM statements you use, different parameters are necessary. The following is a
comprehensive listing of the parameters used in these statements. Parameters are numeric unless
otherwise noted.

Accessible sectors foutput) Returns the extent of a key file that can be accessed for storing key-record
number pairs. It includes the free sectors parameter and any sectors currently filled with key-record

number pairs. The number returned should be one less than the key file extent specified with the "I

.. statement.

Free sectors (output) Contains the number of disc sectors currently available. Refer to appendix B for
information about converting a quantity of key-record number pairs to key file extent in sectors.

Key (input, output, update) Passes the keys that MIKSAM files are ordered by. Any characters can be used
in the key. However, the length of the string and the length defined for keys when the file is created must
agree.

Key file extent (input) Specifies the size of key files. The minimum extent is 13 sectors. The maximum is
the number of sectors that can be stored on a volume with your system.

Key file number (input) References key files once they have been opened. Only values 1 through 12 are

Key file specifier (input) Identifies the disc file containing the key file. The file name has a maximum
length of 10 characters. If a non-default drive is to be accessed, then the msus must be included with the
file name.

Key length (input, output) Passes the length of keys to create a file with. Only values 1 through 60 can be
used.

Record number (input, output, update) Passes the number associated with each key value. Only values in
the range 1 through 65,535 are used. If the record number is negative, then the absolute value is used. Real
numbers are rounded to the nearest integer. Also, any number greater than 65,535 is set to 65,535.

Status code (output) Set each time a MIKSAM statement is executed so that any execution problems can
be detected. A value of zero, for example, indicates successful execution. Refer to appendix C for a
complete listing.

Tree height (output) Returns the height of the B-tree used for storing the key-record number pairs. A tree
of height two has three levels including the root node. Tree heights can range from zero through seven.
Refer to section 4 for a conceptual diagram.

HEST b
e ChY,

"' statement after status code 137 is returned

Execution of a L[k

can corrupt a key file. Also, searches may not return the expected key-record number pair because the
BN FTLE or SET LI statement

Notes

Section 3

Applications

Introduction

Application programs you design with MIKSAM statements can perform a variety of tasks. Since only
key files are maintained with these statements, it is necessary for your application program to make the
logical connection between the key files and data files used. BASIC direct access M and F & 1T HT#
statements are used for storing and retrieving records in data files. Sample combinations of MIKSAM
statements and BASIC statements used for the following operations are provided in this section:

e Initializing files.
¢ Adding records.

e Deleting records.
e Updating records.
o Traversing files.
e Expanding files.

¢ Recovering files.

In addition to the statements, certain routines are also suggested when performing these operations. An
example would be taking corrective action if a disc error occurs during key insertion or removal (page 34).
These suggestions can be beneficial even if your program does not use the procedure listed. A complete
application program using the suggested routines is provided in appendix D.

Monitoring free space in key files is important. When a key file is first created, a minimum extent of 13
sectors is required. The upward extent of key files is determined by your system. It is the maximum
number of sectors that can be stored on the volume specified. As keys are inserted, the number of free
sectors is reduced. A warning is returned when less than 12 sectors of free space remain after a key is
inserted. Although keys can still be inserted, it is suggested that the key file be expanded if less than 12
sectors are available.

Although extremely unlikely, it is possible to reach the B-tree height limit of seven. If insertion of a key
causes the tree height to exceed seven, then a warning is returned and the key is not added. It is necessary
to reduce the number of keys in the file or the key length before keys can be inserted.

The MIKSAM ROM returns values to the status code parameter to indicate warnings. It is the
programmer’s responsibility to test these values and take appropriate action. Additional steps can be
necessary to maintain the logical connection between key and data files.

It is recommended that all application programs be designed with a recovery routine. Procedures to
recover from partial file corruption can be included in application programs. In extreme cases, a new key
file must be created from the data file. The periodic backup of files is also recommended as a
precautionary measure.

23

24 Section 3: Applications

Initializing Files
The initialization routine can create a key file and data file. A header file containing field information
about the data records can also be created. The extent specified for the key file needs to provide enough
key-record number pairs for accessing the number of records created in the data file. Instructions for
converting the key length and number of data file records to key file sectors are provided in appendix B.

‘ Start ,

/

Creste data
header file.

Y

Execute
MAKE_KEY_FILE

statement.

Error
Routine

status
code=0

Create data
file.

Initialization Flowchart

Section 3: Applications 25

It is recommended that all fields be treated as string variables. These fields are then concatenated and
written out to disc as one variable. The header file can be used for interpreting each record.

830 DISP "--- CREATING A HEADER DATA FILE AND STORING THE FILE DEFINITIONS ---"
840 ON ERROR GOTO DISC_ERR

850 CREATE DBNAME$&"™ H",u

860 OFF ERROR

870 NUM USED=0 ! data file is initially empty

880 RECORD _MAP$[MAX RECORDS,MAX RECORDS]=" " ! all records are available

890 ASSIGN# 1 TO DBNAME$&" H"

900 PRINT# 1,1 ; NUM USED,RECORD MAP$

910 PRINT# 1,2 ; MAx:RECORDS,REC@RD_LEN,NUM_KEYS,KEY_MAP$,KEYFIELD(),NUM_FIELDS
920 PRINT# 1,3 ! move file pointer

930 FOR I=1 TO NUM_FIELDS @ PRINT# 1 ; FIELD NAME$(I) € NEXT I

940 FOR I=1 TO NUM_FIELDS €@ PRINT# 1 ; FIELD_LEN(I),F _BEG(I),F_END(I) @ NEXT I
950 ASSIGN# 1 TO * -

960 DISP "wwow-- CREATING KEY FILES www-=- "

970 FOR J=1 TO NUM KEYS

980 KEYFILE SIZE=MAX RECORDS DIV (.8%(253/(FIELD LEN(KEYFIELD(J))+2)+1)=1)+13
990 TEY ;B S,DBNAME$&" "&VAL$ (J),FIELD LEN(KEYFIELD(J)),KEYFILE SIZE
1000 DISP "MAKE _ KFY FILE ERROR. MUST EXIT." @ GOTO MKF ERR

1010 NEXT J

1020 DISP "eee-- CREATING THE DATA FILE ~==== "

1030 ON ERROR GOTO CREATE FILE ERR

1040 CREATE DBNAME$,MAX_R?CORD§,RECORD LEN+3

26 Section 3: Applications

Additions

Additions must be made to the key and data files separately. First, the record number for adding must be
obtained. Then both the key and record number are inserted into the key file. Finally, information is
written to the data file. After these operations are performed, the record number used in the
CREEATE FEY statement must be made inaccessible to avoid overwriting the new record with future
additions.

1 Start ’

\

Execute
CREATE_KEY
statement.

status
code=0

Error
RAoutine

Write record
to data file.

Addition Flowchart

Section 3: Applications 27

Each addition routine should include checks for space in both data and key files. For the key file, the
status code returned from the U FEHTE EE"Y statement can be checked. When space isn’t available it

may be necessary to delete the key just inserted to maintain the logical connection with the data file.
Messages about these actions can be displayed.

1410 ADD A RECORD: IF NUM USED=MAX RECORDS THEN DISP "YOUR DATA BASE IS FULL. Y
OU CANNOT ADD ANY MORE RECORDS." € RETURN

1420 AVAIL=POS (RECORD MAP$," ") ! find the first available record number
1430 RECORDg$="" @ RECORD$[RECORD LEN,RECORD_LEN]=" " ! set record to blank
1440 FOR F=1 TO NUM FIELDS

1450 GOsSuUB GET_A_FIELD

1460 NEXT F

1470 ADDING=1

1480 GOSUB DISPLAY RECORD

1490 GO3UB CHANGE FIELD

1500 ADDING=0

1510 DISP "ewueo ADDING KEYS AND WRITING THE NEW RECORD TO THE DATA FILE www-- "
1520 FOR K=1 TO NUM KEYS

1530 NEWKEY$,KEY$(K)=RECORD$[F BEG(KEYFIELD(K)) F_END(KEYFIELD(K))]

1540 JCREATE BEY S,K,AVAIL,KEY$TK)

1550 IF S= 137 THEN GOSUB CREATE ERROR @ GOTO 1540

1560 NEXT K

1570 BUFNUM=2 @ RW_ERRFLAG=0 @ ON ERROR GOSUB BUF_ERROR

1580 PRINT# BUFNUM,AVAIL ; RECORD$

1590 OFF ERROR @ IF RW_ERRFLAG THEN 1570

1600 ! mark record number AVAIL as used and increment record count

1610 NUM_USED=NUM_USED+1 € RECORD MAP$[AVAIL,AVAIL]="U"

1620 BUFNUM=1 € RW ERRFLAG=0 @ ON ERROR GOSUB BUF ERROR

1630 PRINT# BUFNUM,1 ; NUM USED,RECORD MAP$! update vital statistics

1640 OFF ERROR @ IF RW ERRFLAG THEN 1620

1650 DISP "NUMBER OF ENTRIES ["; NUM_USED;"]1 OUT OF TOTAL CAPACITY OF [";MAX_RE
CORDS;"1].

1660 IF NUM USED=MAX RECORDS THEN DISP "THE DATA BASE IS FULL " @ RETURN
1670 ~ DISP "DO YOU WANT TO ADD MORE RECORDS? ENTER [Y] OR [NJ.

1680 INPUT INPBUF$@ IF INPBUF$="" THEN 1670 ELSE INPBUF$=UPC$ (INPBUF$)
1690 IF POS (INPBUF$,"Y")=1 THEN 1420

1700 RETURN ! end of ADD_A RECORD

28 Section 3: Applications

Deletions

Deletions require several operations since both the key and record number pairs must match for a deletion

statement can be used to remove the key. If space in the data file is to be recycled, the record number can
be added to a list of available spaces.

Execute
SEEK_KEY
statement.

Error
Routine
Execute
DELETE_KEY
statement.
status Error
code=0 Routine

Mark reconrd
number invalid.

\
End

Deletion Flowchart

Section 3: Applications 29

2000 | S,KY,RN,KEY$(KY)

2010 IF S=137 THEN GOSUB SEEK_ERROR @ GOTO 2000

2020 IF NOT S THEN FOUND IT

2030 ! handle cases when key not found

2040 IF 3=101 THEN DISP "END OF FILE ENCOUNTERED. RE-ENTER." € GOTO QUERY DB
2050 IF S#110 THEN DISP "SEEK ERROR OCCURRED., MUST EXIT PROGRAM."™ @ END

2060 DISP "THE KEY AS SPECIFIED IS NOT IN THE KEY FILE. THE NEXT GREATER KEY RE
TRIEVED."

2090 FOUND IT: HAVE RECORD=1 ! retrieve the desired record

2100 BUFNUM=2 @ RW ERRFLAG=0 € ON ERROR GOSUB BUF __ERROR

2110 READ# BUFNUM,RN ; RECORD$

2120 OFF ERROR @ IF RW ERRFLAG THEN 2100

2130 GOSUB DISPLAY RECORD

2140 GOSUB SAVE OLE_RECORD

2150 DISP "ENTER TUJPDATE, [DJELETE, [NJEXT, [PJREVIOUS, [S]EARCH, OR [QJUIT."
2160 INPUT A$@ IF A$="" THEN 2150 ELSE A$=UPC$ (A$) @ A$=A3$[1,1]

2170 IF A$="Q" THEN RETURN

2180 IF A$="3" THEN QUERY DB

2190 ON 1+ (A$="U")+(A$="D") *¥2+ (A$="N")*%3+(A$="P") ¥4+ (A$="S")*5 GOSUB INVAL ,UPDA
TE ,DB_DELETE ,GET_NEXT ,GET_PREV

2200 IF NOT HAVE RECORD THEN RETURN ELSE FOUND_IT ! end of QUERY

2480 DB DELETE: ! delete the current record

2490 DISP "ARE YOU SURE YOU WANT TO DELETE THIS RECORD? ENTER [YES] OR [NOJ."
2500 INPUT A$€ A$=UPC$ (A$) @ IF A$#"YES" THEN RETURN

2510 DISP "ewwme- DELETING THE KEYS AND RECORD FROM FILES -=w-- "

2520 FOR K=1 TO NUM KEYS

2530 SAVEDKEY$=KEY$(K)

2540 DRN=RN @ JEl . S,K,DRN,KEY$(K) :

2550 IF S=137 THEN GOSUB DELETE ERROR @ GOTO 2540

2560 NEXT K

2570 RECORD MAP$[RN,RN]=" " ¢ RN is marked empty

2580 NUM USED=NUM USED 1

2590 »BUFNUM 1 @ RW ERRFLAG= O @ ON ERROR GOSUB BUF ERROR

2600 PRINT# BUFNUM,1 ; NUM USED,RECORD MAP$! update vital statistics

2610 OFF ERROR @ IF RW ERRFLAG THEN 2590

2620 SAVEDKEY$= RECORD$TF BEG(KEYFIELD(KY)),F END(KEYFIELD(KY))]

2630 8 T KEY S,KY,RN,KEY$(KY) ! get the record after the deleted one
2640 IF THEN GOSUB NEXTSEEK ERROR @ GOTO 2630

2650 IF 3 THEN HAVE_RECORD=0 @ DISP "THERE IS NO RECORD AFTER THE DELETED RECOR
D."

2660 RETURN ! end of DB DELETE

30 Section 3: Applications

Updating
Updating involves obtaining the record number of a specific record in a data file and performing a
FPE IHT# operation to the data file. Fields to be updated must be input from the user. If the key is
included in the data file, updating can involve changes to key files. To allow updates to be aborted it is
necessary to preserve the original record until other records are accessed.

Exscute
SEEK_KEY
statement.

Error
Routine

Ssve record
number and key.

No Execute
DELETE_KEY
statement.

Yes

/

Write record Execute
to data file. - CREATE_KEY
statement.’

Y
‘ End ,

Updating Flowchart

F

Section 3: Applications

UPDATE:
GOSUB CHANGE FIELD
IF NOT CHANGED THEN RECORD$=OLD_ RECORD$ €@ RETURN
DISP "ewwe-- UPDATING THE FILES -----
! update key files if key values changed
FOR K=1 TO NUM KEYS
NEWKEY$,KEY$(K)=RECORD$[F BEG(KEYFIELD(K)),F END(KEYFIELD(K))]
IF KEY$(K) OLD KEY$(K) THEN NEXT_KEY ! key not changed
SAVEDKEY$=0LD_KEY$(K)
DRN=RN in DELETE, RN is updated so the copy should be used.
oE . ® S,K,DRN,OLD KEY$(K)
EN GOSUB UPDATE_DELETE_ERROR € GOTO 2330
§ S,K,RN,KEY$(K)
IF 8=137 THEN GOSUB CREATE ERROR @ GOTO 2360
NEXT_KEY: NEXT K
BUFNUM=2 @ RW_ERRFLAG=0 @ ON ERROR GOSUB BUF_ERROR
PRINT# BUFNUM,RN ; RECORD$! update data file
OFF ERROR @ IF RW ERRFLAG THEN 2390
ECORD$[F_BEG(KEYFIELD(KY)),F_END(KEYFIELD(KY))]
S,KY,RN,KEY$(KY) ! get next record after the updated one
EN GOSUB NEXTSEEK ERROR €@ GOTO 2430

137

31

IF S THEN HAVE_RECORD=0 @ DISP "THERE IS NO RECORD AFTER THE UPDATED RECORD

RETURN ! end of UPDATE

32 Section 3: Applications

Traversals

Traversals are an ordered retrieval of data according to key sequence. Depending on the direction of the
traversal, the & C MERT REY or mEEK FEIOE KEY statements are used. It is useful to restrict
searches to certain key values when duplicate keys are present.

Execute
SEEK_NEXT_KEY
statement.

status
code=0

Error
Routine

Aead record
from data file.

Y

Displsy
record.

End

Traversal Flowchart

Section 3: Applications 33

The pointer must initially be positioned at the starting key for the traversal. Use a &

statement for forward traversals or a SEE ML statement for reverse traversals. The

statement can be used to position the pointer for restricted searches.

Then individual records are retrieved. For forward traversals, the HEE MEWT KE'Y statement can

be used. For reverse traversals, use the :

L ERETOEREY statement. With some applications it can
be helpful to pause after each retrieval and ask the user if another record is desired. :

2070 DISP "DO YOU WANT TO GET THE RECORD FOR IT? ENTER [Y] OR [N]."
2080 INPUT A$€ A$=UPC$ (A$) @ IF POS (A$,"Y")#1 THEN GOTO 1730

2090 FOUND IT: HAVE RECORD=1 ! retrieve the ‘desired record

2100 BUFNUM=2 @ RW_ERRFLAG=0 @ ON ERROR GOSUB' BUF _ ERROR

2110 READ# BUFNUM,RN ; RECORD$

2120 OFF ERROR @ IF RW_ERRFLAG THEN 21007 "

2130 GOSUB DISPLAY RECGRD

2680 GET NEXT: ! get the record that comes after the current one in key order

2690 ECORD$[F_BEG(KEYFIELD(KY)),F _END(KEYFIELD(KY))]
2700 KEY S,KY,RN,KEY$(KY)

2710 AIF S/137 THEN GOSUB NEXTSEEK ERROR €@ GOTO 2700
2720 IF S THEN HAVE_RECORD=0 €@ DISP "END OF KEY FILE REACHED."
2730 RETURN ! end of GET_NEXT

34 Section 35 Applications

File Expansion

The expansion of key files involves increasing the key file extent parameter with the [k E - LB
statement. In most cases, both original and expanded copies of the key file must be on-line. Data file

expansion is also possible. The extent of the key file and the number of records in the data file can be
expanded together so that subsequent key insertions won’t exhaust space in the data file.

Care should be taken to preserve the logical relationship between key and data files. Depending on how

available space in the data file is managed, different approaches can be needed for expanding it. If a
linked list is used, it must be modified with the increased number of records and any null spaces. Refer to
Key File Recovery for additional information.

Key File Recovery

Certain situations can cause key files to become corrupt. For example, interruptions made while key file
gectors are wrltten out to disc can make the pointer 1nvahd (page 21) To determme the specific cause, the

e Discdooropen, EFFEM 13,
e Write-protect tab on disc, £ FF 1 @i,

Refer to the HP-86/87 Operating and BASIC Programming Manual for a detailed listing of E I error
codes.

If the data file is not corrupt, it can be used to recover the key file. The key value must be contained in the
data file. The EXTEND/RECOVER subroutine listed on pages 59 through 61 reads a data file, extracts
key fields, and creates key files from the key field data.

Notes

Notes

Section 4

MIKSAM for Advanced Programmers

After youimplement a data base management application with statements in a BASIC program, you can

add records to a data file. In each FEFIL1# or F'F I HT# operation, care must be taken to maintain the

validity of the key files. The connection between data files and key files is purely logical.

The ROM does not link keys with data files. It is the responsibility of the programmer to verify that the
record number associated with a key points to the correct record in a data file. The ROM does not use
BASIC statements.

Although duphcate keys are allowed, it is up to the programmer to locate them in the key files with the

. EE' statement. Only the first key with the specified value is returned in a search using
the bk

S 'T' statement. No constraints are placed on the record numbers associated with these keys.
The programmer must maintain the correspondence between keys and record numbers in the key file and
record numbers of specific records in the data file.

File Structure

The ROM creates a B-tree for storing keys and record numbers. Each key file contains information for
only one key. Multiple keys require multiple key files.

The length of keys is defined when each key file is created. Lengths of 1 through 60 bytes can be used.
Keys are interpreted as string values. The ordering of keys is determined by the ASCII collating sequence.
The following diagram shows the structure of one key-record number pair in a leaf node.

Record number, Key, up to
2 bytes. / 60 bytes.
5 | ADAMS

Key-Record Number Pair

Corresponding pairs in non-leaf nodes contain a pointer value instead of a record number. The pointer is
used for locating nodes that contain key-pointer or key-record number pairs with lower key values.

The key length specified when a file is created and the bytes needed for storing the key are the same. The
record number or pointer value associated with the key is always two bytes long. When a key is accessed,
the sector containing the key is read into computer memory. This sector is equivalent to one node of the
B-tree. A formula relating key length and key file sectors is provided in appendix B.

37

38 Section 4; MIKSAM for Advanced Programmers

The maximum number of keys that can be stored in a node is determined by the key length. In addition to
the bytes needed for each key-record number or key-pointer value, all nodes also use the leftmost byte as
an end-of-node pointer. The record number of a key in a non-leaf node is stored in the rightmost two bytes

of the rightmost leaf node of the left subtree of the key. The extent of each node is one sector and is
therefore 256 bytes:

End-of-node pointer,

one byte. Record number,

two bytes.

e| 5 | ADAMS 17| BERRY 26

~ o v

Key-record number pairs, 253 bytes available

Leaf Node

The structure used for key files is a B-tree of degree n, where n is the number of key-record number pairs
that can be stored on a leaf node. The B-tree consists of a root node, non-leaf nodes, and the léaf nodes.
The height of the B-tree is the number of non-root levels in the tree. The following B-tree has a height of
two. The addition of leaf nodes can increase the number of non-leaf nodes which can increase the height
of the tree. The maximum height of the B-tree is seven.

The ROM also creates a header record for each key file that contains system information such as the
current height of the B-tree, the next available node, the key length, the maximum and current extents of
the file, and the open status of the file. Each header record requires one sector on disc. Information in the
header record is accessed with the I1_ = TFH TLI% statement.

39

Section 4: MIKSAM for Advanced Programmers

"yoed I0J08S U0
'Sapou jea]

1NN

]
uBdivuHmpz] Nosivm[rell

aimonng san-g

]

ssouiz] suzgoul. [l

¥
Pm mo.;ﬁ_w __

\

|

\

[}
'
1
1
1
1
1
1
1
1
t
1
3
1

]
o1
7N
anoss|tify b
A |
e Huws|zlavosuanndz i

L _zOmn_.EoE_ /]

MHVLS

[snwor[v] nvwaoooletfi]

Py

[noswvm]e]

1
Lomuvwlell] /

T
1
1
1
kY
\
\
\
\
Y
1
1
\
1
[}
[
1
1
v
1

I
7
’

/ [rlacomnoo1[s] aaamnax] L[
:
]
3
i
$
f
i
!
{
/
{
I

HYVYN

_ .r,m,:x__ wmzo.._

\

. J0}38S JUO 'BPOU 100Y

¥

I
n-_ uaAd]se] x000]stfd

1Y
kY
1
\
3
Y
kY
1
1
1
1
Y
kY
Y
A

1Y
Y
1
3

1\

/

]]
lod awumals] swvav[s[f] -

T

1sva |

8

‘yoed J0J0BS BUQ
‘SOPOU JESI-UON"

.40 Section 4; MIKSAM for Advanced Programmers

Performance

The frequency of disc input/output operations determine how quickly you can locate different keys. In
general, the shorter the key is, the faster keys can be accessed. This is because more key-record number
pairs can be stored in each node. After a specific leaf node is read into computer memory, any keys stored
on it can be accessed without disc operations.

As a safeguard, output to the key file is handled directly. This means that all insertions of keys are
written out to disc immediately. Direct output minimizes the chance of key file corruption if a power
interruption occurs. This feature also means that it is not necessary to write out to disc when the key file is
closed.

To insure uniformity in key access times, it is necessary to keep the B-tree balanced. This is done
automatically. Whenever a key is inserted or deleted, a check is made to see if rebalancing is necessary.
These two situations trigger the rebalancing routine:

e AXkeyisinserted onto a leaf node that is already full.
e A lessthan half-full leaf node results from deleting a key.
The B-tree balancing routine can require several disc input/output operations. The shortest routine

involves placing a key-record number pair on an adjacent leaf node. Adding another level to the B-tree
can be necessary when keys are inserted in a certain order.

Notes

Notes

Appendix A

Maintenance, Service, and Warranty

Maintenance

The MIKSAM ROM doesn’t require maintenance. However, there are several areas of caution that you
should be aware of. They are:

WARNING: Do not place fingers, tools, or other foreign objects into the plug-in ports. Such actions
can result in minor electrical shock hazard and interference with some pacemaker devices. Damage to
plug-in port contacts and the computer’s internal circuitry can also result.

CAUTION: Always switch off the HP-86/87 and any peripherals involved when inserting or
removing modules. Use only plug-in modules designed by Hewlett-Packard specifically for the
HP-86/87. Failure to do so could damage the module, the computer, or the peripherals.

CAUTION: If a module or ROM drawer jams when inserted into a port it may be upside down or
designed for another port. Attempting to force it can damage the computer or the module. Remove the
module carefully and reinsert it.

CAUTION: Do not touch the spring-finger connectors on the ROM with your fingers or other objects.
Static discharge could damage the electrical components.

CAUTION: Handle all ROMs very carefully while they are out of the ROM drawer. Do not insert any
objects in the contact holes on the ROM drawer. Always keep the protective cap in place over the ROM
drawer contacts while the ROM is not plugged into the ROM drawer. Failure to observe these cautions
canresult in damage to the ROM or ROM drawer.

For instructions on how to insert and remove the ROM and ROM drawer, please refer to the instruction
sheet supplied with the ROM drawer or section 2 of your computer’s introductory manual.

Service
If at any time you suspect the MIKSAM ROM or the ROM drawer to be malfunctioning, do the following:

1. Turn the computer and all peripherals off. Disconnect all periphexals and remove the ROM drawer
from the HP-86/87 port. Turn the computer back on. If it doesn’t respond or displays E F (15

aod 1 mkELF-TEST, the computer requires service.
2. Turn the computer off. Insert the ROM drawer, with the MIKSAM ROM installed, into any port.

Turn the computer on again.

e If the cursor does not appear, the system is not operating properly. To help determine what is
causing the improper operation, repeat step 2 with the ROM drawer inserted in a different port,
both with the MIKSAM ROM installed in the ROM drawer and with the ROM removed from the
ROM drawer. “

43

44 Appendix A: Maintenance, Service, and Warranty

o IffFprrar 1849 o MIKIAM EOMis displayed, indicating that the ROM is not operating
properly, turn the computer off and try the ROM in another ROM drawer slot. This will help you
determine if particular slots in the ROM drawer are malfunctioning, or if the ROM itself is
malfunctioning.

3. Refer to Obtaining Repair Service for information on how to obtain repair service for the
malfunctioning device. .

Radio/Television Interference Statement

The MIKSAM ROM uses radio frequency energy and may cause interference to radio and television
reception. The ROM has been type-tested and found to comply with limits for a Class B computing device
in accordance with the specifications in Subpart J of Part 15 of the Federal Communications Commission
Rules. These specifications provide reasonable protection against such interference in a residential
installation. However, there is no guarantee that interference will not occur in a particular installation. If '
the ROM does cause interference to radio or television, which can be determined by turning the computer
on and off with the ROM installed and with the ROM removed, you can try to eliminate the interference
problem by doing one or more of the following:

o Reorient the receiving antenna.
e Change the position of the computer with respect to the receiver.
¢ Move the computer away from the receiver.

e Plug the computer into a different outlet so that the computer and the receiver are on different
branch circuits.

If necessary, consult an authorized HP dealer or an experienced radio/television technician for additional
suggestions. You may find the following booklet, prepared by the Federal Communications Commission,
helpful: How to Identify and Resolve Radio/TV Interference Problems. This booklet is available from
the U.S. Government Printing Office, Washington, D.C. 20402, Stock No. 004-000-00345-4.

Warranty Information

The complete warranty statement is included in the information packet shipped with your ROM.
Additional copies can be obtained from any authorized Hewlett-Packard dealer.

If you have any questions concerning this warranty, please contact:

In the U.S.: One of the six Field Repair Centers listed on the service information sheet packaged with
your owner’s documentation.

Appendix A: Maintenance, Service, and Warranty 45

In other countries: Contact your nearest sales and service facility. If you are unable to contact that
facility, please contact:

In Europe:

Hewlett-Packard

7, rue du Bois-du-Lan
P. 0. Box

CH-1217 Meyrin 2
Geneva

Switzerland

Tel. (022) 82 70 00

Other countries:

Hewlett-Packard Intercontinental
3495 Deer Creek Rd. ’

Palo Alto, California 94304

U.S.A.

Tel. (415) 857-1501

Obtaining Repair Service

Not all Hewlett-Packard facilities offer service for the HP-86/87 and its peripherals. For information on
service in your area, contact your nearest authorized HP dealer or the nearest Hewlett-Packard sales and
service center.

If your computer system malfunctions and repair is required, you can help assure efficient service by
providing this information:

a. A description of the configuration of the HP-86/87, exactly as it was at the time of malfunction.

b. A brief yet specific description of the malfunction symptoms for service personnel.

c. Printouts or any other materials that illustrate the problem area.

d. A copy of the sales slip or other proof of purchase to establish the warranty coverage period.

Serial Numbers

Each Series 80 computer carries an individual serial number plate on the rear panel. We recommend that
owners keep a separate record of this number. Should your unit be lost or stolen, the serial number is often
necessary for tracing and recovery, as well as for insurance claims. Hewlett-Packard doesn’t maintain
records of individual owner’s names and unit serial numbers.

General Shipping Instructions

Should you ever need to ship any portion of your HP-86/87 system, be sure that it is packed in a protective
package to avoid in-transit damage. Use the original shipping case if possible. Hewlett-Packard suggests
that the customer always insure shipments. Any customs or duty charges are also the customer’s
responsibility.

Notes

Appendix B

Extent Conversions

When a key file is created, the extent of the file is specified in sectors. The formula below can be used to

statement. In most cases, the number of keys needed and the number of records in the associated data file
are identical. This formula is only an approximation. You may be able to store more key-record number
pairs than what the formula indicates. The actual number depends on the key values and the order in
which keys are inserted.

key file extent == numberofkeys [}]\ . & & i tkeylength + &3 4 1 o 1l

number of keys: The number of key-record number pairs that can be inserted into the key file. The
maximum is 65,535 pairs.

key length: The number of bytes in the key. The acceptable range is 1 through 60 bytes.

- 47

Notes

Status codes are returned by each MIKSAM statement. These codes provide information about the
execution of statements. The status codes that can be returned by each statement are shown in the
Statement/Status Code Summary. The Status Code Listing (next page) describes the meaning of
each status code. For specific information about the statements, refer to section 2.

Statement/Status Code Summary

Appendix C

Status Codes

Statements

Statements

Statements

MAKE KEY FILE

CREFTE _KEY

PELETE REY

NPEH_KEY_FILE

1

VT
d L

49

50 Appendix C: Status Codes

Status Code Listing

Values

Conditions

Notes

Successful execution.

End-of-file encountered.

Space low—less than 12 sectors remain.

File now open but not closed properly.

Specified key not found.

Key-record number pair not found.

Incorrect device address.

Invalid file number.
Invalid key length.

Invalid extent.

File not £ type.

Not enough memory available.
Invalid record number.

Not enough room for file.

No space in key file.

File already exists.

File in parameter is not on-line.

File is open.

File is closed.

B-tree height is at maximum of seven.

Disc access error.

Record number and key unchanged.

Increase extent of key file.

Check for corrupt data.

Key and record number updated.

If key is in file, check associated record number.
Check msus and address of drive.

File is open or file number is not in range 1
through 12.

Use length specified during creation (1 through
60 bytes). :

Must be at least 13 sectors.

Obtain directory of disc with ROM installed.
A total of 4K bytes of memory is required.
Evaluates to zero.

Purge unneeded files.

Increase key file extent.

Must change the file specifier or delete the
existing file.

Check msus.
Use DFEH KEY FILE statement.
Reduce key length or number of keys in file.

Disc not initialized, disc door open, or select
code incorrect (page 21).

Notes

Notes

The following program can be executed on an HP-86/87 computer with the MIKSAM ROM installed. The
first part of the program allows you to create a data base consisting of:

a.
b.

C.

After

Appendix D

Sample Application Program

A random access data file where records are stored.
A header file for file definitions and current dynamic statistics about the data file.

Up to three MIKSAM key files for each data file.

files are stored on disc, the second part of the program can be used. These operations are possible:

Adding records.

b. Retrieving records with specific key values.

c. Traversing data file records in forward or reverse key order.

d. Updating the current or most recently retrieved record.

e. Deleting the current record.

Expansion or recovery of key files is also possible. The limits of the data and key flles created can be

changed by modifying program constants (shown below).

10 !
20

30

40

50

60

70

80 !
90 !
140
150
160
170
180
190
200
210
220
230
240
250
260

270 |

280
290
300
310
320
330
340
350
360
370

e

constants for MIKSAM application program

MAXFIELDS=10 ! maximum number of fields

MAXFLEN=60 ! maximum field length

MAXRLEN=600 ! maximum length of record

MAXKEYS=3 ! maximum number of key fields

MAXFNAME=12 ! maximum length of field names
MAXDBSIZE=100 ! maximum number of records in the data base

if constants are changed, string and numeric arrays must be
dimensioned to accommodate the new data base specifications
PAGESIZE 24
OPTION BASE 1
DIM FIELD NAME$(10)[12]1,FIELD LEN(10),KEYFIELD(3),DBNAME$[10],ERRFILE$[10]
DIM KEY MAP$[10],RECORD MAP$[1007], INPBUF$(80] KEY$(3)[60] OLD_KEY$(3)[60]
DIM NEWKEY$[60]
DIM RECORD$[600],0LD RECORD${600],SAVEDKEY$[60]
INTEGER NUM FIELDS FIELD COUNT, NUM KEYS,MAX RECORDS,NUM USED
INTEGER RECORD LEN,F BEGT10) F ENDT10), END FIELD, FILE OPENED
FILE OPENED,ADDING=0 ! set flags
CLEAR @ FOR I=1 TO 5 @ DISP @ NEXT I
DISP TAB (10);"**%% WE[.COME TO THE MIKSAM APPLICATION PROGRAM ¥#%%#n
DISP @ DISP TAB (10);"MIKSAM by "&MIKSAM
DISP @ DISP "PRESS [CONT] TO START." @ PAUSE
? S ! initialize MIKSAM buffer
CLEAR @ DISP "¥*% PLEASE DO NOT SWAP DISCS UNLESS YOU ARE SO PROMPTED ¥*#*v
DISP "ENTER THE DATA BASE NAME (MAX. 8 CHARS.) OR ENTER [END] TO EXIT."
INPUT INPBUF$€ IF INPBUF$="" THEN 290 ! null string illegal
IF LEN (INPBUF$)<9 THEN DBNAME$=INPBUF$ ELSE DBNAME$=INPBUF$[1,8]
INPBUF$=UPC$ (INPBUF$)
IF INPBUF$="END" OR INPBUF$="E" THEN DB END
S ! clear MIKSAM buffer for a new file

CLEAR

DISP "ENTER [C]REATE, [AJCCESS, [EJXTEND, [RJECOVER A DATA BASE OR [QJUIT."
INPUT INPBUF$€ IF INPBUF$="" THEN 360 ! null string illegal

53

54 Appendix D: Sample Application Program

380 INPBUF$=UPC$ (INPBUF$) @ A$=INPBUF$[1,1]

390 ON 1+(A$="C")+(A$="A")*¥24+(A$="E")*3+(A$="R")¥U+(A$="Q") GOTO 4U4O,400,410,420
, 430

400 GOSUB CREATE DB @ GOTO 280

410 GOSUB ASK DB €@ GOTO 280

420 EXTENDING=1 @ GOSUB EXTEND RECOVER @ GOTO 280

430 EXTENDING=0 @ GOSUB EXTEND:RECOVER @ GOTO 280

440 DISP "PLEASE ENTER A VALID RESPONSE.™ @ GOTO 360

450 DB END: GOSUB CLOSE FILES

460 DITP " %%¥%%x%%¥% END OF THE MIKSAM APPLICATION PROGRAM ************** "

470 END

490 CREATE DB: CLEAR

500 DISP "ENTER THE MAXIMUM NUMBER OF RECORDS IN THIS DATA BASE. MUST BE <=";MAX
DBSIZE;"."

510 INPUT MAX RECORDS@ IF MAX RECORDS>MAXDBSIZE THEN 500

520 DISP "ENTER THE NUMBER OF FIELDS IN A RECORD. MUST BE <=";MAXFIELDS;"."

530 INPUT NUM FIELDS@ IF NUM FIELDS>MAXFIELDS THEN 520

540 ! define each field of the record in the data base

550 NUM KEYS,RECORD LEN,END FIELD,NUM USED=0 ! initialize file variables

560 FOR K=1 TO MAXKEYS @ KEYFIELD(K) 0 @ NEXT K ! initialize key fields as null
570 FOR I=1 TO NUM FIELDS]

580 DISP "ENTER THE NAME OF FIELD #";I;" OF UP TO ";MAXFNAME;" CHARACTERS."
590 INPUT INPBUF$

600 IF LEN (INPBUF$)<= MAXFNAME THEN FIELD NAME$(I)=INPBUF$ ELSE FIELD NAMES$(I
)=INPBUF$[1,MAXFNAME]

610 DISP "ENTER THE LENGTH OF THIS FIELD. MUST BE <=";MAXFLEN;"."

620 INPUT FIELD LEN(I)

630 IF FIELD_ LEN(I)>MAXFLEN THEN 610

640 F_BEG(I)=END_FIELD+1 @ F_END(I)=F_BEG(I)+FIELD LEN(I)-1

650 END FIELD=F END(I)

660 RECORD LEN=RECORD LEN+FIELD LEN(I)

670 IF RECORD_LEN>MAX§LEN THEN DISP "TOTAL LENGTH OF A RECORD MUST BE <=";MAXR
LEN;"." @ GOTO 550 ! restart definition

680 KEY MAP$[I,I]="N" ! set this field to non-key

690 IF NUM KEYS=MAXKEYS THEN 750 ! cannot be more than maximum key fields

700 DISP "TS THIS FIELD A KEY FIELD? ENTER [Y] OR [N]."

710 INPUT INPBUF$@ INPBUF$=UPC$ (INPBUF$)

720 KEY MAP$[I,I1="N"

730 IF POS (INPBUF$,"Y")#1 THEN 750

740 NUM_KEYS=NUM_KEYS+1 @ KEYFIELD(NUM_KEYS)=I @ KEY MAP$[I,I]J="Y¥Y" ! field I
is a key

750 NEXT I

760 IF NOT NUM KEYS THEN DI3P "THERE MUST BE AT LEAST ONE KEY FIELD. YOU MUST RE
DEFINE THE FILE." € GOTO 500

770 GOSUB SHOW DEFINITION ! all fields have been defined

780 DISP "DO YOU WANT TO MAKE CHANGES IN THIS DEFINITION? ENTER [Y] OR [N]."

790 INPUT INPBUF$€ IF INPBUF$="" THEN 780 ELSE INPBUF$=UPC$ (INPBUF$)

800 IF POS (INPBUF$,"Y")=1 THEN 500 ! redefine the data base

810 DISP "PLEASE INSERT A DISC IN THE DEFAULT DRIVE FOR STORING THE DATA BASE."
820 DISP "PRESS [CONT] WHEN DONE." @ PAUSE

830 DISP "--- CREATING A HEADER DATA FILE AND STORING THE FILE DEFINITIONS =---"
840 ON ERROR GOTO DISC ERR

850 CREATE DBNAME$&™ H",4

860 OFF ERROR -

870 NUM USED=0 ! data file is initially empty

880 RECORD MAP$[MAX RECORDS,MAX RECORD3J=" " ! all records are available

890 ASSIGN# 1 TO DBNAME$&" H"

900 PRINT# 1,1 ; NUM _USED, RECORD_MAP$

910 PRINT# 1,2 ; MAX_RECORDS,RECORD_LEN,NUM_KEYS,KEY_MAP$,KEYFIELD(),NUM_FIELDS

920 PRINT# 1,3 ! move file pointer
930 FOR I=1 TO NUM FIELDS @ PRINT# 1 ; FIELD_NAME$(I) @ NEXT I

940 FOR I=1 TO NUM FIELDS € PRINT# 1 ; FIELD LEN(I),F_BEG(I),F_END(I) @ NEXT I
950 ASSIGN# 1 TO *

960 DISP "eemw- CREATING KEY FILES -==-- "

970 FOR J=1 TO NUM KEYS ‘

980 [AX_RECORDS DIV (.8%(253/(FIELD_LEN(KEYFIELD(J))+2)+1)=1)+13
990 ; S,DBNAME$&" "&VAL$ (J),FIELD LEN(KEYFIELD(J)), KEYFILE SIZE
1000 IF S THEN DISP "MAKE KEY FILE ERROR. MUST EXIT." @ GOTO MKF ERR

1010 NEXT J

Appendix D: Sample Application Program 56

1020 DISP "eeweeo CREATING THE DATA FILE ----- " oL

1030 ON ERROR GOTO CREATE FILE ERR R

1040 CREATE DBNAME$,MAX RECORDS,RECORD LEN+3

1050 OFF ERROR

1060 DISP "eweo- THE DATA BASE IS SUCCESSFULLY CREATED AND INITIALIZED we=-=- "
1070 RETURN

1080 DISC ERR: OFF ERROR @ DISP "A DISC ERROR HAS OCCURRED." @ GOTO 810

1090 CREATE FILE ERR: OFF ERROR

1100 DISP " "ERROR IN CREATING THE DATA FILE. MUST EXIT THE PROGRAM."

1110 MKF ERR: FOR K=1 TO J

1120 -
1130 NEXT K

1140 DISP "PREMATURE TERMINATION OF THE PROGRAM DUE TO FILE ERROR.™
1150 END ! CREATE DB

1170 ASK DB: GOSUB OPEN HEADER ! read the header record

1180 TF NOT FILE OPENED THEN RETURN ! if header read unsuccessful

S,DBNAME$&" "&VALS$ (K)

1190 OPENING KEY FILES --=--- "

1200 | KEYS

1210 " S,DBNAME$&"™ "&VAL$ (J),Jd

1220 IF NOT (S=0 OR 3= 103) THEN DISP "OPEN KEY FILE ERROR-MUST EXIT." @ END
1230 KEY$(J)[FIELD_LEN(KEYFIELD(J)),FIELD_LEN(KEYFIELD(J))]=" " ! set length
of key

1240 NEXT J

1250 DISP "eeee- OPENING THE DATA FILE ----- "

1260 ASSIGN# 2 TO DBNAME$

1270 GOSUB SHOW_DEFINITION

1280 DISP "ENTER [A1DD, [S]JEARCH RECORDS, OR [QJUIT."

1290 INPUT INPBUF$€ IF INPBUF$="" THEN 1280 ELSE INPBUF$=UPC$ (INPBUF$)

1300 IF POS (INPBUF$,"Q")=1 THEN GOSUB CLOSE FILES @ RETURN

1310 IF POS (INPBUF$,"™A")=1 THEN GOSUB ADD A" RECORD @ GOTO 1280

1320 IF NOT NUM_USED THEN DISP "THERE ARE WO RECORDS IN THIS DATA BASE. YOU CAN
ONLY ADD RECORDS."™ @ GOTO 1280

1330 IF POS (INPBUF$,"S")=1 THEN GOSUB QUERY DB

1340 GOTO 1280 ! in case of invalid response J

1350 CHECK FILE: OFF ERROR @ FILE OPENED=0 .

1360 DISP "THERE IS A FILE ERROR. CAN'T OPEN THE FILE."

1370 DISP "IS THE FILE NAME [";DBNAME$;"] CORRECT? ENTER [Y] OR [N].

1380 INPUT A$€ A$=UPC$ (A$)

1390 IF POS (A$,"Y")=1 THEN ASK_DB ELSE RETURN ! end of ASK_DB

1410 ADD A RECORD: IF NUM USED=MAX RECORDS THEN DISP "YOUR DATA BASE IS FULL. Y
OU CANNOT ADD ANY MORE RECORDS."™ @ RETURN

1420 AVAIL=POS (RECORD MAP$," ") ! find the first available record number
1430 RECORDg="" @ RECORD$[RECORD LEN,RECORD_LEN]=" " ! set record to blank
1440 FOR F=1 TO NUM FIELDS ‘

1450 GOSUB GET_A_FIELD

1460 NEXT F

1470 ADDING=1

1480 GOSUB DISPLAY RECORD

1490 GOSUB CHANGE FIELD

1500 ADDING=0

1510 DISP "wwwwa ADDING KEYS AND WRITING THE NEW RECORD TO THE DATA FILE =w--- "
1520 FOR K=1 TO NUM KEYS

1530 NEWKEY$,KEY$(K)=RECORD$[F BEG(KEYFIELD(K)),F _END(KEYFIELD(K))]

1540 S,K,AVAIL,KEY$TK)

1550 HEN GOSUB CREATE ERROR @ GOTO 1540

1560 NEXT K -

1570 BUFNUM=2 @ RW_ERRFLAG=0 @ ON ERROR GOSUB BUF_ERROR

1580 PRINT# BUFNUM,AVAIL ; RECORD$

1590 OFF ERROR @ IF RW_ERRFLAG THEN 1570

1600 ! mark record number AVAIL as used and increment record count

1610 NUM _USED=NUM USED+1 @ RECORD MAP$[AVAIL,AVAIL]=ny"

1620 BUFNUM=1 @ RW ERRFLAG=0 @ ON ERROR GOSUB BUF ERROR

1630 PRINT# BUFNUM,1 ; NUM USED,RECORD MAP$! update vital statistics

1640 OFF ERROR @ IF RW ERRFLAG THEN 1620

1650 DISP "NUMBER OF ENTRIES ["; NUM_USED;"] OUT OF TOTAL CAPACITY OF ["; MAX_RE
CORDS;"].

1660 IF NUM_USED=MAX RECORDS THEN DISP "THE DATA BASE IS FULL." @ RETURN
1670 PISP "DO YOU WANT TO ADD MORE RECORDS? ENTER [Y] OR [N]."

1680 INPUT INPBUF$@ IF INPBUF$="" THEN 1670 ELSE INPBUF$=UPC$ (INPBUF$)
1690 IF POS (INPBUF$,"Y")=1 THEN 1420

56 Appendix D: Sample Application Program

1700 RETURN ! end of ADD A RECORD ~

1720 QUERY_DB: ! traversal, search, update, deletion

1730 DISP "CHOOSE A KEY FIELD WHICH YOU WANT TO USE TO SEARCH RECORDS."

1740 DISP "THE FOLLOWING FIELDS ARE KEYS."

1750 DISP TAB (2);"KEY #";TAB (15);"FIELD NAME";TAB (30);"FIELD LENGTH"

1760 FOR K=1 TO NUM_KEYS

1770 DISP TAB (4);K;TAB (12);FIELD NAME$(KEYFIELD(K));TAB (35);FIELD_LEN(KEYF
IELD(X)) - -

1780 NEXT K

1790 OFF ERROR

1800 DISP "ENTER A KEY NUMBER."

1810 INPUT A$

1820 ON ERROR GOTO 1790

1830 KY=VAL (A$)

1840 OFF ERROR

1850 IF KY>NUM_KEYS THEN DISP "MUST BE ONE OF THE KEY FIELDS.";@ GOTO 1800
1860 IF KEY MAP$[KEYFIELD(KY),KEYFIELD(KY)I#"Y" THEN DISP "IT IS NOT A KEY FIE
LD. ";@ GOTO 1800

%8%%C8§3P""ENTER THE KEY VALUE OR TYPE [FJIRST OR [LJAST TO GET THE FIRST OR LAS
1880 INPUT INPBUF$@ IF INPBUF$="" THEN 1870 ELSE INPBUF$=UPC$ (INPBUF$)

1890 IF NOT NPBUF$="F" OR INPBUF$="FIRST") THEN 1930

1900 S,KY @ IF S=137 THEN 1920

1910 S,KY,RN,KEY$ (KY)

1920 GOSUB FIRSTSEEK ERROR @ GOTO 1910 ELSE 2020
1930 PBUF$="L" OR INPBUF$Z"LAST") THEN 1970

1940 IF S=137 THEN 1960

1950 [S,KY,RN,KEY$ (KY)

1960 GOSUB ENDSEEK ERROR @ GOTO 1940 ELSE 2020

1970 IF LEN (INPBUF$)>FIELD LEN(KY) THEN INPBUF$=INPBUF$[1, FIELD LEN(KY)]

1980 KEY$(KY)[1,FIELD LEN(KEYFIELD(KY))1=INPBUF$

1990 Y$= KEY$(KY)

2000 S,KY,RN,KEY$(KY)

2010 - IF 8=137 THEN GOSUB SEEK_ERROR € GOTC 2000

2020 IF NOT S THEN FOUND IT

2030 ! handle cases when key not found

2040 IF S=101 THEN DISP "END OF FILE ENCOUNTERED. RE-ENTER." @ GOTO QUERY DB
2050 IF S#110 THEN DISP "SEEK ERROR OCCURRED. MUST EXIT PROGRAM." @ END

2060 DISP "THE KEY AS SPECIFIED IS NOT IN THE KEY FILE., THE NEXT GREATER KEY RE
TRIEVED."

2070 DISP "DO YOU WANT TO GET THE RECORD FOR IT? ENTER [Y] OR [N]."

2080 INPUT A$@ A$=UPC$ (A$) @ IF POS (A$,"Y")#1 THEN GOTO 1730

2090 FOUND IT: HAVE RECORD=1 ! retrieve the desired record

2100 BUFNUM=2 € RW ERRFLAG=0 @ ON ERROR GOSUB BUF_ERROR

2110 READ# BUFNUM,RN ; RECORD$

2120 OFF ERROR @ IF RW_ERRFLAG THEN 2100

2130 GOSUB DISPLAY RECORD

2140 GOSUB SAVE OLD RECORD

2150 DISP "ENTER TUJPDATE, [D]ELETE, [NJ]EXT, [PIREVIOUS, [SIEARCH, OR [QJUIT."
2160 INPUT A$@ IF A$="" THEN 2150 ELSE A$=UPC$ (A$) € A$=A$[1,1] :

2170 IF A$="Q" THEN RETURN

2180 IF A$="S" THEN QUERY DB

2190 ON 1+(A$="U")+(A$="D")Y*24+(A$="N") %34+ (A$="P")*U4+ (A$="3S")%*5 GOSUB INVAL ,UPDA
TE ,DB DELETE ,GET NEXT ,GET PREV

2200 IF NOT HAVE RECORD THEN RETURN ELSE FOUND IT ! end of QUERY

2220 INVAL: DISP "INVALID RESPONSE. PLEASE RE-ENTER." @ RETURN

2230 ! individual QUERY subroutines follow

2240 UPDATE:

2250 GOSUB CHANGE FIELD

2260 IF NOT CHANGED THEN RECORD$=OLD RECORD$ € RETURN

2270 DISP "—-w-- UPDATING THE FILES =-e=ao?

2280 ' update key files if key values changed

2290 FOR K=1 TO NUM KEYS

2300 NEWKEY$,KEY$(K) = RECORD${F_BEG(KEYFIELD(K)),F_END(KEYFIELD(K))]

2310 IF KEY$(K) OLD KEY$(K) THEN NEXT_KEY ! Kkey not changed

2320 SAVEDKEY$=0LD KEY$(K)

2330
2340
2350
2360

Appendix D: Sample Application Program 57

IF S=137 THEN GOSUB CREATE ERROR €@ GOTO 2360
NEXT KEY: NEXT K
BUFNUM=2 @ RW ERRFLAG=0 @ ON ERROR GOSUB BUF ERROR
PRINT# BUFNUM,RN ; RECORD$! update data file
OFF ERROR @ IF RW ERRFLAG THEN 2390
RECORD$(F BEG(KEYFIELD(KY)),F END(KEYFIELD(KY))]
EY S,KY,RN,KEY$(KY) ! get nexf record after the updated one

; B
IF S=137 THEN GOSUB NEXTSEEK ERROR @ GOTO 2430

IF S THEN HAVE RECORD=0 @ DISP "THERE IS NO RECORD AFTER. THE UPDATED RECORD

RETURN ! end of UPDATE
DB DELETE: ! delete the current record

DISP "ARE YOU SURE YOU WANT TO DELETE THIS RECORD? ENTER [YES] OR [NO]."
INPUT A$@ A$=UPC$ (A$) € IF A$#"YES"™ THEN RETURN

DISP "eceua DELETING THE KEYS AND RECORD FROM FILES w=we=- "

FOR K=1 TO NUM_KEYS

DELETESKEY S,K,DRN,KEY$ (K)
IF S=137 THEN GOSUB DELETE ERROR @ GOTO 2540
NEXT K
RECORD MAP$[RN,RN]=" ™ ¢ RN is marked empty
NUM USED=NUM USED-1
BUFNUM=1 @ RW_ERRFLAG:O @ ON ERROR GOSUB BUF_ERROR
PRINT# BUFNUM,1 ; NUM USED,RECORD MAP$! update vital statistics
OFF ERROR @ IF RW ERRFLAG THEN 2590
SAVEDKEY$ = RECORD$[F BEG(KEYFIELD(KY)),F END(KEYFIELD(KY))]
i3 (BY S,KY,RN,KEY$(KY) ! get the record after the deleted one
IF S=137 THEN GOSUB NEXTSEEK ERROR @ GOTO 2630
IF S THEN HAVE_RECORD 0 @ DISP "THERE IS NO RECORD AFTER THE DELETED RECOR

RETURN ! end of DB _DELETE
GET_NEXT: ! get the record that comes after the current one in key order
}SA E —REQORD$[F BEG(KEYFIELD(KY)),F END(KEYFIELD(KY))]

TF Sc137 THEN GOSUB NEXTSEEK ERROR @ GOTO 2700

IF S THEN HAVE_RECORD=0 @ DISP "END OF KEY FILE REACHED."
RETURN ! end of GET NEXT
GET_PREV:

ORD$[F_BEG(KEYFIELD(KY)),F_END(KEYFIELD(KY))]
g i ¥ S,KY,RN,KEY$(KY)

IF S=137 THEN GOSUB PRIORSEEK ERROR € GOTO 2770

IF S THEN HAVE RECORD=0 @ DISP "END OF KEY FILE REACHED."
RETURN ! end of GET_PREV

DISPLAY RECORD: CLEAR

DISP TAB (1);"FIELD#";TAB (8);"FIELD NAME";TAB (40);"FIELD VALUE"

FOR F=1 TO NUM FIELDS

IF ADDING THEN 2890

IF F=KEYFIELD(KY) THEN DISP TAB (1);"-->";! point to the key field

DISP TAB (4);F;TAB (7);FIELD NAME$(F) TAB (20) ; RECORD$[F_BEG(F),F_END(F)]
NEXT F

SAVE OLD RECORD: ! provision for undoing UPDATE or DELETE

! extract key fields for update and delete
FOR K=1 TO NUM KEYS

KEY$(K),OLD KEY$(K) RECORDS$[F_ BEG(KEYFIELD(K)) F_END(KEYFIELD(KX))]

NEXT K
OLD _RECORD$=RECORD$ € OLD_RN=RN

RETURN

GET A FIELD: ! accept the value of field # F and stuff it in long string
DISP "TYPE THE VALUE OF FIELD # ";F;" ["; FIELD _NAME$(F);"].
INPUT INPBUF$
IF KEY MAP$[F,F]l="Y" THEN INPBUF$=UPC$ (INPBUF$) ! if key capitalize it
IF LEN™ (INPBUF$)>FIELD LEN(F) THEN INPBUF$=INPBUF$[1,FIELD_LEN(F)]
RECORD$[F_BEG(F),F_ END(F)1=INPBUF$

RETURN

CHANGE_FIELD: OLD._RECORD$=RECORD$ @ CHANGED=0

58

3110

Appendix D: Sample Application Program

DISP "IF YOU WANT TO CHANGE DATA, TYPE THE FIELD NUMBER (1 THROUGH '";NUM_

FIELDS;")."

3120 DISP "ENTER [E]ND WHEN DONE OR [U]NDO THE CHANGES YOU MADE."

3130 INPUT A$@ A$=UPC$ (A$)

3140 IF POS (A$,"E")=1 AND NOT CHANGED THEN RETURN

3150 IF POS (A$,"U")=1 THEN RECORD$= OLD_RECORD$,@ CHANGED=0 € RETURN

3160 IF POS (A$,"E")=1 THEN GOSUB DISPLAY RECORD € GOTO CHECK_IF_OK

3170 ON ERROR GOTO BAD_ NUMBER

3180 F=VAL (A$)

3190 OFF ERROR @ IF F<0 OR F>NUM _FIELDS THEN BAD_ NUMBER

3200 GOSUB GET_A FIELD @ CHANGED=1

3210 GOTO 3110

3220 BAD NUMBER: OFF ERROR @ DISP "PLEASE INPUT A VALID RESPONSE." € GOTO 3110
3230 CHECK_IF_OK: DISP "IS THIS OK? ENTER [Y] OR [N]."

3240 INPUT INPBUF$@ INPBUF$=UPC$ (INPBUF$)

3250 IF POS (INPBUF$,"Y")=1 THEN RETURN ELSE 3110

3260 OPEN HEADER:

3270 DISP "PLEASE MAKE SURE THE DISC WITH FILE [";DBNAME$;"] IS IN THE DEFAULT D
RIVE."

3280 DISP "PRESS [CONT] KEY WHEN YOU ARE READY TO START." @ PAUSE

3290 DISP "OPENING DATA BASE [";DBNAME$;"1."

3300 ON ERROR GOTO CHECK FILE

3310 ASSIGN# 1 TO DBNAME$&"™ H"

3320 OFF ERROR -

3330 FILE_OPENED=1 ! set file open flag

3340 READ# 1,1 ; NUM_USED,RECORD_MAP$

3350 READ# 1,2 ; MAX RECORDS,RECORD_LEN,NUM KEYS,KEY MAP$,KEYFIELD(),NUM_FIELDS
3360 READ# 1,3 ! move the file pointer

3370 FOR I=1 TO NUM_FIELDS @ READ# 1 ; FIELD_NAME$(I)@ NEXT I

3380 FOR I=1 TO NUM FIELDS €@ READ# 1 ; FIELD LEN(I),F_BEG(I),F_END(I)€ NEXT I
3390 RETURN

3400 CHECK_FILE: OFF ERROR @ FILE OPENED=0Q .

3410 " DISP "THERE IS A FILE ERROR. CAN'T OPEN THE FILE."

3420 DISP "IS THE FILE NAME [";DBNAME$;"] CORRECT? ENTER [Y] OR [NIJ."

3430 INPUT A$e A= UPC$ (A$)

3440 IF POS (A$,"Y")=1 THEN OPEN HEADER ELSE RETURN

3460 CLOSE FILES: IF NOT FILE OPENED THEN RETURN

3470 DISP_" ----- CLOSING FILES -=-w-- n

3480

3490

3500 NEXT K

3510 ON ERROR GOTO 3540

3520 ASSIGN# 1 TO *

3530 ASSIGN# 2 TO * ! deallocate and flush buffers

3540 OFF ERROR @ FILE_OPENED=0 ! reset open flag to closed

3550 RETURN

3570 SHOW DEFINITION:

3580 ! display the definition of the data base

3590 CLEAR @ DISP "DATA BASE [";DBNAME$;"] DEFINITION SUMMARY"

3600 DISP "MAXIMUM CAPACITY = ";MAX_RECORDS;" NUMBER OF FIELDS =";NUM FIELDS
3610 DISP "NUMBER OF ENTRIES IN THE DATA BASE = ";NUM_USED

3620 DISP Meome et r e m e e e e e ————— "
3630 DISP TAB (2);"FIELD #";TAB (15);"FIELD NAME";TAB (30);"FIELD LENGTH";TAB (5

0);"KEY OR NON- KEY"

3640
3650
3660
3670
3680
3690
3710
3720
3730
3740
3750
3760
3770
3780
3790

FOR I=1 TO NUM_FIELDS

DISP TAB (6);I7TAB (16);FIELD NAME$(I);TAB (35);FIELD LEN(I);
DISP TAB (55);KEY MAP$[I,I])
NEXT I

BUF_ERROR: RW_ERRFLAG=1 ! header or data file access error
IF BUFNUM=1 THEN ERRFILE$=DBNAME$&" H" ELSE ERRFILE$=DBNAME$
OFF ERROR -
DISP "ERROR IN ACCESSING FILE ["&ERRFILE$;"]1. PLEASE MAKE SURE THE"
DISP "DATA BASE IS IN THE DEFAULT DRIVE. PRESS [END LINE] WHEN DONE."
INPUT A$@ CLEAR
ON ERROR GOTO 3730
ASSIGN# BUFNUM TO ERRFILES$
OFF ERROR

3800 RETURN

3820 EXTEND RECOVER: ! extend a data base or recover a corrupt data base

3830 DIM NEWRECORD MAP$[100]

3840 GOSUB OPEN_HEADER

3850 IF NOT FILE OPENED THEN RETURN ! unsuccessful header read

3860 OLDMAX_RECOFDS:MAX_RECORDS ! save old file parameters

3870 OLDNUM_USED=NUM_USED

3880 GOSUB SHOW DEFINITION

3890 IF NOT EXTENDING THEN 4020

3900 DISP "ENTER THE NEW MAXIMUM CAPACITY OF THE DATA BASE. MUST BE <=";MAXDBS.

IZE;n."

3910 INPUT NEWMAX RECORDS .

3920 IF NEWMAX RECORDS>MAXDBSIZE THEN DISP "TOO LARGE. RE-ENTER." @ GOTO 3900
3930 IF NEWMAX RECORDS<MAX RECORDS THEN DISP "MUST BE >="; ;MAX _RECORDS;"." @ GO
TO 3900

3940 DISP "NEW CAPACITY = ";NEWMAX RECORDS;"."

3950 DISP "IS THIS 0K? ENTER [YIES, [N]O, OR [CIANCEL EXTENSION."

3960 INPUT A$@ A$=UPC$ (AS$[1,11)

3970 IF A$="C" THEN FILE OPENED:O @ RETURN

3980 IF A$="N" THEN 3890

3990 IF A$#"Y" THEN DISP "INVALID RESPONSE." @ GOTO 3950

4000 NEWRECORD_MAP$="" @ NEWRECORD MAP$[NEWMAX RECORDS, NEWMAX RECORDS]=" "
4010 NEWRECORD MAP$[1,NEWMAX RECORDS]=zRECORD MAPS

4020 DISP "ENTER THE NEw MASS STORAGE ADDRESS, [701] FOR EXAMPLE, WHERE YOU WA
NT THE NEW FILE"

4030 DISP "CREATED (IF DIFFERENT FROM THE DEFAULT DEVICE) OR PRESS [END LINE].
"

4040 INPUT INPBUF$

4050 IF INPBUF$="" THEN NEWMSTOR=0 @ GOTO 4100

4060 ON ERROR GOTO 4090

4070 NEWMSTOR=VAL (INPBUF$)

4080 OFF ERROR @ GOTO 4100

4090 OFF ERROR €@ DISP "INVALID INPUT. PLEASE TYPE A NUMBER." @ GOTO 4020

4100 IF NOT NEWMSTOR THEN OLD HEADER

4110 DISP "PLEASE INSERT A NEW DISC IN THE DISC DRIVE :D"&VAL$ (NEWMSTOR)&" AN
D LEAVE THE OLD FILE IN"®

4120 DISP "THE DEFAULT DRIVE. PRESS [CONT] WHEN YOU ARE READY." @ PAUSE

4130 ON ERROR GOTO 4160

4140 CREATE DBNAME$&" H:D"&VAL$ (NEWMSTOR),Y4

4150 OFF ERROR € DISP M"eweaw NEW HEADER FILE CREATED -=w-- " @ GOTO 4170

4160 OFF ERROR @ DISP "CAN'T CREATE THE NEW HEADER FILE. PLEASE RETRY." € GOTO
4020

4170 NEWRECORD MAP$="" @ NEWRECORD _MAP$[NEWMAX RECORDS,NEWMAX RECORDSI=" *

4180 NEWRECORD MAP$[1,NEWMAX RECORDSI1=RECORD MAP$

4190 ASSIGN# 3 TO DBNAME$&" HTD"&VAL$ (NEWMSTOR)

4200 PRINT# 3,1 ; NUM_USED], NEWRECORD MAP$

4210 PRINT# 3,2 ; NEWMAX_RECORDS,RECORD_LEN,NUM_KEYS,KEY_MAP$,KEYFIELD(),NUM_F
IELDS

4220 PRINT# 3,3

4230 FOR I=1 TO NUM FIELDS € PRINT# 3 ; FIELD NAME$(I) €@ NEXT I

4240 FOR I=1 TO NUM_FIELDS @ PRINT# 3 ; FIELD LEN(I),F_BEG(I),F_END(I) €@ NEXT
I

4250 ASSIGN# 3 TO *

4260 GOTO 4330

4280 OLD HEADER: ! update old header file to reflect extension

4290 IF NOT EXTENDING THEN PURGE_CORRUPT KEYFILES

4300 PRINT# 1,1 ; NUM_USED,NEWRECORD_MAP$

4310 ASSIGN# 1 TO *

4330 IF EXTENDING THEN RENAME OLDKEYFILES

4340 ! else purge corrupt key files

4350 PURGE_CORRUPT KEYFILES: DISP "www-- PURGING CORRUPT KEY FILES wwe-- "

4360 TOVNUM‘KEYS

4370 ' , S,DBNAME$&" "&VAL$ (K)

4380

4390 DISP "eewao PACKING THE DISC AFTER PURGING KEY FILES —-e=- "

4400

4u10 GOTO MAKE NEWKEYFILES

4430 RENAME OLDKEYFILES: IF NEWMSTOR THEN MAKE NEWKEYFILES

4uu0 DISP Moo RENAMING THE OLD KEY FILES =-wa-

4450

Appendix D: Sample Application Program 59

FOR K=1 TO NUM.KEYS

60

Appendix D: Sample Application Program

4460 DISP DBNAME$&" "&VAL$ (K)&"--->"&DBNAME$&" "&CHR$ (64+K)
Lu70 RENAME DBNAME$&" "&VAL$ (K) TO DBNAME$&" T&CHR$ (64+K)
4480 NEXT K
4490 ! rename key files from filename 1 to filename A
4500 MAKE NEWKEYFILES: IF NEWMSTOR THEN MS$=":D"&VAL$ (NEWMSTOR) ELSE MS$=""
4510 IF EXTENDING THEN MAX RECORDS=NEWMAX RECORDS
4520 IF NOT NEWMSTOR THEN H540
4530 DISP M"eeeea PACKING DISC "&MS$&" ~—u-- " @ PACK MS$
4540 DISP "eweee CREATING NEW KEY FILES —-we- "
4550 FOR J=1 TO NUM KEYS
4560 KEYFILESIZE=MAX RECORDS DIV (.8%(253/(FIELD LEN(KEYFIELD(J))+2)+1)-1)+13
4570 S,DBNAME$&"_ "&VAL$ (J)&MS$,FIELD_LEN(KEYFIELD(J)),KEYFILES
IZE
4580 IF S THEN DISP "MAKE KEY FILE ERROR. MUST EXIT." @ GOTO MKF_ERR
4590 NEXT J
4600 DISP Meweea OPENING NEW KEY FILES «==-- "
4610 FOR K 1 TO NUM_KEYS
4620 S,DBNAME$&" "&VAL$ (K)&MS3$,K
4630 IF S THEN DISP "OPEN_KEY_FILE ERROR. MUST EXIT." @ END
4640 NEXT K
4650 IF NOT EXTENDING THEN ASSIGN# 2 TO DBNAME$ € GOTO RECREATE KEY FILES
U660 ! else extending the data file so must create a new extended data file
4670 IF NEWMSTOR THEN CREATE_NEW_FILE
4680 ! creating a new file on the same disc as the old file (must rename)
4690 RENAME DBNAME$ TO DBNAME$&" z"
4700 CREATE NEW FILE: ! an extended file is created, not executed in recovery
4710 CLEAR ~
4720 DISP "ewmua CREATING A NEW DATA FILE ----- "
4730 CREATE DBNAME$&MS$,MAX RECORDS,RECORD LEN+3
4740 IF NEWMSTOR THEN ASSIGN# 2 TO DBNAME§ ELSE ASSIGN# 2 TO DBNAME$&" z"
4750 ASSIGN# 4 TO DBNAME$&MS$! extended data file
4760 ' reconstruct key files by extracting key fields from each record and
4770 ! inserting the Keys and corresponding record numbers into key files
4780 RECREATE_KEY FILES: REC_COUNT=0
4790 IF NOT EXTENDING THEN DISP "eeew- RESTORING THE KEY FILES --=--- " @ GOTO u481
0
- 4800 DISP "--- COPYING RECORDS TO THE NEW FILE AND ADDING KEYS TO THE NEW KEY
FILES ~--"
4810 FOR NUM COPIED=1 TO NUM USED
4820 REC_COUNT=REC COUNT+1 @ IF REC_COUNT>MAX_RECORDS THEN 4890 ! can't ocecur
4830 IF RECORD _MAP$[REC_COUNT,REC_ COUNT1=" " THEN 4820 ! RN=REC COUNT unused
4840 RN=REC COUNT -
4850 READ# 2,RN ; RECORD$
4860 t if extending data file, copy records from the old file to the new file
4870 IF EXTENDING THEN PRINT# 4,RN ; RECORD$
4880 ! extract the values of key fields and insert them in the new key files
4890 FOR K=1 TO NUM KEYS
4900 ECORD$[F BEG(KEYFIELD(K)),F_END(KEYFIELD(K))]
4910 S,K,RN,KEY$(K)
4920 OR S= 103) THEN DISP "CREATE KEY ERROR. MUST EXIT." € END
4930 NEXT K -
4940 NEXT NUM_COPIED
4950 IF EXTENDING THEN DISP "ewee-- EXTENSION SUCCESSFUL -===- " ELSE DISP "ewe--

RECOVERY SUCCESSFUL ==---- "

4960
4970
4980
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100

! flush and close data file buffers

ASSIGN# 2 TO *

IF EXTENDING THEN ASSIGN# 4 TO ¥
CLOSING KEY FILES w-ww- "
KEYS
£ S,K

IF NOT EXTENDING OR NEWMSTOR THEN RETURN
! if extending the old files on the same disc then purge old files
PURGE_ERR=0
DISP "—--- PURGING OLD FILES FROM THE DISC IN THE DEFAULT DRIVE ---"
ON ERROR GOTO 5100
PURGE DBNAME$&"_ z"
OFF ERROR @ GOTO 5120 ! data file purged
OFF ERROR @ PURGE-ERR=1

Appendix D: Sample Application Program 61

5110 DISP "CANNOT DELETE OLD DATA FILE NAMED ";DBNAME$&" z."

5120 DISP "-www- PURGING OLD KEY FILES --e---
5130 FOR K=1 TO NUM_KEYS
5140 KILL.REY=FILE S,DBNAME$&" "&CHR$ (64+K)

5150 IF 5 THEN PURGE ERR=1 @ DISP "CAN'T PURGE KEY FILE - ";DBNAME$&" "&CHR$
(64+K) ;" - -

5160 NEXT K

5170 IF NOT PURGE_ERR THEN DISP "----- OLD FILES SUCCESSFULLY PURGED =----- " @ RE

TURN '

5180 ! else old files remain unpurged

5190 DISP "PLEASE PURGE THE REMAINING OLD FILES LISTED ABOVE FROM THE DEFAULT DR
IVE."

5200 DISP "YOU CAN PURGE THOSE FILES BY ENTERING [PURGE] filename IN CALCULATOR
MODE."

5210 DISP "THIS PROGRAM IS PAUSING NOW. PLEASE PURGE THOSE FILES."

5220 DISP "PRES3 [CONT] OR [RUN] TO EITHER RESUME OR RERUN THE PROGRAM."
5230 PAUSE

5240 RETURN ! end of EXTEND RECOVER

5260 FIRSTSEEK ERROR: DISP "DISC ERROR IN SEEK FIRST." € GOTO 5280

5270 ENDSEEK ERROR: DISP "DISC ERROR IN SEEK END."

5280 ERRTYPE=1 € GOTO 5430

5290 NEXTSEEK_ERROR: DISP "DISC ERROR IN SEEK NEXT KEY."™ € GOTO 5310

5300 PRIORSEEK_ERROR: DISP "DISC ERROR IN SEEK_PRIOR _KEY."

5310 ERRTYPE=2 € GOTO 5430

5320 SEEK_ERROR: DISP "DISC ERROR IN SEEK KEY."

5330 ERRTYPE=3 @ GOTO 5430

5340 CREATE_ERROR: DISP "DISC ERROR IN CREATE_KEY." @ ERRTYPE=4 @ GOTO 5380
5350 UPDATE DELETE ERROR: ERRTYPE=5 € GOTO 5370

5360 DELETE ERROR: ERRTYPE=6

5370 DISP "DISC ERROR IN DELETE KEY."

5380 DISP "YOUR KEY FILE MAY BE CORRUPT. DO YOU WANT TO CONTINUE OR EXIT AND"
5390 DISP "RUN RECOVERY ON THE DATA BASE. ENTER [C]JONTINUE OR [E]IXIT."

5400 INPUT A$€ A$=UPC$ (A$[1,11)

5410 IF A$="E" THEN DISP "EXITING THE PROGRAM DUE TO DISC ERROR." @ END

5420 IF A$#"C" THEN DISP "PLEASE ENTER [CIONTINUE OR [EIXIT." @ GOTO 5400
5430 DISP "PLEASE MAKE SURE ALL FILES ARE ON THE DEFAULT DISC AND THE DRIVE"
5440 DISP "DOOR IS CLOSED. PRESS [END LINE] WHEN YOU ARE READY."

5450 INPUT A$€ CLEAR

5460 S @ ERRFLAG=0

5470 ~-- RE-OPENING THE KEY FILES -=--- "

5480 FOR KEYFILES=1 TO NUM KEYS

5490 * 5,DBNAME$&" "&VAL$ (KEYFILES),KEYFILES

5500 IF NOT (S5=0 OR S=103) THEN KEYFILES=13 € ERRFLAG=1

5510 NEXT KEYFILES

5520 IF NOT ERRFLAG THEN DISP M"ww--- KEY FILES REOPENED -=--- " @ GOTO 5540

5530 DISP "ERROR IN OPENING KEY FILES." @ BEEP € WAIT 3000 @ GOTO 5430
5540 CLEAR -

5550 ON ERRTYPE GOTO 5570,5590,5640,5650,5660,5670

5570 RETURN ! case of SEEK_FIRST or SEEK END

5590 KEY$(KY)=SAVEDKEY$! case of SEEK NEXT _KEY or SEEK_PRIOR_KEY
5600 S,KY,RN,KEY$(KY)

5610 THEN RETURN

5620 DISP "ERROR IN SEEK KEY." € BEEP @ WAIT 3000 @ GOTO 5430
5640 KEY$(KY)=SAVEDKEY$ ® RETURN ! case of SEEK_KEY

5650 KEY$(K)=NEWKEY$ € RETURN ! case of CREATE_KEY

5660 OLD KEY$(K)=SAVEDKEY$ @ RETURN ! case of delete in update
5670 KEY$(K)=SAVEDKEY$ @ RETURN ! case of delete

Notes

Index

A

Abbreviating statements, 10
Accessible sectors parameter, 19, 21
Additions, 26-27
American Standard Code for Information
Interchange, 4
Application program, 53-61
Applications, 23-34
Additions, 26-27
Deletions, 28-29

Expansion, 34

Initializing files, 24-25

Recovery, 34

Traversals, 32-33

Updating, 30-31
ASCII collatmg sequence, 4, 13
Fini T # statement, 4
Available memory, 3-4

T # statement, 13, 23, 30, 37
statement, 13, 23, 37
:H command, 3

Cautlon on ROM drawer removal, 4
W L F 11 E statement, 5, 13, 20-21

Corrupt 4

Data files, 4-5
Data type, 4

.k statement, 5, 14-15, 17, 20-21, 28

Expansion, file, 34
Extent, converting, 47

File expansion, 34
File operations, 5

H

File structure, 37-39
Free sectors parameter, 19, 21

Hardware requirements, 3

I

Header file, 4

Initializing files, 24-25
Input parameter, 4, 9

K

Installation, ROM, 3-4, 43-44
Interference, Radio/TV, 44

Key file extent parameter, 10,21

Key file number parameter, 12-19, 21
Key file recovery, 34

Key file specifier parameter, 10-12, 21
Key files, 4-5

Key length parameter, 10,19, 21

Key parameter, 13-14, 16-18, 21

Key-record number pair, 4

VL EEY FILE statement, 5,11-12, 20

L
key, 4
M

Maintenance and service, 43-45
MAEE KEY FILE statement, 4-5, 10-11, 20, 34, 47

Memory requlrements 3
Memory test, 3-4

N

MIKSAM ROM, ‘
See ROM, MIKSAM
STHTLES statement, 5, 10, 19, 20, 38

Numeric data type, 4, 9-10

63

64 Index

o)

DFEM _EEY FILE statement, 5,12, 13-15, 20-21 Output parameter, 4,9
Operations, file, 5 :

P

Parameter, definition, 4

Parameter listing, 21

Parameters, 9-10, 20-21
Accessible sectors parameter, 19
Free sectors parameter, 19
Key file extent parameter, 10
Key file number parameter, 12-19
Key file specifier parameter, 10-12
Key length parameter, 10, 19

R

Key parameter, 13-14, 16-18
Record number parameter, 13-14,16-18
Status code parameter, 10-19
Tree height parameter, 19
Performance, system, 40
FEE" file type, 11
Pointer, 4
F BT # statement, 13, 23, 30, 37
Program, sample, 53-61

Radio interference, 44

F: B F D14+ statement, 13, 23, 37

Record, 5

Record number parameter, 13-14, 16-18, 21
Recovery, key file, 34

S

Requirements, hardware, 3
ROM, MIKSAM, 3
Caution, 4
Handling, 43

Sample program, 53-61

SURATCH command, 3

Or8, converting, 47

Lk Hl | statement, 5, 16, 17, 20-21, 33

[T statement, 5, 15, 20-21, 33

T statement 5,9-10, 18, 20-21, 28, 33, 37
r

21, 28, 32-33, 37
P e

Statements, abbrevxatmg, 10
Statements, format of, 9-10
Statements MIKSAM 921 20

LIF 18 19
Status code hstmg, 49-50
Status code parameter 10-19, 21
Status code value 137, 21
Status codes for statements 23

tr/ng data type, 5, 9-10

Television interference, 44
Terms, definition of, 4-5

u

Traversals, 32-33
Tree height parameter, 19, 21

Update parameter, 5, 9-10
Updating, 30-31

User memory, 3-4

A crciars

Personal Computer Division
1010 N.E. Circle Blvd., Corvallis, OR 97330 U.S.A.

Reorder Number Printed in U.S.A. 12/82
00087-90614 00087-90615

