HEWLETT-PACKARD

BASIC Training Pac

HP-86/87

SNEY [

Y B g

Printedin U.S.A.

(‘&F HEWLETT

PACKARD

BASIC Training Pac

HP-86/87

July 1982

Reorder Number
00087-90194

©Hewlett-Packard Company 1982

Contents

Introduction: Getting DowntoBASIC i 5
A friendly, easy-paced, do-it-yourself course in BASIC programming and in the operation of
the HP-86/87.

Chapter 1: Correct Those Sentences!ovvvirroieeeroeeinani, 1-1
UM M AN ettt e e 1-16
T = 117

Chapter2: 2+2DOESEqualdcooiuier i 2-1
S0 g1 4T 2-17
RV TS ..ottt ittt ittt e e e 2-19

Chapter 3: The Disc Driveand BASICcoooiiiiiiiian 3-1
Ly T | 3-10
R BVIBW TSt ...t 312

Chapter 4: Write Your First BASIC Programooeiuieeneii, 4-1
Summary. .o R R R A L A i 4-5
RV B TSt ittt ettt ettt e e e 4-7

Chapter 5: Increase Your Controlco.oonrnin i 5-1
L0 T 0y T 10 5-8
ReViEW Tt Lo e 5-9

Chapter 6: Write Two Wordy Programs That Figure 6-1
UMY Lt ettt ettt e e e e e 6-6
RV W TSt i i 6-7

Chapter 7: Put Numbers Into Your Program While It’s Standing Still 7-1
ST ¥ 00T 0T T 7-13
ReVieW TSt it e e e 7-14
Review Test for Chapters 1-7 et e e e e e e 7-14

Chapter 8: Put Numbers Into Your Program While It’s Running 8-1
BT LT 8-18
RV TSt Lttt ettt et e e e e e e e e 8-23

Chapter 9: Plan Your Programc.ooiiiee i, 9-1
£ T T3 T 9-18
REVIEW TSt ... e 9-21

Chapter 10: Put Your Program Away andGetItBacek 10-1
=0Ty T4 3T 10-11

Chapter 11: Tell Your Program WhereItCanGo 11-1
=0 T4y T 3T 11-9
ReViBwW TSt i i e 11-11

Chapter 12: Teach Your Program to Make Decisions 12-1
£S5 3 T 4= o 12-19
L - T 12-23

Chapter 13: Teach Your ProgramtoCountc.cccovui... 13-1
LT E T34 1T 13-12
ReV e Tt .ottt e 13-12

Chapter 14: Teach Your Program to Count Without Using Its Fingers 14-1
SUMMBTY. 5 s iras vt s 3o ihe oo as s 5 e s aon Vv 5 o aa s bie et s s o 4 n s s sa s stnnrsndeacoassss 14-16
A A [e T A P T 14-19

Chapter 15: More Fingerless Counting With a TouchofMath 15-
S AR s o e e e 15-
ReviEwWNIESHEFEsueggam 2o ide 8ol L e L e T 15

Chapter 16: Teach Your Program to Nest Without Laying Eggs 16-
SHIEIRT St in e T el S Pt Saei - Sl S S s e 16-
Review Test ST e e D e e ey R e e e e e e 4 e ene e e e 16-

Chapter 17: Teach Your ProgramtoRead 17-1
S Ay e e e T e 17-11
S T s R e s e e e T R R L T R e 17-13

Chapter 18: SortThose Numbers!ooviiiiiine e 18-1
S U MINa GRSV e B et e e T e st 18-18
RERIEY UGKAS %6 o iy, pir R et e e e f sl e s S G P 18-22

Chapter 19: Fun and Games With Stringsc.ooiiiiiiiiii. .. 19-1
SUmmary’:.. DO DL o R IR R RN RS e G N N e 19-16
B e e 19-19

Chapter 20: Cannibals and Missionariesoovreeiniiineniii. 20-1
SUMMmanyB e e o s i e e e s e 20-10

Chapter21: Where Dol GoFromHere?ovoieiiiiei, 211

Introduction: Getting Down to BASIC

" Is This Course Written for You?
The answer to this question is YES if:
1. You want to learn how to program your HP-86/87, AND
2. You have some knowledge of high school algebra, AND
3. One of the statements below fits you:

®* You are new to programming and feel that computers are cold, unforgiving, and confusing
machines.

® Youare new to programming and want an easy-paced, friendly, forgiving, do-it-yourself guide
to the functions of the HP-86/87 and the tools of BASIC language programming.

®* You have already been introduced to BASIC, but do not consider yourself a programmer. Also,

A you are unfamiliar with the HP-86/87. You would like to learn how to use the HP-86/87, and
then find out quickly what you don’t know about BASIC. You wish to spend time only on what
you don’t know.

* You want a self-teaching course written specifically for the HP-86/87 which is slower paced and
more thorough than the HP-86/87 Operating and BASIC Programming Manual.

* You want a course you can efficiently study an hour or so at a time. When you resume your
study after a few days, you want to pick up where you left off without spending a lot of time
figuring out where you are.

To summarize, if you want to learn HP-86/87 programming, if you have some knowledge of high school
algebra, and if one of the statements above fits you, this is your course.
7N

How to Take This Course

Getting Down to BASIC is a friendly, supportive beginner’s course in BASIC programming using your
HP-86/87 computer. It is designed to:

1. Let you proceed at your own pace, anywhere from an hour every few days to six to eight hours every
day.

2. Let youstart anywhere in the course depending on your previous experience.

v

Proceed at Your Own Pace

Each of the early chapters covers only a small amount of new material, so that each chapter can be
completed in an hour or less. Later chapters, those containing more extensive programming exercises,
will necessarily take longer, simply because it takes longer to write, test, and correct longer programs.

However, for the entire course, it is practical to study no more than an hour every few days.

Each chapter is separated from the next by a summary and a review test. The answer to every question is
available, so you can check your work. After finishing each chapter, read the summary and take the test.
These summaries and tests will help fix in your mind the new ideas presented in each chapter. They will
also point out possible areas requiring more study. If you leave the course for a few days, review the last
chapter’s summary and test to insure a good foundation for the ideas presented in the next chapter.

Often in the course, you will be referred to the HP-86/87 BASIC Training Pac Supplement, which you
received with this manual. The supplement contains suggestions and step-by-step instructions in the
HELP section. It also contains flowcharts, listings, and outputs of programs you are asked to write as you
take the course. Whenever you are referred to a page with “H” as its prefix, you should see that page in the
supplement.

If you finish several chapters in one sitting, you should, of course, take each review test as it comes along.
These reviews will help fix in your mind the new ideas presented in each chapter. They will also point out
possible areas requiring a restudy of some of the pages in the previous chapters.

Later, when you're writing your longer programs, you will know how to record on your disc your
unfinished program at the end of one session. At the beginning of the next session, you will get your
program back from the disc and continue programming where you left off. You will also know at that time
how to write messages to yourself within your own program to remind you what each part of your
program does. Also, by that time, you will know how to draw a diagram (flowchart) of your program,
which is a sort of road map showing where your program goes. All these—a recording of your unfinished
program, notes to yourself within your program, and your “road map”—will help you start a new session
several days later with little lost time.

Start Anywhere in the Course

What if you already have some BASIC or HP Series 80 Personal Computer experience and wish to skip
those chapters which repeat what you already know? The way to proceed is to take each review test,
starting with the first. If you know the answers to a review test, skip that chapter. If the answers are not
obvious, you’ve found a chapter you should study.

Required Preparation

Before you start this course, you should read sections 1 through 4 in Introduction to the HP-86 or
Introduction to the HP-87 that you received with your personal computer. Connect your printer and disc
drive according to the instructions in that manual.

vi

The HP-86/87 BASIC Training Pac was designed for use with either of the systems listed:

e HP-86 Personal Computer, HP 9130, HP 82901, or HP 82902 Flexible Disc Drive, HP 82912 or
HP 82913 Video Monitor, and the HP 82905 Printer, OR

e HP-87 Personal Computer, HP 82901 or HP 82902 Flexible Disc Drive, and the HP 82905 Printer.

If your system includes devices other than these, consult the documentation accompanying those devices
for installation instructions. Other devices may not be compatible with the programs in this pac.

vii

Chapter 1

Correct Those Sentences!

Preview
In chapter 1, you will:

¢ Type words onto the HP-86/87’s screen.
e Easily correct typing errors.

¢ Shake hands with a friend: One of the HP-86/87’s error messages.

RELAX
YOU CANNOT HURT YOUR HP-86/87 BY ANY KEYBOARD OPERATION

1. Ifthe disc driveis connected to the HP-86/87 and a disc is inserted in it, remove the disc as shown in
figure 1. (If you do not have a disc drive attached to the HP-86/87 just ignore this step.)

Figure 1.

2. Switch the HP-86/87 on. (See figure 2.) If already on, switch off, then on. When the HP-86/87 is
connected to a power outlet and switched on, the amber POWER light located near the right side at
the bottom of the keyboard panel will turn on.

Figure 2. OQON-OFF Switch on the Rear Panel

1-1

1-2 Correct Those Sentences!

3. After a few seconds warmup, a small, bright rectangle should be visible in the upper left corner of
the HP-86/87’s screen, as shown in figure 3. (If the HP-86/87 beeps and displays the message:

£ o g r= 4 oa o
[A

E b 114 il or some other error message above the cursor, don’t worry. All is still well.
Just ignore the error message and continue on.)

Figure 3. Cursor Location When the HP-86 /87 is First Turned On

This small bright rectangle is called a cursor. The cursor shows where the next character you type will
go. You'll be moving it around soon.
4. The HP-86/87 has two modes of operation, calculator and program.

CALCULATOR MODE: Used to write and edit text and to perform calculations. Also used to
write BASIC programs.

PROGRAM MODE: Used to run BASIC programs.

In this chapter, you’ll be in calculator mode exclusively. I'll tell you about program mode later.

REMEMBER
¥YOU ARE IN CHARGE
THE HP-86/87'S DESIRE IS TO OBEY

If the HP-86./87 gets confused, you can always switch it off, then back on.

And you can start this course again at this page at any time.

The HP-86/87 keyboard is like a typewriter keyboard with some important differences. I’ll tell you
about some of these differences now, and later you’ll see these differences in action when you

exercise the computer’s keys yourself. See figure 4 for the location of the keys mentioned in the next
several paragraphs,

Correct Those Sentences! 1-3

10.

11.

12,

13.

Figure 4. Locations of Some Keys

If you want to produce one B, for instance, press and release the key just like a typewriter. If you
want to produce a string of characters, hold the key down.

The letter keys normally produce capital letters. To get small letters, you normally hold down the
key, then press the letter key—just the opposite from an ordinary typewriter.

Capital letters are generally easier to read on a screen, and most people prefer to write their
programs in capital letters. So we made capitals standard.

When a key has two symbols on it, like (above the (R) key), pressing the key by itself gives you a
5. If you hold down while pressing (£), you get %.

Only the 26 letter keys normally act the opposite way from a typewriter.
The key affects only the 26 letter keys.

Notice the group of keys at the right edge of the keyboard, which include the 10 numerals 0 through
9. This is called the number pad. All of these 10 numerals plus the other 10 key symbols () (0 ()
()2 (1) (D also appear on the typewriter portion of the keyboard. They’re grouped here

for convenience only.

The curved parentheses appear three places: a) On the number pad—top row; b) Just right of (F);
and c) Above the letter (O). Each pair of parentheses serves the same purpose. Parentheses are used
often in programming and calculations, so we have tried to accommodate the touch typist, the two

finger typist, and the user who does a lot of calculating.

Before going further, make sure the ([36%) key is released. It should be level with the other keys.

Press to release.

Before you type a message onto the computer’s screen, how about a little practice with the keys.

1-4 Correct Those Sentences!

14. To type the capital letter “B” onto the screen, press and release the (B) key just like you were using a
typewriter. One i should appear on the computer’s screen, and the cursor should now be moved over

one position.* If you started with a clear screen, see figure 5 for a picture of what your screen should
now show.

=
Figure 5. Screen After Step 14
15. Now I'll show you how to use the CLEAR statement to clear your screen. Press and hold down one of

the two (SHIFT) keys (figure 4). While holding down, press and release (C[fif), then release
(SHIFT). Your screen is now clear, except for the HP-86/87’s faithful cursor.

) BEOEE

U@!DF wagﬂﬂﬁqﬂ?@m
FTﬁ WDHThltl%fﬂmJ%y@w
-m@w @jpm{ I B

U

Figure 6. Locations of Some Keys

* If the screen intensity needs adjustment, refer to the documentation accompanying your computer or monitor.

16.

17.

Correct Those Sentences! 1-5

Notice how the top word, (CLEAR), on the key cap is the name of the action this key performs
when used with (SHIFT). The same idea is used with all of the computer’s keys. When a key cap has
two names or symbols on it, is used to get the upper symbol or action. Three exceptions are

(E8%), (8%) and (L5EL). Each names only one function. I'll tell you about these functions later in
this book.

Most of the computer’s keys have a repeating action when held down. To get a feel for this, press
again, and this time hold the key down for a few seconds to get a lot of “B’s” on the computer’s

screen. If you hold (B) down for 15 seconds, your screen will look something like figure 7.

EEEEEEBEBEEBEREEBEEEEEEPEEEEEEEEEEEEEEEEEEEREEEEBEEEEESEEEEEEREEEEEEEREREEEEEEREE
EEEEEEBEFEEEEREBEEEEEEEEEEFEEBEEEBEEEEEBEEEEEEEEEEEEREEREEEEEEEEEEEEEEREEEEEEEEEEE
BBBBBEIEIEBEIBEEIEIEIEIBBBE-'BBEEIEIEBEIBEIE!BEIEEBEIEIBBEECEBI

18.

19.

(IS () e e [e

Figure7. A Lotof " ’B's”

The steps you will perform next will make most sense if your bottom row of “B’s” fills at least half of
that line. Again, figure 7 shows what I mean. If your present bottom line does not satisfy you,
simply press and hold down the (B) key until you create a new bottom line that is OK,

It’s time to meet another eraser,(8%). This key erases characters as it moves the cursor
backwards. Press ($%) (see figure 8) three times to remove three “B’s.”” If your screen looked like
figure 7 before, it should look like figure 9 now.

e =]) s 2]

DEEE)EG]E]

[EEEEEINE [

HHHDMWH@

UHu@H"ﬁ@@@M

" u@@ UMD

r—

oo hnhEEEs) Q]QE)
M EEEEE)

= | [=F RODIE

Figure B. Location of

1-6 Correct Those Sentences!

EEEEEEEFEEEEEREEEEEBEEEBEREEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEREEEEEEEDBEREEEEEEEEEE
EEEEDBEEREEEENEEEEBEEEEBEEEEEEBEEEEEREEEEBEBEEEBEEEEESEEEEEEEEEEEEDEEEEEREEREEEE
EBEEEBEEBBBBBHHBHBBBBBBBBBEBBEBEEBBEEBBB.

Figure 9. Three Fewer ''B’'s"’

20. Let me show you another power. The shifted function of (§&%) moves the cursor rapidly to the
left edge of the screen, wiping out characters as it goes.

21. Press (SHIFT)+ and see the bottom row of “B’s” wiped clean. Your screen should look like
figure 10.

EEEEBEEEEEEEEREEEEEEEEEEEBEEEEEEEBEEEEEEEEEEEDBEEPBEEEREEBEREEEEEEEEEREEEEEREEEEE
BEEEEEBEEEBEEEBEBEEEEEEBERER EEEBREBEEEBEEEEEEEEEBEEEEEE S EEREEEREEEEBEEEEBEEEEEEEEE

Figure 10. One Less Line of "'B’'s’’

22. Now you know how to erase single characters with (8%), how to erase rapidly back to the
beginning of the line using (SHIFT) + (&%), and how to clear your screen using +
You’ll now exercise and alittle, and then type a message onto the computer’s screen.

23. Clear your screen (press (SHIFT) + (CLf)).

24, Type four capital (unshifted) letter “E’s,” so your screen looks like figure 11.

HELP MESSAGE:

If you have trouble, use and (SHIFT)+ to erase your mistakes. If you need more powerful

medicine, use (SHIFT) + (%@) to clear your screen, and start again at step 24. If all else fails, turn the
HP-86./87 off, then on, and start at step 24.

EEEEQR

Figure 11. Screen "'E’'s"’

/“\

Correct Those Sentences! 1-7

25. Using and the (A), (8), and (Y) keys, change your four “E’s” into & # %, Figure 12 shows the

result you should get. Again, use the trouble-killers mentioned after step 24 as needed.

Figure 12. Screen “EASY"’

26. OK.Now your HP-86/87’s muscles are beginning to develop. Let’s move ahead. You’re going to gain

more control over your cursor.

27. You now have some strong medicine in your medicine cabinet, to erase characters, and
to clear your screen. But they both remove characters. Very often, you will wish to move
your cursor without killing characters. You have that power at your fingertips. Figure 13 shows the
location of four cursor moving keys that control five cursor movers: (D) (=). Touse(~),
you press (SHIFT) + (}). The other four cursor movers are unshifted functions. What do these keys
do? Read on.

—J
= - |
=

Q = [

mﬂ

H BB aR BB Bk ’f:Wﬂ! | [

’ﬁm’: Ewﬁ]‘TW@Lﬂ ‘[j} {m ‘:]‘S
= o[o/ o) M-@FQj HEE
ERE mi%a OE EEE
p— “‘ EE @O

4

Figure 13. Locations of Some Keys

1-8

28.

29.

30.

31.

32,

33.

34.

35.

36.

37.

38.

Correct Those Sentences!

CURSOR MOVING KEYS—What they do:

a. They all move the cursor without erasing characters.

b. (A): Moves the cursor “home,” that is, to the upper left corner of the screen.
c. (1): Moves the cursor up.

d. (3): Moves the cursor down.

e. [(=): Moves the cursor left.

f. (=): Moves the cursor—you guessed it—right.

The four no-shift arrows (1) (3) move the cursor either one position or many positions,
depending on how long the key is held down.

The home key, , has no repeating action. Once the cursor is home, it stays, regardless of how long

is held down; that is, how long + (%) are held down.

Get your fingers ready. You're going to take your cursor on a short round trip. It’s easy to get these
cursor moving keys mixed up, so don’t be concerned if your cursor moves off in an unexpected
direction. Just keep pressing those cursor movers, and you'll succeed. The cursor responds well to

the trial and error method of movement.

If you feel things are getting out of control—maybe you've hit some key that causes strange things

to happen—bring in the trouble-killers. Press + (4K) to clear your screen, or switch the

HP-86/87 off, then on. Type i-Fi% % again, and start at step 33,

Now for your cursor journey. Press (=) to move your cursor one space to the right.
Next, press (1) to move your cursor down one line.

Now press to move your cursor one space to the left. [t now is positioned one line below % and

one position right of .

To complete this short trip, press (1) to put the cursor back where it started, on the top line just right
of .

Your cursor can run as well as walk. When the (1), (3), (=) and (=) keys are held down, the cursor
moves rapidly in the direction shown by the arrow. What happens when the cursor reaches a screen

boundary? Hold these four arrow keys down for a good 15 seconds each and find out.

Now hold the (=) and keys down long enough to move the cursor toward the upper right and
lower left corners of the screen. When the (=) key is held down, the cursor moves left to the screen
boundary, then reappears on the right up one line, moves left on that line to the screen’s left edge,
and so on until it reaches the upper left corner. Its next appearance is at the lower right corner where
its upward journey begins again. When (=] is held down, the cursor follows a similar path in the

opposite direction.

39.

40.

41.

42.

43.

44,

45.

Correct Those Sentences! 1-9

You may not want to hold down long enough to see the cursor visit every position on the screen.
It will take just about 90 seconds to make a complete round trip. But hold it down long enough for
part of the trip.

If you wish, hold down to see the reverse round trip.

There is one simple keystroke error that is harmless, and yet this error has been known to send
strong men into shock. Take a look at the () key. Note that the whole key cap says (#{S). Pressing
(+ (%)) puts the HP-86/87 into graphics mode, one of the computer’s most powerful
features. While this course is too short to include graphics, the HP-86/87 operating manual has
graphics sections. But, you should know one thing about this key—when pressed, the screen goes
blank, yet everything that was on your screen is preserved. It’s as though the HP-86/87 had two
pages in its hands, an alpha page—the one you're using—and a graphics page. When is
pressed, the HP-86/87 holds the blank graphics page up to the screen, inviting you to draw. To get
the alpha page back, simply press the key ((SHIFT) + (A{€)) again. Your EASY screen will
reappear. The key is a switch. It switches between alpha and graphics mode each time it is

pressed.

When you're busy editing, you might, by mistake, press + intending, for example, to
press (SHIFT) + . Unless you're forewarned, the sight of everything disappearing from your screen
might make you nervous, But don’t panic, just press + again to make the alpha screen

reappear.

Another way to get your alpha screen back when it is in graphics mode is to simply press any arrow
key. Let’s try this:

a. Press + . Your screen should go blank.

b. Press and see your old familiar alpha screen back unharmed. But the cursor is now over ™,
because (=) moved it one space to the right.

In the next step, I'm going to ask you to type a new message. Use your eraser as needed, and if
things go bad for you, clear your screen by pressing + and start again at step 45.

Type this message right over E

After you type this message, the computer’s screen should look like figure 14,

1-10 Correct Those Sentences!

ﬂls A GRERT TRUTH:|§ ﬁ

Figure 14. Screen After Step 45

46. The suspense created by this line will be satisfied soon, but first, let me introduce you to one of the

computer’s friendly error messages.

47. When the HP-86/87 does not know what to do next, it tries to explain its confusion by showing you

an error message. To see one of these messages, you're going to deliberately confuse the HP-86/87.

48. Find the key. See figure 15,

—7)

BcEE EEEEE

@ DJD”S B '.EJHIJF UH (5] o]l fod
(533} 3] JUJ | ?jJuL
Fﬂ _]_._*HU OB G D a EL@_@
B3 [LCJKIJLDTDIT

= J m@ | @_@@J

Figure 15. Location of (END LINE

49. Now press . The HP-86/87 tells you it did not understand that by beeping and by showing
you:

as shown in figure 16.

50.

6.

Correct Those Sentences! 1-11

HERE S A GREAT TRUTH:
Error 92 : SYMNTRX

Figure 16. Error92

is perhaps the most important and most frequently used key on the keyboard. Whenever
you wish the HP-86/87 to act on what you have typed, you press (END LINE).

Throughout this course I'll ask you to type a number of instructions into the HP-86/87 which it will
understand perfectly when you press . However, that’s for later on. Right now, the

important thing to know is that you do NOT press when you're simply using the
HP-86/87 as a typewriter, as you are now.

Notice that the cursor is now over the I of IS. The HP-86/87 is pointing out the first character it did
not understand. Later in the course you’ll understand what it thinks that I is. For now, it’s not

important.

When the HP-86/87 gives you an error message, it’s telling you:

“I don’t understand what you told me, but please try again. 'm ready to accept more instructions,
and I'll do my very best to obey.”

The key words here are “try again.” The HP-86/87 has not turned off or gone off into the fourth
dimension somewhere. It is ready to respond just as before.

So let’s go!

Use (1) to move the cursor down one line.

Now use (=) to move the cursor left five positions to the beginning of the second line.

You will soon get rid of that error message and discover a new character clearing power at the same
time. The key has two functions: the shifted Cii-E I statement and the unshifted function,
-LINE). You already know about (CLEAR). It clears your screen. The unshifted function, (<LINE),

clears the line from the cursor position to the right edge of the screen.

Now press (press the key) and see all the characters on the second line behind and to
the right of the cursor wiped away. Your screen should look like figure 17. If you’re in trouble after
trying this step, read step 57.

1-12

59.

60.

Correct Those Sentences!

HERE IS A GREAT TRUTH:

Figure 17. Screen After Step 56

If your screen looks like figure 17, you get a reward: You may skip this step. But if you’ve gotten
into trouble, press m that is, press (SHIFT) + (%§f") to clear your screen. Then perform steps 44
and 45 to get

i back on the screen. Next, use (=) to move your

cursor to the beginning of the second line. Now proceed to the next step.

I've deliberately put some errors into this next text to give you a chance to use the computer’s
unique, simple, and powerful editing tools. Use your eraser, ,if necessary to help you type this

line onto your screen just as I show it:

Your screen should now look like figure 18. If the HP-86/87 acts strangely, smooth its feathers by
starting at step 57.

HERE IS A GREAT TRUTH:
IF YOUR NOSE IS5 SORE, FRY IT.'

Figure 18. Screen After Step 59

T'lllead you, step by step, through the editing of this sore nose message to turn it into:

Now, meet one of your strongest editing tools, (I/R), a shifted key. See figure 19 for its location.

Correct Those Sentences! 1-13

ElREEEEEE]) E

[
|
!

] 1] 6 (9 [

EHDDH’E

s [EEEE

UFMﬁF

\._..

o) wij[e)](=] DMWM e =) R

@miJmm_J; Humﬂiﬁa

& o

oo

1

1G0T
;uzm EIEIE]
| EWLLTH

Figure 19. Location of

ar

61. I'll describe the key here. For now, don’t touch any keys. We’ll return to that in step 63. The

INSERT/REPLACE (shifted ("F)) key is a switch. When the cursor is over a character, say A, and
the character can be seen “behind” the cursor, the key is in the REPLACE mode. Typing another

character, say B, causes the A to be replaced by the B. You saw this happen when you typed a new
top line over EASY in step 45.

Pressing the (1/R) key, ((SHIFT)+ (")), puts the HP-86/87 into INSERT mode. Then, instead of
typing over the characters already on the screen, the new characters are inserted in the text, and
everything to the right of the cursor is moved further right.

Suppose the HP-86/87 is in REPLACE mode and the screen displays A . When is pressed,
the HP-86/87 will be put into INSERT mode, the cursor will expand one space to the left, and you
will see . Press to cause the B to be inserted between the two characters covered by the
cursor, and you should see FA[§ . Pressing again switches the HP-86/87 back into

REPLACE mode, displaying ABE . With alittle practice you will be able to accurately insert any
character anywhere on the screen.

62. HELP MESSAGE:

If things turn sour during your editing of . i

have trouble getting things organized, follow this plan:

a. Clear your screen by pressing (CLEAR); in other words, by pressing (SHIFT) + (it).

b. Perform step 45 to get

i1 1 back on the top line.

c. Using (=), move the cursor to the beginning of the second line.

d. Perform step 58 to put !

17 . onthe secondline.

e. Proceed with step 63.

1-14

63.

64.

65.

66.

67.

68.

69,

70.

Correct Those Sentences!

Now let’s take care of that sore nose. Using (=) move your cursor to the ¥ of ¥iliii? and see

IF YDUE NOSE
Now press and see: YOUR

Press the apostrophe, (") unshifted, just left of (END LINE). Now you have: 0 UdE

Using (=), move the double cursor one position right, and see: Y0 U’ N0 SE
Press (E)and see: YOU” R[JNOSE

Now press to put the HP-86/87 back into its normal REPLACE mode, and see:
YUU'REINUSE

Using (=), move your cursor three positions right, and see: YOU’RE NOEE

Here’s another editor key: (=CHAR), whose location is shown in figure 20. is the shifted
function of the (“®*") key. (-CHAR), when pressed, deletes the character behind the cursor, and all
characters to the right of the cursor move left to fill in the gap.

P —

BDOOEOEEE EEED

CoueRl | &)|
: ROLL
i |, v

LA

LJJDJDLDW "JMLJ__ SleE EEEE

RﬁLT

E{r U“’I'm 1 ,"1!@«1 :!gm

el I (o= ;Q'@i
S EE MR- D

s = =
SHIFT st ! 1 -rézi'3i —_
L J [:] L__ —

i 1l
LA]S

&,

71.

72.

73.

74.

I :] =~ OEE

| eewse ||
) A

Figure 20. Location of

If you wish to erase a character without the characters on the right moving left, use to erasea
character to the left of the cursor, or the space bar to erase the character behind the cursor.

Press (=-CHAR) ((SHIFT) + (“"*"), and see: YOU’RE MO IS

Now press (T) to complete one more word. See: YOU’RE NO TS

Now press three times and see: YOU’RE NOTSORE . You're getting close.

75.

76.

TiE:

78.

79.

Correct Those Sentences! 1-16
Using (=), move your cursor two positions right, and see: NOT SERE
Press (U], and see: SUJE,
Using (=], move four positions right and see: SURE, [RY
Press (T), and see the correctline: IF YOU’RE NOT SURE, Ty IT.

HELP MESSAGE:

If you have trouble you can’t cure between here and the end of the chapter, follow this plan, using your

eraser when needed:

a. Clear your screen by pressing (CLEAR); that is, by pressing (SHIFT) + (CHi).

b. Perform step 45 to get i < E

=LITH ¢ back on the top line.

c. Using (=), move your cursor to the beginning of line 2.

e. Proceed with step 80.

80.

81.

82.

83.

Now use to move the cursor to the beginning of the third line.

I’'m going to lead you into trouble again, and soon after I'll show you how to edit the trouble away.
You will then see the final message of chapter 1 on the screen.

One line on the screen or on the printer can contain a maximum of 80 characters, including spaces.
In step 83 I'm going to ask you to type too many characters for one line. Have faith. Don’t worry
when you see, in step 83, one word splitting between the third and fourth line. I'll soon show how to
correct the problem.

Try to type the entire sentence below on the third line. It won’t fit, but keep typing. Begin typing the
sentence. The HP-86/87 will automatically move to the fourth line after 80 characters (including
spaces) are typed. However, the word YOU will be split in the middle between lines three and four.

Here is the sentence for you to type:

Your screen should look like figure 21,

1-16 Correct Those Sentences!

HERFE IS A GREAT TRUTH:

IF YOU'RE MNOT SURE, TRY IT.
THE HF-8B-87 T2 A WILLING SERYANT AND YO CAMMOT HURT IT MO MATTER WHICH KEYS w0
U PRESS. |}

Figure 21. Screen After Step 83
84. Now, using 11 times, move your cursor to the space between KEYS and YO. You should see:
KETS.YD...

85. Press { +('T)), to put the HP-86/87 into INSERT mode. You should see: ke V0. . .

86. Press the space bar twice and see your final message properly displayed. Then press to return
to REPLACE mode. Figure 22 shows this final message as it should appear on your screen.

HERE IS A GREAT TRUTH:

IF YOU’RE MNOT SWURE, TRY IT.
THE HP-8B-87 IS5 A WILLING SERVAMT AND YOU CANMOT HURT IT MO MRTTER WHICH KEYS I
¥YOU PRESS.

Figure 22. Screen After Step 86

87. This message is more than a typing exercise. The HP-86/87 cannot be hurt by any keyhoard
operation. However, programs can be hurt, so do your experimenting with NO disc inserted in the
disc drive and with NO program in memory. If the HP-86/87 is free of disc and program, as it is now,
you can learn a great deal, risk free, by trying things. If you're not sure what some key does in a
certain situation, try it. Remember, try as you might, you will be unable to create a mess that cannot

be cleared up by clearing the computer’s screen or by turning the HP-86/87 off, and then on.

Summary of Chapter 1

¢ Cursor: A small bright rectangle on the screen displayed by the HP-86/87. It shows where the next
typed character will go.

¢ Calculator mode: For using the HP-86/87 as a typewriter, for doing calculations, and for writing
BASIC programs.

¢ Program mode: Forrunning BASIC programs.
e (Capital letters are standard. Use to get small letters.

e Use to get the symbol or function shown at the top of a key cap.

Correct Those Sentences! 1-17

. works only for the 26 letter keys.
SHIFT) -+ clears the computer’s screen.
o (CLEAR)means (SHIFT) + :

. erases characters. As it moves the cursor backwards, one position at a time, it clears the space
the cursor moves to.

e (SHIFT)+ erases characters rapidly as it moves the cursor to the beginning of the line.

e (1),(1), (=) and (=) move the cursor without erasing characters. Pressing each key moves the cursor

in the arrow direction one position at a time or rapidly, if the key is held down.

. (a shifted function) moves the cursor “home,” which is the upper left corner of the screen,

without erasing characters.

¢ Ifyourscreen suddenly blanks, perhaps you pressed + .The key switches between
ALPHA and GRAPHICS mode. To get your normal (alpha) screen back, press any arrow key or

press e again.
. should not be pressed when using the HP-86/87 as a typewriter.

* An error message is the computer’'s way of saying “I don’t understand you.” The keyboard is left

alive, and you may proceed with freedom.
® (-LINE]clears the line from the cursor position to the right edge of the screen.

. (a shifted function) switches between INSERT and REPLACE modes.

® Insert mode: The cursor increases in size one space left, and the next character typed is inserted

in the center of the cursor.

® Replace mode: The cursor appears in front of or “over” a character, and the next character typed

replaces the character behind the cursor. The HP-86/87 is in replace mode when first switched on.

. deletes the character behind the cursor. The characters to the right of the cursor move left to
fill in the gap.

® Thelinelength on the screen is 80 characters, including spaces.

Review Test for Chapter 1

Samuel Taylor Coleridge did not create the final version of “The Rime of the Ancient Mariner” on his first
try. Through extensive research, I have uncovered a little known early draft of this famous work, which I
share with you in figure 23.

1-18 Correct Those Sentences!

HE I5 AN OLD, DECREFIT MARINER, AWD HE COLLARED EVERY THIRD GUY.

"BY YOUR LOMG MAMNGY BEARD AND SUSPICIOUS LOOKING EYEBALL, MNOW HOW COME vOU STOPP
ED ME?"

Figure 23. Early Draft

Your review test is the following: Type onto the computer’s screen this early draft of the first three lines.
Then edit this early draft to produce the final version, figure 24. No fair clearing your screen and typing

your final version from scratch. Use your editing tools to change the early draft into the finished product.

HE IS AN ANCIENT MARINER, AMD HE STOPPETH OME OF THREE.
"BY THY LONG GREY BERRD AND GLITTERING EYE, NOW WHEREFORE STOPP’/ST
THOU ME?"

Figure 24. Final Version

Notes

AT

Chapter 2

2+ 2 Does Equal 4

Preview

In chapter 2, you will:

Meet more friendly error messages.

Learn how to use your printer and how to automatically print what is displayed.
Meet , the computer’s “enter” key.

Learn how to solve math problems.

See how the HP-86/87 can save you a lot of typing by allowing you to recycle instructions typed

earlier onto the screen.

HELP MESSAGE:

IF YOU NEED HELP
during this chapter, follow these steps:

First, check for typing errors. If you find any, try your editing tools, like the cursor movers, (),).
@), =),). plus (&%), (I7R), (=CHAR), and (=LINE). See the summary of chapter 1, page 1-186,

~ for reminders of their functions.

If the text editors don’t work, clear your screen {press (SHIFT) +). Then go back and start at
the last step that gives you a convenient starting place, like the beginning of a new calculation

example,

If that doesn't work, start the chapter over again.

21

Ifthe HP-86/87 is off, switch it on. See figure 2, page 1-1 for switch location. If it’s already on, make
sure the HP-86/87 has a clear head and screen by turning it off, then on.

If it’s been several days since you completed chapter 1, you might take the review test over again to
sharpen your text editing tools. The review test starts on page 1-17. When you finish your test, clear

your screen ((SHIFT) + (5[5)) and continue.

Immediate Execute Instructions: You’ve already used a BASIC statement or instruction, .-

To use il EZFif you merely pressed the key. But you could have gotten the same results by
typing I and pressing (END LINE).

2-1

2-2

on

2+ 2 Does Equal 4

= is an immediate execute instruction. Type in the instruction, press (END LINE), and ZOT! the
HP-86/87 obeys instantaneously. (You haven’t formally met the very important (END LINE) key yet.
Just use it here as I have described and we will learn more about it later in this chapter.)

Instructions such as these perform functions or set HP-86/87 operational modes instantaneously
when they are executed.

You'll learn more immediate execute instructions as we go through this course. |

ey

and ¢

P FTHLL are ones that we will use next.

If you don’t have a printer connected to the HP-86/87, you may skip directly to step 10 and ignore
any remarks about using the printer in this chapter. However, when you wish to use your printer be

sure to return to this section and study steps 5 thru 9 to learn how to use it.

Now we are going to learn to use the printer to print some of the lines we will by typing on the screen,

so we must learn a few fundamentals of operating the printer.

You should make sure your printer is properly connected to the HP-86/87, has a supply of paper
loaded into it, and is turned on with the ON LINE light on. (If yvou are unfamiliar with the use of the
printer, how it should be connected, loaded with paper, and turned ON, consult your introductory
manual for the HP-86/87 for some simple instructions on getting started. For more complete

instructions, see your HP-86/87 operating manual or the printer owner’s manual.)

The Printer address: Your HP-86/87 may have several devices such as a disc drive, a printer,
and possibly a plotter attached to it. If you wish to use the printer it is necessary to tell the HP-86/87
which device is the printer. This is done by means of an “address”.

The address of the HP Model 82905A/B printer is set at 01 when it leaves the factory. If you have
connected it to your computer using the built-in connector, the complete address is 701. If you havea
different printer, or have trouble getting the printer to operate using an address of 701 when
following the instructions in this course, refer to the HP-86/87 operating manual or the printer
manual, or seek assistance from a knowledgeable person. Section 3 of the introductory manual for

your computer may also help you.

1% statement to give the

i statement consists of the words i I

printer’s address. The i

iz followed by the address of the device you wish to use as the printer (in this case 701).

Clear your screen using the key, (press (SHIFT) + (I5F)). Now type f
and press the (END LINE) key. Your printer is now ready for action.

.. Statement: Later in this chapter you'll give the HP-86/87 a few calculative

examples to solve. Normally these appear only on the screen. However, with the printer switched on

10,

2 + 2 Does Equal 4 2-3

and properly addressed, we can use the 5 I M T | statement to make the answers appear both

on the screen and on the printer.

The & IHTHL L statement causes anything typed onto the screen and “entered” by pressing
(END LINE), to be printed as well as displayed on the screen.

.. has performed its service, I'll ask you to get rid of | by executing

another new command: 4}

L. mode, ready to perform this helpful task. Just type

Before you test the computer’s math skills, there are four keys you should pay particular attention
to: thenumberone(i), the small L (1), and letter i1 and the number zero. Their locations are shown

in figure 25,

KEY
I.IBEL

k10

ﬁ‘ﬁﬂﬁﬁ

E’j@lm\:e D,i

WW@@@[@WT

mhz

'WWE@

T
5/ E bﬂ
'uuHL[{L

12,

13.

@.

=] =]~

Figure 25. Locations of Some Keys

A small L (1) is not used for the number one (1). If you want a number one, you must press number

Press + (L) todisplay a small L (i) on the screen.

Next, press a number one key ((1)). Figure 26 shows enlargements of these characters. Notice that
the only difference is in the tops. A small L has a flat top, while the number one has a sloped top. It's
very easy to get these mixed up, which is one reason capital letters have been chosen as non-shifted

standard letters.

2-4 2 + 2 Does Equal 4

. VS. .

Figure 26. 1 wvs. i

14. Press the letter (O) key to display a capital ii. Now press the number (0) key (above the letter (0)
key). Notice that the number, when displayed on the screen, has a line through it (1), to make it

distinct from the letter L. It’s very common for computers to use ! for zero.

15. IMPORTANT: Clear this line by pressing + . Otherwise you'll get an error message
when you perform step 19.

16. In chapter 1 you learned to avoid the key when using the HP-86/87 as a typewriter. For
calculations, you use in place of the = sign. The = sign is very important in BASIC, as you
will learn in a later chapter, but don’t use = for calculations.

17. (ENDLINE)is the computer’s “enter” key. When you want it to calculate, memorize, or execute, type
whatever it is you want the HP-86/87 to do, and press (END LINE). When you press (END LINE), you are

“entering” something into the computer.

TO “ENTER"* SOMETHING INTO THE HP-86/87 MEANS TO TYPE ITONTO THE SCREEN AND
TO PRESS (ENDLINE).

18. When performing calculations, you may use either the numbers in the number pad, figure 27, or in
the top row of the typewriter keyboard. Also, you may use either of the two keys provided for each of
the most frequently used math operations: addition, subtraction, multiplication, division, and

exponentiation (raising to a power). Again, see figure 27.

| oivioe | [raiseTo A POWER |

N

@
o

LB Do)
anmo

LID DL Bl oo
Fl e v (o] o £

_L___

—

[muLTIPLY | |

Figure 27. Locations of Some Math Keys

2+ 2 Does Equal 4 2-5

19. Let’s give the HP-86/87 an easy one to start. Press these keys:

Your screen should look like figure 28. Also notice that your

You will hear the line being printed.

.. statement was obeyed.

PRIMTALL
2+2
4

Figure 28. Screen After Step 19

20. To see how the HP-86/87 handles 2 — 4, press (=) (4) (ENDLINE). Figure 29 shows what your
screen should look like now. As you see, the HP-86/87 is smart enough to leave room for a minus
sign in front of the answer if one is needed.

FRINTALL
B
4
254
=2

Figure 29. Screen After Step 20

21. Perform a multiplication. Press (5)(+)(7) and see -3 73,

22. Try adivision. Press (1) (3) (7)) (&) and see & . | . The HP-86/87 answers

with 12 digits unless an exact answer can be shown with fewer digits, as in the earlier examples.

23. A WORD OF CAUTION: Look at the ({) key just left of (852). You will not use this key in this
course. There is only one thing you should know about({): DO NOT USE THE BACKWARD
SLASH, (1), FOR NORMAL DIVISION. IT MAY GIVE YOU THE WRONG ANSWER.*
REMEMBER TO ALWAYS USE (/), NOT (1), FOR YOUR NORMAL DIVISION PROBLEMS.

24. Now it’s time to raise a number to a power. NOTE: In algebra, it’s 104. To the HP-86/87,it’s 1 &4,

Press (D)@ (@) and see |

* If you want to know more about (\), see the sections in your operating manual on MOD and DIV.

2-6 2+ 2 Does Equal 4

25. Several math operators (4, -, # < and -~) may be used in the same problem. For example, press (5)

(x)®) (/) (2)(*)(3)(END LINE) m and see the answer, 1 i,

26. The next example will use parentheses. As you recall, there are three sets of parentheses, as shown

in figure 30, and any of them may be used in calculations.
* | R ale —1|
| k10 k11 k12 k13 k4
ECIEEIEGIEIE]

)]
[aE[a| uu +][(81][8] "'u-\f—w = FEE
[l\‘Dﬂ@\'JnL D@ A EEE]
mﬂE\EH\D W] 5] ﬁﬂr r'" —1 : GlE))
(=] el [T BT

Figure 30. Locations of Parentheses Keys

[—Cunn [@l

Ad

(P LsT|

27. Another word of caution. Look at the ([) () keys just above and to the left of (END LINE). The
shifted function gives square brackets, which cannot be used in calculations. They have a special
purpose in BASIC that youll learn about in this course. So, DO NOT USE i3 IN
CALCULATIONS. DOUSE « .

28. Multiply the sum of 3 + 2 by 5 by pressing (5) () () (3)(#)(2) (1) (END LINE) . See the answer, ==

29. Why the parentheses" Let’s try the same problem without them. Press (5) () (3) (+]) (2) (END LINE].

Why 17 this time and = before? The answer to that involves calculation priorities, which I'll
discuss in step 30.

30. When the HP-86/87 calculates an answer, it works from LEFT to RIGHT. To completely calculate
an answer, this left to right journey may be made many times. On each trip, one or two operations
are performed in the following order.

ORDER OF CALCULATION

a. Thefirstthing the HP-86/87 does when calculating an answer is to perform the calculations
inside parentheses, working LEFT to RIGHT.

b. Next, all exponentiation () calculations are performed.
¢. Then multiplication {#¥) and division {).

d. Finally, addition and subtraction.

31.

32,

2+ 2 Does Equal 4 2-7

Furthermore, when an expression within parentheses is evaluated, the calculation priorities are

followed: - first, then ¥ and ., and finally + and -, until the expression within the parentheses is
reduced to a single number.

Now don t press any keys until step 34. Until then, just read. Look at the problem in step 28,

7 st i, The first thing the HP 86/87 did was to calculate the expressmn w1th1n the
parentheses It determined that © &+ 7 :

different way:

Perform + within © 7:

Now the © 7 may be removed:

Finally perform #:

When the parentheses are removed from © -z, the HP-86/87 solves it this

way:

¥ first:
then +:

+ works in algebra but not in computers which use BASIC. If you're like
me, you'll forget the # from time to time, so why not try leaving it off and see what happens. Press

B OE)®@Q(ENDUNE), hear the beep, and see

which means “bad statement.”

Figure 31 shows how your screen should lock now.

The HP-86/87 is guessing that you intended to type a BASIC statement (a BASIC instruction),
which could have been true. Again, it cannot read your mind. But, as always, the HP-86/87 is ready
to listen, so correct your error as I suggest in step 35.

2-8

2+ 2 Does Equal 4

36.

Z2.166BEEEEEET
104

10000
Sx6-2+3

18
S5%(3+2)

25
2%3+2

17

534-2)

Errocr 88 : BARD STMT

Figure 31. Screen After Step 34

Your cursor is in the right place, so press and (), then (ENDLINE). Not only did the correct

computer’s courtesy did not end there. It also put you back into the normal REPLACE meode.
Here's an example with all six levels of priorities in it:
2
(32 0 +2)+5

To ask the HP-86/87 for the answer, press
O3OOH@UE®EOWE)(ENDLNE)

Figure 32 shows how your screen should look now.

35
1376
Z2.166BEEEEEET
104
12900

S5%(3+2)
23
(372%x2-6+2175
1

Figure 32. Screen After Step 36

37.

38.

39.

2+ 2 Does Equal 4 2-9

Here’s how the example in step 36 is solved.

~ within © * first:

¥ and . within % 5 second:
+ within © * next:
Now remove . ! for clarity: oo

and perform .*: i

Now grasp the editing tools you acquired in chapter 1. I'm going to show you one of the computer’s
goodies.

Don’t type in this next example. Just look at it and keep reading.
e oD
(33 x - +2)+5

If this problem looks familiar, there's a good reason. It’s identical to the example in step 36 except
the exponent is changed from 2 to 3.

No need to type this entire problem onto your screen to solve it. Move your cursor to the exponent

in your step 36 example. Your screen should now look like figure 33.

35
136
Z2.1EEBEEEEBEY
124
10000
5%6-243
18
S%(3+2)

S%(3+2)
25
(3"*2/84-2)/5
1

Figure 33. Screen After Step 39

2-10 2+ 2 Does Equal 4

35
13-6
Z2.16EBEBEBEEGRT
104
10000
S%6-2+3
18
S*(3+2)

S%(3+2)
25
(3’\332/5+2J/5
1

Figure 34. Screen After Step 40

41. Now, without moving your cursor, press (END LINE), and presto! Your new answer, & . i, appears.
See figure 35.

35
138
2.1EEEEEEEEET
104
100092
S5%8/243

(3°3I%2-6+2)-5

l .2.2

Figure 35. Screen After Step 41

42. Notice what happened on your printer. You heard it print a line and, later, you'll see what it was.
Even though you didn’t retype the problem—you only changed one number—when you pressed
, the HP-86/87 considered the entire line to be as fresh as if you had just typed it in. That’s
why the printer printed the entire problem. Also, that’s why the HP-86/87 calculated a new, correct

answer. This leads to an

2 + 2 Does Equal 4 2-11

IMPORTANT TRUTH

When you press (END LINE), WHAT YOU SEE IS WHAT YOU GET. The line identified by your cursor is
entered into the HP-86/87, no matter where it came from or where on the screen it appears.

43.

44.

This ability to use displayed characters over and over again is an important time-saver, not only in

calculations, but in writing and editing BASIC programs. But I'm getting ahead of my story.

Let’s get back to parentheses. You can use more than one pair of parentheses in a problem. Just

remember: you must always use pairs. The number of right facing parentheses should equal the

number of left facing parentheses. Otherwise, a friendly error message will remind you of your
oversight when you press (ENDLINE). To see this error, use the following keystrokes to enter this

expression, which omits the right parenthesis:

32-1

Press (3) () (0(2)(5) (@) (END LINE) and see the & &1z

2717 error message shown in figure 36.

Z.1BEEEEEBEEEY
194
10002
S¥E/Z+3
18
S¥(3I+2)
29
#3342
17
5% (3+2)
25
(I"3%2/6+2175
2
3Piz-1
Error 88 : BAD STHMT

Figure 36. Screen After Step 43

Now use your editing tools to add the right hand parenthesis to get this problem.

32-1)

Figure 37 shows how your screen should look now, before you press (END LINE).

2-12 2+ 2 Does Equal 4

Z.1EEEEEEEERT
104

1QQdD
S*E/2+3

S%(3+2)

23

(3~3%2/B+21-5

2.2

3E(z2-12

Error 88 ! BRD STMT

Figure 37. Screen After Step 44

45. Press (END LINE) and see the answer, -, replace the error message.

46. You may use more pairs of parentheses than the HP-86/87 requires if you wish. Sometimes humans
like to add parentheses to make problems clearer. To illustrate this, first enter a problem with no

5+3 (z)
2
Press (6) (+) (3) (x) (7) (7)) (2) (END LINE) and see the answer i . &, Now enter the same problem,
but add an extra pair of parentheses. Press (5) () (3) . (O (@) (@) (2) Q) (ENDLINE). Your screen

should look like figure 38 showing the same answer, 12 .

extra parentheses:

S%(3+2)
25
(3°3%2/6+21-5
2.2
3%(z2-1)
3
S+3%7/2
15.5
S+3%(72)
15.5

Figure 38. Screen After Step 46

47,

48,

2+ 2 Does Equal 4 2-13

Here’s an example of a problem requiring two pairs of parentheses:

36

5(3 — 2) +
Dl e

Solve this problem using these keystrokes: (x) =) ®)DW© 0
and see the answer, '#, as in figure 39. Many pairs of parentheses may be used in this way,
each pair separated from the next.

o

(4]

WOW N ok = ok M

S
>
(
3

“3%42/6+2) /5
(G B

L —

S+3%(7-2)
1:55 5
e Iy L e
15.5
S9%(3-2)+36-(4+5)
]

Figure 39. Screen After Step 47

Two or more pairs of parentheses may also be used in another way, called “nesting.” To “nest”
means to put a pair of parentheses inside another pair, as shown by this example:

(28 —3(6 + 3))/2

Enter this problem by pressing (0 & 0E) @ and see the

answer, 2, as shown in figure 40.

2-14 2 + 2 Does Equal 4

SGx(3+2)

25
(3"3=2-76+2)7°5
I¥(2-1)

3
S+3%7.2

15.5
S+3%(7-2)

15.5
S+3%(7-2)

15.5
5%(3-2)1+36-(4+5)

(Z8-3%(543))1 -2

33w

I

Figure 40. Screen After Step 48

49, There is no practical limit to how deeply you can nest parentheses. That is, you may have one pair of
parentheses nested inside another pair, which, in turn, is nested inside another pair, which, in turn,

is ... and so on. For example, this problem shows parentheses nested four deep:
=4
18—4f3+———
2 +(5-3)
2

Press D(DE@O@O®HOHEOO0OOE®OEOEOOOOME) (ENDLNE)

and see ., the answer shown in figure 41.

25
[373%2,6421-9

i
&L

3x02-1)

3
S5+3%7 2

15.5
S+3Ix (720

15.5
S¥03-21+36-704+5)
9
(2B-3%(5+43) -2

O-4%(345 /(2 3+(5-21211 0.2

Figure 41. Screen After Step 49

2 + 2 Does Equal 4 2-15

50. Hereis how the problem in step 49 is evaluated:

a. Original problem: £

b. Evaluate theinnermost % first:

c. Nowtheinnermost © * may be removed: e L R E i T N i
d. First, perform - within the % * which are now

innermost: ClE-ame 3B Hae Rl
e. Next, perform + within ¢ : DR i 18]
f. Now these ¢ * may be removed: CofEe-d N
g. Now perform - within the innermost % =:) LR
h. Next, perform -+ within the innermost i : S R i SR ST o
i. Now these © : may be removed: ClE 2
j. Now perform ¥ within the remaining & »: 0L e A
k. And perform - i =
. Removethe © : o

m. And divide to get the answer:

51. Parentheses and negative numbers deserve some attention. Enter this simple looking problem: —12

Press(-)(1) and see the answer, ~ 1 (figure 42),

iy
Zi2

FErilE=
3
5435772
ik
S5+3%(7/2)
T
SH(I-21+36-14+5)
3
(28-3%(5+321-2
2
(18-4%(345/(2°3+(5-3)1)1).-2
7
i
-1

Figure 42. Screen After Step 51

But isn’t —1 X —1 = +1? Yes, it is. Here is what’s happening: the HP-86/87 sees — ! i as

i e
SR T

2-16 2+ 2 Does Equal 4

52. Todemonstrate this, press (=) () (1) 0 and see the same answer, - .

53. How do you square a negative one? In other words, how do you enter an exponent problem that

multiplies a negative one by a negative one? Here’s how:

Enter this problem (don’t forget to press (END LINE)—remember, “Enter” means type it in and press gl
(END LINE)). See a positive one as the answer, as shown in figure 43,

15.5
S+3%(7-2)
19.5
5%(3-21+36-(4+5)
E|
(28-3%(59+31372

S-4%(3+5-02734+(5-3100372

(=172
i

Figure 43. Screen After Step 53

54. Sometimes the HP-86/87 doesn’t need parentheses for negative numbers, but I suggest you use them
always.

55. That’s all the calculating for now. You’ll see more in later chapters when you write programs that
perform calculations.

irii. statement:

Press (W) (0) (B) (M) (A) (L) (ENDLINE).

56. Tocancel Fi= 11T execute the i}

En

With its dying gasp, ©

.. prints

57. If you wish to confirm that “i. again.
_, press (ENDLINE), and the printer remains silent.
MR TR was executed a second time, as shown by your cursor moving to the line below !

when (END LINE) was pressed.

has indeed retired, you may execute

Move your cursor up one line to i

fil. cancels a few other instructions as well. You’ll learn which ones later.

2 + 2 Does Equal 4 2-17

59. Take the printer “off line” by pressing the ON LINE key. The ON LINE light should go out. Then
find the LINE FEED (LF button) at the lower right corner of the printer control keys. Advance your
paper so you can tear off your record by pressing the LINE FEED key a few times. Use its repeating
action, and when the paper has been advanced sufficiently tear off the paper.

Summary of Chapter 2

: address: A Statement

The i 1% address statement tells the HP-86/87 which device to use as a printer. (The
address of the HP 82905A/B Printer is set at the factory to 01. The select code is 7, so the complete
address is 701.)

ii.i: A Statement

When @ ROM @A) OO (ENDLINE) is pressed, everything that is entered into the HP-86/87,
such as a math problem, is printed as well as displayed. In addition, any message or result, like an
error message or the answer to a math problem, is also printed and displayed.

® Error message: Givesone of many possible valid reasons for the error.
¢ Donotuseasmall L(})forthenumberone(i).

® Thesmall L(1)and the number one (1) are not easy to tell apart.

® The number zero (i) looks like a capital letter i with a line through it.

o Use ,not (=), to get answers to math problems.

. is the computer’s “enter” key.

* ENTER means type into the HP-86/87 and press (END LINE).

e Math operators:

addition
(=) subtraction

multiplication
division
exponentiation

e DoNOT use for ordinary division. It may give you the WRONG ANSWER.
® Do NOT use square brackets in math problems.

¢ DO use curved parentheses ({)(1)in math problems.

2-18 2+ 2 Does Equal 4

Order of Calculation:
1. Evaluate © # first.
2. Perform .
3. Perform # and ..

4, Perform -+ and - last.

Method of Calculation:

Each kind of calculation is performed as the entire expression is read LEFT to RIGHT, starting with

~ within all unnested 7 * and within all innermost © . The process is repeated as many times as
necessary to complete all -~ operations within all # . Then ¥ and .- within * * are calculated in the
same way, followed by -+ and -- within © . Finally, after all % * expressions have been calculated,

all remaining - are calculated, follwed by # and -, then + and .

To multiply, for instance, the sum of 3 + 2 by 5, use the multiplier, #:

Do NOT use 5(3 + 2). That works fine for algebra, but NOT for the HP-86/87.

DO use £ or &

When you press (END LINE), WHAT YOU SEE IS WHAT YOU GET, no matter when it was typed, or

where on the screen it appears.
In a math expression, the numbers of right and left facing parentheses must be equal.
For clarity, you may use more pairs of parentheses than the HP-86/87 needs.

To nest parentheses means to put one pair of parentheses inside another pair. Nesting parentheses

three deep, for instance, means using them as shown by this example:

Raising a Negative Number to a Power:

S]] give the same result as
OO , which gives — 1.
OO gives positive 1.

Saying the same thing without the key cap symbols:

A Statement

Cancels some instructions, including ¥

2 + 2 Does Equal 4 2-19

Review Test for Chapter 2

These reviews are intended to help you learn. Don’t be concerned if you miss a few questions. You’ll find
out where a little more study might help.

Try to understand each chapter well before going on. Such good preparation will make the future chapters
easier and more fun.

Note: Before you start, execute a command that will print everything that appears on the screen.

Otherwise some of your answers will be lost during your completion of this review test.
Answer all questions, then see the answers starting on page 2-20.

1. Your friend tried to solve five math problems on the HP-86/87. After failing every time, your friend
asks for your help.

a. Your friend tried to solve this problem:
5 X % +30—-56

by pressing (5) (%) (®) (1) (6)(*)(3) (@) (=) (5) () (ENDLINE).

Now it’s your chance to show off. Type this problem correctly and show your friend the right
answer.

b. The next problem you friend had trouble with was this:

(s+31)170
32

Help your friend by typing this problem correctly and getting the correct answer.

¢. Your friend had no better luck with this one:
25[12 + 3 X 41] — 10
Pressing (2) ®) (D* D@ ®EE @O M*)@ (0) (ENDLINE) gave the same old beep

and the same old error 88.

Enter this problem correctly to get the right answer.

* (D means (BHIFT) + | { |. () means (GAIFT) +| 1]

2-20

2 + 2 Does Equal 4

d. Yourfriend was getting a little frustrated. Surely a simple problem would work, like this one:

3

2

Your friend pressed (V) (ENDLINE), and at first was elated, since no beep or error
message greeted him when he pressed (ENDLINE). But elation deflated to gloom when the

answer, i, was shown. Show your friend how to get

Perhaps an even simpler problem is the answer, your friend hoped, so this was tried

1+20

and pressed (ENDLINE], the HP-86/87 produced another
.. By &°

me a bunch of characters that don’t make sense together.”

When your friend displayed 1-

message: oy S , the HP-86/87 is saying “You've given

Inspect your friend’s keystrokes carefully before entering this problem yourself. Two of the four

characters are wrong.

2. Solve this problem by moving your cursor, typing only one character, and pressing (END LINE).

HINT: Seeproblem lec.

15(12+3 X 41)— 10

Now ask the HP-86/87 to solve these problems.

__2
(4 +42)
15 _ 11
2000 16

(13 +3)3—255

34
Wyot————————7—
(15 —3(37 — 14))

See the answers below.

Answers to Review Test Questions for Chapter 2

1.

Do not use (=) in calculations. After typing the last (5), press (END LINE) and see the answer

b. This problem should be entered with () between (1) and (1) (7) (0) (ENDLINE). The correct

answer is .

* (\)means the| {| key.

2+ 2 Does Equal 4 2-21

c. Square brackets () (I) are not used in calculations. Use parentheses () (7) instead. See the
answer: . i

d. Donot usethe backward slash for ordinary division. Using (/) gives 1 . 7.

e. Useone(l), notasmallL(1). Also, use zero (i), not a capital letter O (i1). With these changes,

. is seen when (END LINE) is pressed.

2. To solve this problem, move your cursor to the first numeral of problem 1le, like this:

the correct =

H5*(12+3*41j—1®
3365

Press (1), and see:

1 ?*‘L"12+3*4'I 1-1@
3B5

Finally, press and get the answer:

15%(12+3%41)-1@
2018

Chapter 3

The Disc Drive and BASIC

Preview

In chapter 3, you will learn:

How to use your disc drive.

How to overcome 5 problems that can prevent the execution of a command.
How to get a program from the disc into the computer’s memory.

How torun a program.

What a BASIC statement is.

What a BASIC program is.

How to enter a simple program.

Three BASIC vocabulary words: L}

How to read the computer’s mind (how to look at program instructions stored in the computer’s

memory).

How to change a BASIC statement.

I suggest you take the Review Test for Chapter 2 again if you’ve been away from this course for a
few days. The editing review this test offers will help you easily follow the adventures I've prepared
for you in chapter 3.

HELP MESSAGE:

b. If these text editors don't work, clear your screen ((SHIFT) + (SI?F)). Then go back and start at the

c. If all else fails, start the chapter over again.

IF YOU NEED HELP
during this first part of chapter 3, follow steps a, b, and ¢ below. When you're using your disc drive, I'll
have other help messages for you.

a. First, check for typing errors. If you find any, use your editing tools to correct them. See the

Summary of Chapter 1, page 1-186, for a summary of these tools.

last step that gives you a convenient starting place.

3-2 The Disc Drive and BASIC

3. Let’s learn alittle about the disc drive and then use it to load a program into the HP-86/87.

First be sure your HP-86/87 is turned off and that the HP 82901M or HP 82902M Disc Drive
(HP-86/87) or the HP 9130A Disc Drive (HP-86) is properly connected to the computer. If your drive
has a power cord, plug it into a power outlet. If you are unfamiliar with the use of the disc drive and
how it should be connected, refer to the introductory manual that came with your computer for some
simple instructions on getting started. For more complete instructions, see your HP-86/87 Operating

and BASIC Programming Manual or the disc drive owner’s manual.

If the disc drive has a power switch, turn the drive on and proceed to step 4. If your drive does not

have a power switch, it will receive power later when you switch the computer on.
4, Now insert the BASIC Training disc into the disc drive as shown in figure 44 and desceribed in these
steps:
a. Removethe adhesive PROTECT DATA tab from the disc. (See pages 10-6 and 10-7). Open the

disc slot labeled DRIVE 0 by pulling up on the latch. If a disc is already present in the slot,

remove it from the drive.

b. Remove the BASIC Training disc from its protective envelope. (DO NOT try to remove it from
its sealed jacket.)

c. Slide the discinto the DRIVE 0 drive slot with the label facing up and nearest to your hand.

d. When the discis fully inserted, press down the latch to secure the disc in the slot.

a. Open the disc slot by pulling upon the latch. b. Remove disc from its envelope.

c. Slide disc into slot, label side up. d. Press down the latch.

Figure 44. How to Insert a Disc Into the Disc Drive

The Disc Drive and BASIC 3-3

o

To remove a disc from the drive merely pull open the latch, carefully remove the disc from the slot,

and press down the latch. You may wish to practice inserting and removing the disc once or twice.*

6. Now switch on the HP-86/87. The computer will automatically assume that the disc drive you wish

touse is DRIVE 0, This is the default mode. You will learn more about using other drive slots later.

After you turn on the HP-86/87, the disc drive light will turn on for a few seconds and the disc drive
will run. This is normal. The HP-86/87 is looking for a special program named “Autost” which
might be on the disc. If an “Autost” program is on the disc the HP-86/87 will find it and start it
automatically. Your BASIC Training disc has no “Autost” program, so the disc drive will not find it
and the drive light will turn off.

7. To experience this search for “Autost” be sure the disc is inserted into DRIVE 0 and that the disc
drive is turned on (if it has a power switch). Then turn the HP-86/87 on. If the HP-86/87 is already

on, switch off, then on.

8. When the disc drive light goes out, showing that the disc drive has stopped, you’re ready to go on to
step 9. :

9. Soon you're going to load your first program. Then you will run it, and I’ll instruct you further from
the computer’s screen and printer. This will all happen after you become even more familiar with the

computer’s error messages.

10. I have led you into trouble before. But this time I have you scheduled for BIG trouble. Five
conditions must be met before a typed command will be executed by the HP-86/87. You're going to

violate every one of those five conditions, and then you're going to fix each violation, one by one.

11. Please do not press any keys until step 14. Steps 12 and 13 are for reading only.

12. Here are the five conditions that must be met before the HP-86/87 will execute a typed command:

* Discs and their program contents can be easily damaged or destroyed by improper handling. Please read carefully the sections on care
in your disc drive operator’s manual. To avoid accidentally erasing the disc contents NEVER use the command

- £ while your BASIC Training disc is in the disc drive.

3-4 The Disc Drive and BASIC

TO EXECUTE ACOMMAND

a. The last character on the preceding line of your screen must be blank {forget this if you're typing on
the first line). USE ONLY TO MAKE THIS BLANK.

b. There must be no characters on the screen to the left of where you start your command.

c. Your command must be typed correctly. The correct way to type the i.! command you’'ll be

using soon is:

You must type this exactly as shown, including the quotation marks { + (")) and the period
(). (CH3 is the name of the program we wish to load and BASIC is the volume label of the disc on
which it is located.) The quotation marks and the period before the volume label must be included,
and you must type the program name exactly as it is given, including any spaces. We will learn
more about the volume label in a future chapter. {(Actually, we don’t need to use it right now but it

is included here for the sake of completeness.)

d. After the command is typed, the rest of the line must be blank. USE ONLY (-LINE) TO MAKE THIS
BLANK.

e. After the command is typed, (END LINE) must be pressed.

13. Why all the emphasis on USING ONLY (=LINE)? A complete answer giving the correct reasons is
beyond the scope of this course. The best I can do is say there are two different kinds of blanks. One
1s a typing character, produced by the space bar. The other is a computer character called a
“carriage return.” This special kind of blank is the kind the HP-86/87 looks for when trying to
understand your command. That special kind of computer blank is produced only by (=LINE) and by
(CLEAR). You will use only (that is, the unshifted (°fF) key) to produce the blank spaces

called for by rules a and d above.

14, Now, set the stage for your horrible mistakes. Hold down until more than four but less than five
full lines are filled with i< characters. This will take about 25 seconds.

15. Move your cursor to the 23rd position from the left on line three. Figure 45 shows about how your
screen should look.

Sl A R S i A
20 G
n

LRI KRR RN

HAKKHRAKREEAR
PR E H R SRR B

SRR AR

Figure 45. Screen After Step 15

The Disc Drive and BASIC 3-5

16. Press(L)(0)(A)(D). Your screen should look like figure 45. You have now violated rules a, b and d.

Figure 46. Screen After Step 16

17. Now let’s violate condition c. Press & (D (C), and see figure 47. This shows
approximately how your screen should look now.

WX R AR S

XXXXXKXXK.‘&X.‘%}\ KKK,

Figure 47. Screen After Step 17.
18. With my help you have just ignored the first four rules laid down in step 12.

19. DO NOT CLEAR YOUR SCREEN, although ordinarily a mess like this would be wiped away
quickly with a simple screen clearing,

20. You will eliminate each of these violations of the command requirements in the same order they’re
listed in step 12.

21. First, you will get rid of the last character on the preceding line, line 2. Press (=) 44 times to put your
cursor at the right end of the third line. Then press (1) once. Finally, press (-LINE), and get the screen

shown in figure 48.

S0 D

RKERKERK <)\>‘><V =<'>“<><'><><me><z M
PR IR P I X R REARLORDCHD , ERSI CX
HA R KRR BRI AR MR R 0 e) o e o 0

HAERKKHFA K I HH KA AN H AR KRR

L

i, s A
L 5 0 O I

SRR R R L<)\(\r\r
B e
L e 0 e

Figure 48. Screen After Step 21

3-6 The Disc Drive and BASIC

22. Next, you’'ll get rid of those characters to the left of where your command starts. Using only (=), (3],
and (=), move your cursor to the |.. of L. 1 F L

* .'\(\(<><>< <>‘Xn \>\‘<.— K n><><n <></\ ¥ SRR {H X>(>’><‘/ \(<>(r\r\r e L e PRI
R B R 0 00 4 B KK 4 K

Figure 49. Screen After Step 22

23. Now press + to erase those “ characters in a hurry. See figure 50. Notice the characters
to the left of the cursor disappeared, but the i of i.

, the character behind the cursor, remained.
This is different from the way works, as you'll see shortly. With (-LINE), all characters right
of the cursor, plus the character behind the cursor, are wiped out. Also, when is pressed, the
cursor does not move. Of course, (8%), with or without , does move the cursor.

You'll get a better feel for these editing keys as you continue to use them throughout this course.

KR 4 R 4 e
S 0 R S R M M 3 % R
CH3 L0

B B R
R

! LOALN
PR PR K R PR R KR
ORI E I AR K R R KR

Figure 50. Screen After Step 23

24. The third rule requires that the command be typed correctly. To obey this rule, you must add a pair

, the name of the program you wish to load. Use (=) to
. Now press (+) to get INSERT mode. See figure

of quotation marks around

move your cursor to the i of

51.

PRI R R
3 R B

o L K L e R B
BEEE S EESE R EEEE P
LDH@HB L.BRZIC
28 A L R R R e e e o e o e R
RAXKARRERRRH R AR KA KRR

0 B

Figure 51. Screen After Step 24

25. Press + (7 Jto add the first quotation mark. See figure 52. Notice that you pushed all the

characters located to the right of your cursor to the right one position.

The Disc Drive and BASIC 3-7

H R R A A R KR R R R K h(‘K%\»\kﬁfx f&ﬁ<%5¥{HKHHHX h*fX4fh¥\hn
PR P DR P 2 R K R I D e s : e LR

LDHDIHB BHbIC
PR R 0 i o S R R B R R
HR AR KA R R KRR KRR K H R

Figure 52. Screen After Step 25

26. Next, press (=) nine times to move your cursor between i and . Pressing (") (don’t forget (SHIFT))
gives figure 53.

B P AR KR R R R R R

LRSS S C R

. LA R A XKV“ RHHHEM R
PP D g AR L R DR A 0 e B S

LORD" CHZ . BHSILHEfVV'VVVVV¥¥V L R D IR R R R
AR PP R R AR R R K 0 B D B 0 B 0 6 0 5 5 3 5 55 5 5 5 3
HARKHRREIHREKE R AR EH K AR

R S

Figure 53. Screen After Step 26

27. Press again to return to REPLACE mode, figure 54, and notice that the cursor is correctly
placed for to wipe out all characters right of the command.

R R A ALK LR AR R R RR R AR R R AR IR KRB 00 00 b0 0 R 4 K 0 0 B 0 0 0 0 90 5 3 54
XXXXXXXXXXX%XMKXKXXXXXKKKKHKKXKKXKXXXXX”XXAKX%VXKKX%XKXX&XXMAKXAXK LGB MR A

LDHD”CH3.BHSIC”E”aXnAAK*ﬁH LA R R B R R B8 0
RARRARKARRKHAR KR AR KRR K H KR WX R KR I3 0 3300 500 S K IR S 00 ¢ 34 5 3104 X 6 5 36
RAR KK I A A KB AR AT KK IR AR R

Figure 54. Screen After Step 27

28. Press (-LINE). Figure 55 shows the result. Only one command requirement left.

B R R R B D 3 B 0 B B e 3 B 5 5 5 5 54 55 54 30 5 ¢

R ORI IR BRI B 0 0 0 0 3 0 R X 4 4 550 94 €4 54 5 0 3 5 503 55 ¢ S 3
LOAD" CH3. BASIC" |

FRRRAKKARHR R KA KR X IR R AR R IR BR300 3 B0 304 BB 4 XX 06 5 0 i 3608 0 6 4 54 63 X 5

KRR A KRR K AR R H A H IR KRR

Figure 55. Screen After Step 28

3-8 The Disc Drive and BASIC

29. Let me explain what will happen when, 2 steps later (step 31), you satisfy the final requirement. If
you've followed the steps up to here OK, and if you have the BASIC Training disc inserted,
performing step 31 will cause the disc drive light to turn on and the disc drive will run. After a few
seconds, the disc drive will turn off, as shown by the disc drive light turning off. At that time, your
program will have been successfully copied from the disc, and it will then rest in the computer’s
memory, ready to serve you.

30. Please read this carefully:

CAUTION
Never remove a disc while the disc drive is running. Make sure the red disc drive light is off before

removing a disc. Otherwise, recorded material may be lost.

Also, for the same reason, never switch the HP-86 /87 or the disc drive off when the disc drive light

is on.

31. Now, press (END LINE]. If you get an error message, you may not have used to perform steps a

and d, page 3-4. If you do get an error message and if you're unable to cure the trouble easily, clear
your screen ((SHIFT) +) and repeat steps 14 through 30; then press (END LINE) again.

32, If you did not get an error message in step 31, your disc drive started when you pressed (END LINE).
When the disc drive light went out, program “CH3” was loaded, that is, copied from the disc into the

computer’s memory,.

33. Figure 56 shows the location of three important keys you’ll soon be using, ; and

L'I]LLJ.LQ.'L =) &

== Back (et || reser) | [wer) || s |
wuumwgmmt -

9 =) L

I@\U ULB ‘ I3 LE]] _,lq

\..-_J\,@,e{@;t € ;-m;\z_\wuou Dam DJ oDk

Einnoecioin “ﬁ n’JJH 3| jﬁﬁj O
=] (2] el v e][]] 5] WET@@;Q@;

__ —

Figure 56. Locations of (RUN), ("8R8) and (T5])

The Disc Drive and BASIC 3-9

34. T'll be showing you shortly how to run the program “CHS” which you just loaded into the computer’s
memory. Running the program involves use of both the and keys.

35. When you begin to run the program you’ll often see on the screen: |

INT 3.

36. When I ask you from the screen to press (press the key), you might, if you’re like me,
hit another key by mistake. Don’t worry. Simply press as though nothing happened, and all

will be well ... unless you press (RUN), that is. In that case, sit back and relax, because the program
will start over.

37. One of the keys you might press by accident is the (187 key (see figure 56 for its location). You’ll
learn more about this key when you run the program “CH3”, but for now, just press it and see what
happens. When you press your screen will suddenly look like figure 57.

1 | COPYRIGHT (c) HEWLETT-PRCKARD CO., 1382
1@ NORMAL @ CRT IS 1,82 ! PRGM "CH3.BRSIC"
20 CLEAR @ GOTO 40

30 BEEP @ CLEAR @ DISP "SORRY, THAT IS AN INCORRECT PRIMTER ADDRESS! FLERSE TRY
AGAIN." @ DISP

40 DISP "PLERSE INPUT THE PRINTER’S ADDRESS" @ INPUT Q7

5@ ON ERROR GOTO 3¢ @ PRINTER IS Q7,80 ® PRINT

60 OFF ERROR

70 DIM H$([3@),H16(32),H2$[321,H3s [32]

BlosMb=le e ey W e E D, HE | P

99 H1§=" AREXEEEE AR REAAAFREF AR RE AR R XA

100 H2$="%"gH$[2]18" ="

11@ H3$="% 0

12@ CLEFRR

13@ DISP TAB(28); "HEWLETT-PACKARD"

Figure 57. HP-86/87 Screen After Step 37

38. What you see on your screen is a listing of the first 15 lines, or BASIC program statements, in the
program “CH3”. Don’t be concerned about what the strange numbered phrases mean. You'll learn
more about program statements when you run “CH3” and in the subsequent chapters in this book.
For now you just need to know that they are the first part of the series of instructions that make up
the program “CH3”.

39. Press again. Your screen will be replaced by the next set of numbered statements in the
program. You could continue to do this until the entire program was listed.

3-10

The Disc Drive and BASIC

40. By using the (PLST) key, ((SHIFT) + (7§)), you can print the program listing on your printer. First
turn on your printer and give the HP-86/87 the proper printer address by typing |
i 1 and pressing (END LINE) *. Then press (SHIFT) + (7§). The printer will begin to print out the
entire program listing, line by line, starting at the beginning. This can take a long time and use a lot
of paper, so if you want to stop it just press to stop the printing.

41. Now run “CH3”. Much of the rest of chapter 3 will be given to you on the screen and printer when
vou do. Be sure your printer is turned on.
For the best printout, you should be sure that the paper in your printer is set to start printing at the
top-of-form position (at the top of a page). If it is, the printout from this program, and others like it in
this pac, will automatically page-break the text at the bottom of each page on the paper, giving you a
good-looking, easy to read text.
To learn about setting the printer paper to top of form, see the section entitled “Top of form” in your
printer owner’s manual and follow the instructions.
Now press to start the program.

42, The screen will display:

43. P

T * is displayed just press (CONT).

44, If for some reason the program does not continue to run properly just press (RUN) and start over
again at step 41.7 Or, if all else should fail, clear your screen, type L.UiFiT " HE =10 and
press (END LINE) to reload the program. Then return to step 32.

45. When you have completed running the program you’ll return to this workbook for the Summary and
Review Test for Chapter 3.

Summary of Chapter 3
¢ Toinsert a disc into the disc drive, lift the disc drive latch, slide the disc carefully into the slot, then

press down the latch. Always use the left hand slot (DRIVE 0) if you have a dual drive.

* See page 2-2, step 5, if you want to refresh your memory on how to use the printer.

t If your printer fails to start operating when you press (CONT) after &

displayed, you may have used an incorrect printer address. Check it and other prmta,r instructions on page 2 2.

The Disc Drive and BASIC 3-11
For a command to be understood by the HP-86/87, five conditions must be satisfied:

m Last character position of preceding line must be blank.
m Portion of line in front of command must be blank.
m Command must be typed correctly.

m Portion of line following command must be blank.

s Finally, must be pressed.

LIEDE A Command

To get a program from disc into the computer’s memory, press (L) (0] (A) (D) (") name of program
() volume fabel (C) (ENDLINE). (") is obtained with + (7). A period, (1), must be included

ahead of the volume label.

When the disc drive light is on:

m DO NOT remove the disc.

m DO NOT turn the HP-86/87 or the disc drive off.

To run a program stored in the computer’s memory, press (RUN).
BASIC: A computer language with words and grammar.

BASIC statement: An instruction for the HP-86/87 using BASIC words.

BASIC program: A group of statements designed to work together to perform a task.

BASIC vocabulary words:
me L ~: Instructs the HP-86/87 to display message on screen.
m FEIMT: Instructs the HP-86/87 to print message on printer.
[i: Ends program.

To prevent two programs from destroying each other, clear the computer’s memory before entering

another program’s statements. Reference: program " i " printout, step 2.

The (END LINE) key

m Enters program statements into memory.
a Executes commands.

m Performs calculations.

3-12 The Disc Drive and BASIC

e The key
The (LIST) key (unshifted) lists program statements stored in the computer's memory onto the
screen. The (shifted version of the key) causes the listing to be printed on the printer.

® Tochange a BASIC statement, edit or retype the statement using the same statement number and

press (END LINE).

Review Test for Chapter 3

Answer all questions, then see the answers on page 3-13.

1. Suppose you wish to get a program named "} “ from your disc into the computer’s

memory. The correct disc is inserted in the disc drive. You find your sereen full of characters, but you

know you can write over them. So you press: (o)A D) O (D () to write

over the beginning of line 3. Now your screen looks like this:

DISF "vOU ARE MORE SKILLED THAMW wOU MAY REALIZE IW THE OFERATION OF YOUR"

3@ DISP "HP-£6-87. AS A RESULT, vOU ARE WELL PREPARED TO BEGIN YOUR STUDY OF"
LDHDCHB.BHSIC'EHSIC LAMNGUARGE . "

35@ DISP

3@ DISP "LIKE OTHER LAMGUAGES, LEARMIMG BASIC MEARMS LEARMIMNG BRSIC WIRDS:

37®» DISP "AND GRAMMAR AMD GAINING SKILL IN THEIR USE."

38@ GOSUB z@09@

399 DISP

499 DISP "R BASIC STATEMENT IS AN INSTRUCTIONM FOR THE HF-87 USING BASIC WORDS."

41@ DISP

42@ DISP "A BASIC PROGRAM IS A LIST OF BASIC STATEMENTS; THART IS, A LIST OF"

43@ DISP "INSTRUCTIONS THAT WORK TOGETHER TO PERFORM SOME TASK. HOWEYER FOR®

44@ DISP "THE HP-B7 TO PERFORM THIS TASK:" @ DISP

452 DISP TRB(1@);"1. THE PROGRAM MUST BE STORED IN THE HP-877S MEMORY."

46@ DISP TABC13);"AND"

Without pressing (L) (0)(A) (D) B (1 (€) again, what must you do before this
command will be accepted by the HP-86/87?

2. Faced with the same situation as in question 1, but this time allowing the command to be retyped,

what is an easier way to get the HP-86/87 to accept this command?
3. For a BASIC program to show a message on the screen, what BASIC word is needed?
4. Whatis an individual program instruction called?

5. What three major actions are performed by (END LINE)?

The Disc Drive and BASIC 3-13

Answers to Review Test Questions for Chapter 3

1. Toload the program:

a.

Put quotation marks around the program’s name.

b. Remove all characters on the same line that are right of the command.

Press (END LINE).

C,

One way to satisfy the three actions listed above leaves the screen looking as shown below:

33

[BT
360
370
380
390
400
410
420
430
440
450
460

2. a.
b.

DISF

"vOU ARE MORE SKILLED THARM YOU MAY REALIZE IN THE OPERATICON OF YOUR"

DISP "HP-86-87. AS A RESULT, ¥0OU RARE WELL PREPARED TO BEGIN YOUR STUDY ofF"
LORD"CH3.BASICY
DISP
DISP "LIKE NTHER LAMGUAGES, LEARNING BRSIC MEAMNS LEARMING BASIC WORDS
DISP "AND GRAMMAR AND GAIMING SKILL IWN THEIR USE."
GOSUB Z@3@
DISP
DISP "R BASIC STATEMENT IS AN IMSTRUCTIAM FOR THE HF-37 USIHG ERSIC WORDS."
DISP
DISP "A BASIC PROGRAM IS A LIST OF BASIC STRTEMENTS; THAT LS 8- LTST:-0F"
DISP "INSTREUCTIONS THAT WORK TOGETHER TO PERFORM S0OME TRSK. HOWEVER FOR"
DISP "THE HP-87 TO PERFORM THIS THSK:" @ DISP
DISP TRBC1@);"1. THE PROGRAM MUST BE STORED IW THE HP-87°S MEMORY."
DISP TRABC13);"AND"

Clear the screen by pressing (by pressing +)

Press () (0)(A) @D @OH@OE®®®E ®E () (ENDLNE).

4, Statement.

5. Execute commands, enter statements, and perform calculations.

Chapter 4

Write Your First BASIC Program

o il
Preview
In chapter 4, you will:
e Learn more about memory.
® J.earn more about loading programs.
® Learn more about trouble killers.
® Learn more about spaces in BASIC statements.
® Learn how to add, change, or remove a statement when writing a program.
e Tearn about statement numbers,
® Practice using your new BASIC words, I
o
(¢ Learn what'’s the same and what’s different about statements and commands.
® Write, enter, run, and list your first program.
1. Ifit’s been several days since you studied chapter 3, why don’t you take the Review Test for Chapter
3 again to make your work with chapter 4 easier?
2., HELP MESSAGE:
IF YOU NEED HELP
while running program “CH4," follow steps a, b, and ¢ below.
a. To stop unexpected action, press (CONT).
e

b. Ifthings are still strange, press (RUN) to start “‘CH4"" over again.

c. If all else fails, perform steps 1 through 4:
1. Make sure disc drive is NOT running. The disc drive light should be off.
2. Remove BASIC Training disc.
3. Switch the HP-86/87 off, then on.

4, Start chapter 4 over again.

4-2

10,

11,

12,

13.

Write Your First BASIC Program

While following the instructions printed by the HP-86/87, follow IF YOU NEED HELP messages
on printout.

While writing, entering and running your “Name-Game” program, follow the IF YOU NEED
HELP messages in text.

Turn on your disc drive if it has a power switch, and insert your BASIC Training disc into the
DRIVE 0 disc drive slot. (See page 3-2, step 4, to refresh your memory.)

HP-86/87 on. If the HP-86/87 was already on, turn it off then on again. Now type
' * and press (END LINE).

When the disc drive light goes out, your “CH4” program has been copied into the computer’s
memory and the disc drive has stopped. Remember to set your printer paper to top of form for a

pretty printout. See your printer owner’s manual for those instructions.

After you perform step 7, I will be instructing you from the computer’s screen. When you finish the
programming exercises that will be printed by program “CH4,” you'll return to these pages to
compose your first program.

Press and follow the instructions on the screen.

Now that you've had more programming experience performing the tasks given you by program

“CH4,” it’s time to make some general observations about programs, statements and commands.

The last, highest numbered statement in a program should be an

i statement. Otherwise, the

program may not run.

To write a statement designed to display a message, use the BASIC word i - and enclose the

message in quotation marks.

To write a statement designed to print a message, use the BASIC word 17 and enclose the

message in quotation marks.
Statements may be entered (typed in and (END LINE) pressed) in any numerical order.

Remember the five conditions that must be met for the HP-86/87 to understand a command? Those

same conditions must also be satisfied for the HP-86/87 to accept a statement. Here they are again.

For the HP-86/87 to understand and accept a command or a statement you attempt to enter, these

five conditions must be satisfied.

Write Your First BASIC Program 4-3

TO EXECUTE ACOMMAND OR STATEMENT

a. Last character position of preceding line must be blank.
b. Portion of line in front of command or statement must be blank.
¢. Command or statement must be typed correctly.

d. Portion of line following command or statement must be blank.

e. Finally, must be pressed.

14. Also remember: You get rid of all interfering characters at once simply by clearing your screen

((SHIFT) +).

15. You may list your program statements whether or not your program is finished. You'll have a
chance to try this soon.

16. BASIC programs may be as simple as two short statements.

17. Here are important differences between statements and commands, both of which are instructions

to the HP-86/87:
STATEMENTS VS. COMMANDS
Question Statements Commands

Is it part of program? YES NO

Does it use line (statement) numbers? YES NO

When is it executed? When program is run. | Some commands immediately executed
when a key is pressed, {), for
example.

Some when (END LINE) is pressed,

(t.iiiiid), for example.

Note that many statements may be immediately executed from the keyboard, without line numbers,

just like commands.

18. Nowit’s time for the “Name-Game” Program.

IF YOU NEED HELP
with steps 19 through 24, see page H-10, No. 8 in the Supplement’s HELP Section.

4-4 Write Your First BASIC Program

19. The programs you've entered so far you have, in fact, copied. Now you're going to write your first

genuine program! Your program should print this message:

Now press (§)(C)(R)(A)(T) (©) (H) (ENDLINE) to empty the computer’s memory.
20. HINT: The first statement may be written as shown below.

When typing in your statements for this and all other HP-86/87 programs be careful to use a space
after each BASIC word. Remember, the HP-86/87 will allow you to use any type of spacing between
quotation marks but may become confused if you don’t separate each of the BASIC language words
with a space. If in doubt use a space!

Enter statement 10 as shown (don’t forget to press (END LINE)). Then perform steps 21 through 24
before completing your program.

21. Now, show that even a single statement may be listed. Clear your screen. Then press (LST). Figure
58 shows the result.

1@ PRINT "HP-86-87 IS MY NFAME"
28447

Figure 58. Screen After Step 21

Being able to list part of a program while you're writing is a big help. Take advantage of this power

when you write your programs.

22, Now print your listing. Be sure your printer is connected, turned on and properly addressed. Then

press (PLST)((SHIFT) + (51).

23. When the printer stops, advance the paper and see the listing of statement 10. It is the same as you
saw earlier on the screen shown in figure 58. Note that the number of “bytes” of memory remaining
within the HP-86/87 is displayed, but not printed.

24. Your program should have at least four statements. Now write that program, and good luck!

25. When you're finished, see one way to write the “Name-Game” program. A listing is shown on page
H-10, No. 9 in the BASIC Training Pac Supplement’s HELP Section.

/_\\

26.

27.

Write Your First BASIC Program 4-5

If you had trouble getting this program finished on your own, rest assured you’re not the first one

who has had trouble with a program. If you were unable to finish this program, why don’t you enter

the statements shown on page H-10, No. 9, then press (RUN), and (PLST) ((SHIFD) + (B&0).

Remember, to enter a statement means to type in the statement with the statement number and
press . See Help No. 8 on page H-10 in the supplement for further assistance.

If you were successful, congratulations!

Summary of Chapter 4

HP-87 user memory = 28476 bytes. At the time of market introduction, the HP-87 had 28476 units, or
bytes, of memory available for users.

A Command

The ! command copies a program from the disc into user memory. Once loaded, the disc may
be removed from the drive. Type | i program name . #5107 and press (END LINE).
TROUBLE KILLERS

METHOD 1—Most gentle—erases only one line from screen.
a. Press +(&EK).
b. Press(-LINE)(press (Hif)).

¢. Tryexecuting command or entering statement (don’t forget to press in either case). If
trouble persists, try Method 2.

METHOD 2—Easiest and often best.
a. Clearscreen (press +).

b. Try executing command or entering statement. If trouble persists, try Method 3.

METHOD 3—Erases entire user memory within the HP-86/87 and erases screen.
a. Make sure disc drive light is off.

b. Turnthe HP-86/87 off, then on.

¢. Load any program you were working with and continue.

d. Startover.
Spaces in statements

1. Spaces must be carefully inserted or omitted when typing statements and commands into the

HP-86/87. To include a space when not needed or to omit a space when required can greatly

4-6

Write Your First BASIC Program

confuse the HP-86/87. At the very least, the HP-86/87 may reject the statement with a
% error message. At worst, it may interpret the statement erroneously causing the
program to operate incorrectly.

2. Spaces within quoted messages may be used in any desired manner for formatting, etc. Spaces

within quoted messages are always preserved exactly as typed.

Scratching memory means clearing memory. Memory must be scratched before entering statements

of a new program. One way to scratch memory is to switch the HP-86/87 off, then on.

To add, modify, or delete a statement

1. Toadd: Useanew statement number, type the statement and press (END LINE).
2. Tomodify:

Either: Get statement on screen, from the original typing or a listing, edit it (while keeping the

same statement number), and enter it (press).
OR: Type a new statement using the statement number of the line you want to modify, and

enter it (press (END LINE)).
3. Todelete: Type the statement number only and press (END LINE).

Statements may be entered in any numerical order. The HP-86/87 will list and execute the lowest

numbered first, then the next lowest, and so on, ending with the highest numbered statement.

HE A BASIC word

“ in a statement and enclose the message in quotes.

Include the statement in a program, and run the program.

iT: A BASIC word

To print a message on the printer, use & [7 in a statement and enclose the message in quotes.

Include the statement in a program, and run the program.

To execute a command or statement:

1. Lastcharacter position of preceding line must be blank.
Portion of line in front of command or statement must be blank.
Command or statement must be typed correctly.

Portion of line following command or statement must be blank.

Finally, must be pressed.

o R @

Write Your First BASIC Program 4-7

* Statements vs. commands:

1. Both areinstructions for the HP-86/87.

2. Statements are parts of programs; they use line (statement) numbers and are executed when the

program is run.

3. Commands are not parts of programs; they do not use line numbers and they are executed either

a. When a command key is pressed, like , OT:

s The key:

Displays listing of complete or incomplete program on the screen.

¢ The key:
Prints listing of complete or incomplete program on the printer (+ Y

Review Test for Chapter 4

Both questions and answers are given by program

£ ¥ on your BASIC Training disc. Load this

program by pressing

LOLOOOEEO®WOLE®EOEC)(ENDLNE)

If the HP-86/87 refuses to accept your .

Don’t forget to set your printer paper to top of form.

f command, review and use your trouble killers. See page 4-5.

When the disc drive light goes out, press (RUN). Then follow the instructions on the screen.

Chapter b

Increase Your Control

Preview
In chapter 5, you will:

Learn how to start a program at some place other than the beginning.

Learn how to quickly see any segment of your program instructions.

Learn some time-savers called typing aids.

Learn how to clear memory without switching the computer off, then on.

Learn how to put the HP-86/87 in a “just-switched-on” condition without switching off, then on.
Get the last word on trouble killers.

Get more editing pratice.

Learn how to put quotation marks into printed or displayed messages.

Learn how to record a program on your disc.

Learn what numbers you may use to number your program instructions.

Don’t forget to take chapter 4’s review test (program “TEST4”) again if you feel a refresher would be
useful. See page 4-7.

HELP MESSAGE:

IF YOU NEED HELP

during this chapter, follow these steps:
Look for the IF YOU NEED HELP messages in this workbook and in program “CHB5."
Review the trouble killers summarized on page 4-4.

Review the editing tools starting on page 1-16.

Note: The symbol A means press the space bar to produce one space.

3. Here are two similar commands you’ll be using soon:

(RN A[tine number]
WOEI@ altine number]

5-1

5-2

Increase Your Control

4. When you press the key, the program in the computer’s memory will always start at the lowest

numbered line (lowest numbered statement) in the program. There will be times when you will wish

to start a program at a different, higher numbered line. Say you wanted to start at line 1000, Simply
press the keys:

BN a(D©)©)(©)(ENDLINE)

Since the key is an immediate execution key, pressing the single key gives you no
chance to type in a line number. Pressing is equivalent to pressing the four keys (R) (U) (N)
. To begin program execution at a line number different from the lowest numbered line in
the program, the three characters i i

END LINE) must be pressed.

i must be typed in, followed by the line number, and finally

If you load a program from disc or enter a program statement (line by line) from the keyboard, and
later press the key, a listing of the first part of your program will be displayed on your screen
starting with the lowest line number. Let’s assume this display shows lines 10 through 100. If (LIST)
is pressed again, the program segment starting with the next line (say 110) will be displayed. Let’s
assume further that you have a big program in memory, with statements numbered 10, 20, 30, and
so on up to 1500. If you wanted to display the listing of the program segment starting with line 1000,
you could continue to press (LIST), and list adjacent segments of your program, until you finally
reached the segment which ineluded line 1000.

A much easier way to do this is to press these keys:

LWOEO M) (ENDLNE)

Soon you'll be using program “CHS5.” As you work with that program, I’ll ask you to execute both

(@ (@) () 4 [ine number] (END UNE)
and (D (D () (T) [fine number] (ENDLINE).

But first, we are going to spend a little time learning about some handy tools called typing aids. On
the upper left of the HP-86/87 keyboard is the key, followed by a series of seven keys labeled
thru (shifted labels: thru (k14)). See figure 59 for the location of these keys. They are
called special function keys and have several uses. With the HP-86/87 in calculator mode, as it now

is, they serve as typing aids.

Increase Your Control 5-3

ey | | |
| LaseL |||
| S _J. 1 !

L

ﬂmw
; U

T | T

Figure 59. Special Function Key and (RESET] Locations

8. Press + and watch what happens. A double row of labels appears on the screen
directly above the keys thru , as shown in figure 60. Each label appears in a unique location
on the display, situated directly above the corresponding special function key on the keyboard. The
lower row of labels corresponds to the unshifted keys, thru (k7), the upper row to the shifted
keys, thru (k14).

FFI HTE

Figure 60. Special Function Key Typing Aids

5-4

10.

11.

Increase Your Control

Now press (k6), | L1 The word L3411 is instantaneously displayed in the upper left hand corner
of the screen, followed by the faithful cursor. Now press () (€) (H) () B0 M)
(END LINE). You have just told the HP-86/87 to load the program “CH5” from the disc. Your disc
drive light will go on for a few seconds and the program, “CH5”, will be loaded into the HP-86/87.

So you see that pressing the special function key (k6) acted exactly the same as typing the word
LHALL Ttis a typing aid.

Look at the labels of the special functlon keys., You will see the words: F

. Anytime the HP-86/87 is in “calculator”
mode, when you are typing in program statements (as you will be in chapter 6) or when a program is
not running, you can press + and see these labels displayed. Then when the desired key
1s pressed the HP-86/87 will instantly “type” the chosen word or phrase on the screen ready for use
as part of your command or BASIC program statement.

You've already met the BASIC words and commands involving 1]

and L.

i. In this chapter you will become acquainted with = - and in

chapter 11, i 1. You will be using these words often as you write and use programs on your
HP-86/87, so you can see that these typing aids are very handy and will save you a good deal of

time.

Feel free to use the typing aids anytime they are useful, even though I may not spemflcally tell you
to. Don’t worry about the ones with strange words: ; i ; '

4, and ! 1. You will learn about them later in this course, or

in the HP-86/87 operating manual. For now you can just ignore them.

Now for a new command, & FEHTH is executed by typing SR (or using the
typing aid) and pressing (ENDLINE). Executing this command clears, that is, scratches the
computer’s memory. Executing the ©

the HP-86/87 off, then on, except:

i command accomplishes the same thing as turning

a. The screen is not cleared.

b. The F .. command is not Cdncelled (You’ll learn later about some other commands

that are not cancelled by :

The 1 typing aid is located on special function key (k12) as shown in figure 60. Use it this
way: press m (SHIFT) + (k12), (ENDLINE). You have accomplished exactly the same result as typing
t and pressing (END LINE), but more simply and quickly.

/—-.\..

12.

13.

14,

16.

1743

Another new key function is ((SHIFT) + (F55FT)). See figure 59 for the location of (RESET).

Pressing puts the HP-86/87 in the same state as when the HP-86/87 is turned off, then on,
except: User memory is not scratched (not cleared).

RESET) clears the screen and cancels ¥

later).

Here’s a summary of what &

Increase Your Control

L. (and some other commands you’ll learn about

- and do:

SCRATCH COMMAND AND RESET KEY

COMMANDS LIKE 55 I HTRLL
C%“;“;:ED PSSSOR:\“," SCREEN | THAT PUT THE HP-86/87 INTO A
NON-““WAKE-UP" CONDITION
SCRATCH | WIPED CLEAN | NO CHANGE NO CHANGE
RESET NO CHANGE | CLEARED CANCELLED

So, the equivalent to switching the HP-86/87 off, then on, is to:

a. Execute -

b. Press (RESET) ((SHIFD) + (¢7)).

{ and press (RESET).

As you work with program “CHb5” a little later, you’ll execute

Now that you know about the & '+ command and the key, it’s time to improve the
trouble killing keystrokes discussed in chapter 4. The first two trouble killing methods are

unchanged, and the final “if all else fails” method is still turning the HP-86/87 off, then on.

Before using the ON-OFF switch, it’s good practlce to use the equivalent keystrokes, - i
(END LINE) (RESET). For one thing, executing = TiiH or while the disc drive is running
causes no trouble. However, turning the HP-86/87 off while the disc drive light is on could cause the

loss of valuable information.
Here is the final set of trouble killers:

METHOD 1—Most gentle—erases only one line from screen.
a. Press +(8%).
b. Press(-LINE)(press).

c. Tryexecuting command or entering statement (don’t forget to press in either case). If
trouble persists, try Method 2.

b-6

18.

19.

20.

21.

22,

Increase Your Control

METHOD 2—Easiest and often best.
a. Clear screen (press +).

b. Try executing command or entering statement. If trouble persists, try Method 3.

METHOD 3—Erases memory and clears screen. Does not affect disc drive.

L

b. Reset computer: (press + ()

c. Load any program you were working with and continue.

a. Clear memory: execute =

d. Otherwise, start over. If trouble persists, try Method 4.

METHOD 4—Erases memory and clears screen.

a. Make sure disc drive light is off.

b. Turnthe HP-86/87 off, then on.

¢. Load any program you were working with and continue.

d. Otherwise, start over.

Now it’s time for some more editing practice. I've prepared some program statements that definitely
need editing. When executed, these statements print a message on the printer. When you run

program “CH5” in step 20, you'll see the sorry state of this message. After you read that message,
see step 21 for more instructions.

If your BASIC Training disc is not inserted, insert it now into the disc drive.

=

oad and run program “CH5” and read the printed message. Do you remember how to execute

T Q
o 3

i{1 and #1H4? Follow these keystrokes:

-

When the disc drive light goes out, set your printer paper to top of form, then press and read
the display and printout.

After you complete this step, read steps 22 and 23. Step 24 will ask you to edit.

Now use one of your new commands:
Press (DN E)[@M a® @O @@ (@) (ENDLINE)

Let me comment on a feature of this display before you begin editing. Even though the screen is 80
characters wide, the HP-86/87 will accept a BASIC statement as long as 159 characters. Look at line
130. This statement (including spaces, quotation marks, and the line number) is 86 characters long.
So characters 81 through 86 (L H

T

[. ”)appear on the next line.

23.

Increase Your Control 5-7

However, note that the number of characters within the quotation marks in every statement is never
more than 80. This means the text that gets printed by each statement will appear on one line See

the prlntout you got when you pressed (RUN) in step 17. (I'll introduce you later to F=IMHT and

@ statements having more than 80 characters within the quotation marks.)

Please read this carefully:

Note: After editing a line, don't forget to press (END LINE). Otherwise, your old, unrevised text

will come right back to haunt you the next time you list or run your program.

Also, you may press regardless of where your cursor is on the line. If your cursor is over
any character (including spaces and the statement number) in a displayed statement, and if
is pressed, that version of the statement goes into memory.

IF YOU NEED HELP with step 24, see page H-11, No. 10 in the HELP Section of the Supplement for
step-by-step editing of line 100.

24.

25.

Use your editing tools to straighten out lines 90 and 100.

Now edit lines 110 through 130.

IF YOU NEED HELP with step 26, try clearing your screen { (SHIFT) + (CLRE)) and repeating step 26.

26. Next, run your corrected program segment by pressing

27,

28.

29.

@O ® a @ Q) (ENGLRNE)

Did some of your brilliant corrections mysteriously disappear? Perhaps you forgot to press
after you finished correcting each line. If your results don’t satisfy you, why don’t you do
some re-editing by completing steps 21 through 27 one more time? Repeat these steps as often as you

like. Experienced programmers often edit many times before they are happy.

Is there an easy way to print or display quotation marks using ¥ IHT or [11%F statements?
Program “CH5” has the answer. You do not have to load program “CH5” into the computer’s
memotry. You already did that in step 20 above. All you need to do is start “CH5” at a line number I’ll

give you in the next step, then follow the instructions on the screen.

To start program “CH5” at line 280, press these keys:

®IWW) A(2)(8)(0)(ENDLINE)

5-8 Increase Your Control
Summary of Chapter 5

¢ Tostart a program at any line number, use (R) A[line number] (ENDLINE).
® Tolist on the screen any program segment, use (L) (1) A [f/ine number] (END LINE).

A command

S

To clear memory, use the

and press (END LINE).

* Typing aids displaying some of the most often used BASIC words and commands may be accessed
by pressing the appropriate special function key, (k1) thru (k14).

* The key:
To put the HP-86/87 in a “just-switched-on” state, while preserving memory, press (RESET) ((SHIFT) +

().

& Tosimulate switching the HP-86/87 off, then on, that 18, to put the HP-86/87 in a “just-switched-on”

state, including clearing memory, execute

and (SHIFT) + (FF1)).

e TROUBLE KILLERS—final set

METHOD 1—Most gentle—erases only one line from screen.

a. Press (SHIFT) + ($5%)
b. Press (-LINE) (press (°tieE).

¢. Tryexecuting command or entering statement (don’t forget to press in either case). If
trouble persists, try Method 2.

METHOD 2—Easiest and often best.
a. Clear screen (press + (TR).

b. Tryexecuting command or entering statement. If trouble persists, try Method 3.

METHOD 3—Erases memory and clears screen, Does not affect disc drive.

a. Clear memory: execute :

b. Reset computer: (press (SHIFT)+ (F55F7)).

c¢. Load any program you were working with and continue.

d. Otherwise, start over. If trouble persists, try Method 4.

Increase Your Control 5-9

METHOD 4—Erases memory and clears screen.

a. Make sure discdrive light is off.

b. Turn the HP-86/87 off, then on.

c. Load any program you were working with and continue.

d. Otherwise, start over.

¢ Usethe apostrophe (') to simulate quotation marks in a printed or displayed message.

CAUTION

! with a disc in a drive, memory is immediately scratched. If you execute

When you execute i L

It when you wish to execute ., the program you intended to store will be lost. So:

DON'T MIX UP THE i. AND = COMMANDS!

scratches the program in memory and replaces it with a new program, =

Remember: i.

stores a copy of the program onto the disc.

A command

To record a program on your disc, use the :

typing aid on (k7)) followed by *program name . FFi5

® A stored program name may contain a maximum of 10 characters, including spaces, but not

including quotation marks. Reference: Program “CHS5,” second printout, step 13.
® Line numbers from 1 to 99999 inclusive are acceptable.
® [t’s good practice to skip numbers between adjacent statements (10, 20, 30, ... rather than 1,2,3,..).

Then you have places to insert lines later.

Review Test for Chapter 5

Answer all questions, then see the answers on page 5-11.

1. A program named TIGER uses statements numbered from 10 to 2000. If you wanted to start TIGER
at statement number 500, write down every key you would press, including (SHIFT) (if pressed).

2. Suppose the following names of stars are proposed as program names. Which of these names may be

used without change to record a program on a disc?

POLARIS REGULUS
MIAPLACIDUS ARCTURUS
CENTAURI BETELGEUSE

5-10 Increase Your Control

3. You have Just written a check balancmg program, and you attempt to store it on your disc with a
B i 2 “ command. When you enter this command, will the HP-86/87

5. Why isit good practice to skip numbers when numbering adjacent statements?

6. If you wanted to display a listing of the TIGER program starting at line 750, write down every key
you would press to get the first group of statements displayed. If you would press (SHIFT), write it
down also.

7. What keys, including (if used), would you press to record the TIGER program on a disc?

8. What keys would you press to simulate turning the HP-86/87 off, then on? If you would press
(SHIFT), write it down also.

The answers are on the next page.

Increase Your Control 5-11

Answers to Review Test Questions for Chapter 5

1. WO aGE)©(©)(ENDLNE).

2. POLARIS
CENTAURI
REGULUS
ARCTURUS
BETELGEUSE

MIAPLACIDUS may not be used, since it has 11 letters. The maximum number of characters a

program name may have between the quotation marks, including spaces, is 10.

3. Because the name has 12 characters (11 letters and a space), only the first 10 characters will make
up the file name: e fi

4. Apostrophe().

5. It makesiteasy to insert new statements between two original statements.
6. LOE@a@(E)(@)(ENDLNE).

7. (@OEECOOOEE®) (ENDLNE).

[+ (END LINE) (SHIFT) + (FESET).

Pressing first followed by executing the =i
the HP-86/87 off, then on, since the screen would not be clear. The screen would show:

H command would not simulate turning

To be precise, executing Ti2H and pressing (RESET) would not have exactly the same effect as

switching the HP-86/87 off, then on, since no search for an “Autost” program would occur.

Chapter 6

Write Two Wordy Programs That Figure

A7 i
Preview
In chapter 6, you will:
e Write, enter, and run two programs.
¢ Enter and run two other programs.
® Learn how your program can generate a blank line.
® Learn how one statement can produce words, and also perform math calculations and show the
results.
® Learn how a program can produce close spacing and wide spacing between quoted text and
numbers.
¢ Learn how long an HP-86/87 statement can be.
AT ® Discover the difference between a displayed listing and a printed listing.
1. It would be worthwhile to retake the Review Test for Chapter 5 if yvou’'ve been away from the course
for a couple of days.
2. Now for those powerful [1] 5F and " statements I mentioned at the end of program “CH5.”
Can you predict what the following “Calculate” program will print when run?
1@ PRINTER IS 7@1
25 PRINT "THE SUM OF 4 AND 2 IS";4+2
5@ PRINT "2 REMOVED FROM 4 IS";4-2
73 PRINT "4 MULTIPLIED BY 2 IS";4%2
10@ PRINT "2 DIVIDED INTO 4 IS";4-/2
125 PRINT "THE SUM OF THESE 4 RESULTS IS"; (4+42)+(4-2)+4(4%2)+(4.2)
MM 150 END

IF YOU NEED HELP with step 3, see page H-19, No. 19.

Note: | use a printer with a select code of 7 and an address of 01. So my programs contain the

e TR o) eI

A L. If your printer has a different address or select code, substitute

statement: 7

those numbers in the statement.

6-1

6-2

o

Write Two Wordy Programs That Figure

Execute {2Ft and press (RESET) (unless you just turned the HP-86/87 on). You're going to
enter the “Calculate” program, and you want to be sure the computer’s memory is clear. Also, you

want to be sure

i.L.18 not active.

Before entering “Calculate,” look at the semicolon circled below in line 25.

Look at the listing of “Calculate” in step 2 and notice that a semicolon is also used in a similar way
in lines 50, 75, 100 and 125.

You'll learn later in this chapter why this semicolon is used to separate the words and mathematical
expressions in these statements.

For now, just remember that it’s important to use semicolons in

separate quoted words from mathematical expressions.

Remember, when entering a statement longer than 80 characters, keep typing until you reach the
end of the statement, then press (ENDLINE]). When entering such a greater-than-80 character
statement, do not press immediately after you type the 80th character. At that point, the
HP-86/87 will automatically move your cursor to the beginning of the next line, inviting you to
continue typing.

IF YOU NEED HELP with step 8, see page H-20, No. 20.

10.

8 I

12,

OK. Now enter the “Calculate” program, statement by statement. Remember !

Run your “Calculate” program, and check its output against the correct output shown in figure 61.
(DON'T FORGET to make sure the printer is ON LINE.)

Figure 61. Output of “"Calculate”™
Read steps 11 and 12, then press keys when you reach step 13.

It’s more fun to create than to just copy, so try your hand at the “Seven Come Eleven” program. Step
12 describes the program and step 13 asks you to write it.

When your program is run, the screen should display

Write Two Wordy Programs That Figure 6-3

Your program should calculate ¥} I, which is seven raised to the eleventh power, and the answer

should replace [number].

IF YOU NEED HELP with steps 13 and 14, see page H-20, No. 21.

13.

14,

16.

17.

18.

19.

20.

Write and enter your “Seven Come Eleven” program. Remember to scratch memory before you start.
Remember the semicolon and the (END LINE) key!

Run your program; then print its listing.
To see the output of “Seven Come Eleven,” turn to page H-20, No. 22.

Perhaps your version of “Seven Come Eleven” has an error or two. If so, list your program on the
screen and edit the errors out of it. Remember (END LINE). Then go back to step 14.

Now read steps 18, 19, and 20.

Since your programmer’s hat is now firmly fixed to your skull, try composing the “Binary Brain”

program.

“Binary Brain” McCrunch, programming supervisor, and “Flying Fingers” Flanagan, chief
calculator key tester for a local calculator concern, have a continuing contest involving the serial
numbers on their paychecks. It works this way: The five digits of each serial number are multiplied
together, and the one whose paycheck gives the largest number gets a free lunch from the other. To
illustrate this contest, let’s take a look at how last week’s contest worked out. Binary Brain’s serial
number was 12345, while Flying Fingers’ check showed 22245. Multiplying McCrunch’s five digits
together gave 1 * 2% 3 * 4 * 5, or 120. Flanagan’s digits, when multiplied together (2 * 2 * 2 * 4 * 5)
gave 160. So Flying Fingers got a free lunch.

This week, Binary Brain’s number is 62639 and Flying Fingers has 89741, At this very moment,
they are in a heated discussion about whose multiplied number is greater. Each insists he gets the
free lunch.

Your mission, should you choose to accept it, is to write a program that, when run, will show who is
right. Your program should calculate these numbers. No fair calculating these numbers on your
handy HP-86/87 and putting the answers into your program.

Your program’s printed output should look like the following, with [number] replaced by the proper

number in each case.

number |
1w [number]

IF YOU NEED HELP with steps 21 through 23, see page H-20, No. 23.

6-4

21.

22.

23.

24.

26.

27,

28.

Write Two Wordy Programs That Figure

Write and enter your “Binary Brain” program into the HP-86/87,. Remember to scratch, remember

(END LINE), and remember the semicolon.
Run your program.
Get a listing on the printer.

There is no “best” way to write a program. This is especially true when programs are longer and
more complex. So each of the programs I'll show you throughout this course represents only one
acceptable way to do the job.

Whois the final judge of program quality? You are.
To see one acceptable way to write “Binary Brain,” see page H-21, No. 24.

If you're unsatisfied with your version of “Binary Brain,” list it on the screen, edit your errors away,

and run it. Then start at step 25.

The next program you’ll enter will demonstrate two new BASIC weapons. One allows you to “print”’
or “display” a blank line, and the other allows you to control spacing within one printed or

displayed line using commas and semicolons. (I told you I’d get back to semicolons.)

First—how do you instruct a program to put a blank line on the printer? Simple. This statement

(fine number) =i 1

prints a blank line when it’s executed.

For example, when this program is run

29. Toget ablank line “displayed” on the screen, use this statement:

e
i1

(line number}) i}

Write Two Wordy Programs That Figure 6-5

I'd like you to discover for yourself what commas and semicolons do. The following “Semicolon,

Comma” program will demonstrate the action of each.*

IF YOU NEED HELP with steps 31 and 32, see page H-21, No. 25.

31.

32.

33.

When you enter this program, enter the spaces (A) where indicated using the space bar. (Remember:
press (END LINE) after every statement—not after every 80 character line on the screen.)

eids

AL TEE
END LINE

=pppp

After you’ve entered your “Semicolon, Comma” program into the computer’s memory:

a. Runit.

b. Clear your screen.

c. Listyour program on the screen.

d. Presstheline feed several times to generate some blank paper.

e. List your program on the printer.

f. Press the line feed to raise your printing above the tear off bar, and tear it off. Don’t lose it.

You’ll be using it a little later.

To see how your version of “Semicolon, Comma” compares with mine, see the program output in
figure 62. If your output is different, get your editing tools, list your program on the screen, and fix it.
Remember to press after you finish editing a statement, while your cursor is still on one of
the lines of the statement. Pressing gets the revised version of that statement into
memory, where it replaces the old version. Your revised listing should lock like the displayed listing
shown in figure 62.

* For more details on the exact spacing produced by commas and semicolons, see section 6 in your HP-86/87 Operating and BASIC
Programming Manual,

6-6

Write Two Wordy Programs That Figure

R SEMICOLON ;) GIVES CLOSE SPACING, WHILE A COMMA (,) SPREADS THIMGS OUT.

A SEMICOLON DOES THIS:
S1@15

WHILE A COMMA DOES THIS:
[

] 1@ 15

19 PRINTER IS 721

2@ PRINT "R SEMICOLOW (;) GIVES CLOSE SFRACING, WHILE A COMMR (,) SPREADS THINGS
ouT.,. "

3@ PRINT

4@ PRINT "H SEMICOLON DOES THIS:"

=10
E@
7@
80

34.

PRINT IISII;II‘]@U .; ll15l|

PRINT "WHILE A COMMR DOES THIS:"
PRINT " 5" . " gn 5 L AL

END

Figure 62. Printout Generated by Step 32

Notice that line 20 occupies more than one line of the listing. This awkward use of “line” is common
in BASIC, where it refers to a numbered statement. These can occupy more than one line of display

or printing. Learn to live with the dual use of “line.” You will continually encounter it.

35. Another thing about line 20. The final character, which is the closing quote mark—is the 85th

character of line 20, The HP-86/87 can handle 74 more characters in one “line.” Remember:
The Maximum HP-86/87
“Line” is 159 Characters

So even with a relatively long line like 20 you have plenty of space.

36. The little “Semicolon, Comma” program had a lot to teach as shown in the summary below. I hope
you entered it successfully. Don’t fret if you had to try a few times before entering the program
correctly. It's not a trivial program, even though it’s fairly short.

Summary of Chapter 6
® One i"®irT or i11EZF statement can include both quoted text and mathematical expressions,
separated by a semicolon or comma. When the statement is executed, the quoted material is shown
unchanged, while the math expression is evaluated and the result is shown.
¢ Tohave a program generate a blank line, use iJ T alone, like:

Write Two Wordy Programs That Figure 6-7

~ statements can control spacing. A semicolon () between quoted characters

and numbers gives close spacing, while a comma (.) gives wide spacing.

: close

. wide

AF I statement can generate more than one line of text or text and numbers.

159 is the maximum number of characters an HP-86/87 statement may have.

Review Test for Chapter 6

Answer both questions, then see the answers on page 6-8.

1. The question is asked in the listing.
19 PRINT "THIS IS5 QUESTIOM 1.1
Z@ PRINT
3@ PRINT "I HOPE Y0OU GET IT RIGHT."
4@ PRINT
5@ PRINT "HOW MAMY BLAMK LINES WILL THIS PROGRAM GEMNERATE "
BE@ END
2. Match the program with the output.
Program A
5 DISF
1% DISP "MIMUS TWO RAISED TO THE SECOMD FOWER 1HiEtt e aiatals
15 DLSP
20 DISP "WHEN R FPOSITIWVE TWO IS RAISED TO THE SECORD POMER, AND THEM THE"
d@ DISP "RESULT IS TURNED INTO H NEGHTIWE HNUMBER, THE FIWAL RESULT IS I e
4@ END
Program B
S TSP

1@ DISP "MINLE TWO RAISED TO THE SECOND POWER IS, (-2372

1iS

DISF

2@ DISP "WHEM A POSITIVE TWO IS RAISED TO THE SECOND POWER, HAMD THEW THE"
2@ DISP "RESULT IS TURMED INTO A NEGRTIWE NUMBER, THE FINAL RESULT IS ";-(272)
4@ END :

6-8 Write Two Wordy Programs That Figure

Output 1

MIMUS TWO RAIGED TO THE SECOMD POWER IS 4

MHEN R POSITIVE TWO IS RAISED TO THE SECOND FOWER, AN THEW THE
RESULT IS TURNED INTO A MEGATIVE NUMBER, THE FIMNAL RESULT IS -4

Output 2

MINUS TWO RAISED TO THE SECOMD POWER IS 4

WHEN R FOSITIWE TWO IS RAISED TO THE SECOMD POWER, AND THEM THE
RESULT IS TURMWED INTO A MNEGATIVE NUMBER, THE FIMNAL RESULT IS -4

Answers to Review Test Questions for Chapter 6

1. Two blank lines.

2. Program A yields output 1; program B yields output 2.

Notes

6-9

Chapter 7

Put Numbers Into Your Program While It’s Standing Still

P il :
Preview
In chapter 7, you will:
® Learn animportant way to put numbers into your programs.
® Learn how aletter can represent a number or value in your program.
¢ Learn how the same letter can represent a variety of different numbers at different times, but never
more than one number at a time.
¢ Learn about warning messages.
® Write a program to show off your new skills.
1. If your recollection of chapter 6 has faded a bit since you finished it, why not read the summary,
page 6-6, and take the review test again, page 6-77
s While I won’t make this “review-the-last-chapter” suggestion again during this course, keep the idea
in mind. The better you know the material you've covered, the more fun you'll have with the new
ideas I'll be giving you.
2. I want you to meet a noisy friend of mine, Mr. Loudmouth:
Holler!
Scream!
AT

You'll be seeing a lot of old Loudmouth and his more agreeable companions in this chapter.,

3. At the moment, he’s trying to balance his checkbook, a task many of us have struggled with from
time to time. Let’s watch.

4. He knows his beginning balance, and he knows his deposit. He is also smart enough to know his
new balance is given by his old balance plus his deposit. He thinks of it this way:

Let my New Balance = my Old Balance + my Deposit
7-1

7-2

-

a2,

Put Numbers Into Your Program While It's Standing Still

Loudmouth has done this job a few times, so he abbreviates a couple of words:
Let Balance = Balance + Deposit
or LET BAL = BAL + DEP

6. That looks a little strange at first glance, but Loudmouth knows the BAL on the left represents his

new balance, and the BAL on the right stands for his old balance:

LET BAL = BAL + DEP
t t t
new old deposit
balance balance

BAL=BAL+DEP

7. If youfeel comfortable with BAL = BAL + DEP, you have just floated gracefully over a major hurdle
that has tripped up a large number of beginning programmers.

8. Ifthis concept whizzed past your head before you were able to grab it, you'll have plenty of chances
to hold it firmly with both hands before you finish chapter 7.

9. Let’s leave Mr. L. and get serious. (For those of you concerned about his financial condition, he
balanced out at $13.67.) Chapter 7 continues on the disc, where I'll present this BAL = BAL + DEP
concept in a more formal manner.

IF YOU NEED HELP with step 10, see page H-22, No. 26
10. Insert your BASIC Training disc, execute i “and ¥1Li* Watch the screen
for an addition to your BASIC vocabulary.
11. Welcome back! When you ran this “A + 2" program:
12. Mr. Loudmouth is going to help me explain the workings of the “A + 2" program. Before we get into

it, remember one thing about Mr. L. He has room in his brain for only one number at a time. If he
gets a new number, the old one is forgotten. Don’t ask him what his old checkbook balance was. He

forgot that completely when he received his new balance.

* Remember to set your printer paper to top of form before running the program.

Fut Numbers Into Your Program While It's Standing Still 7-3

13. Now, let’s look at the “A + 2” program in detail.

14.
i
Here the variable A is assigned the value 1. The number 1 is called a constant. This is how a number
may be put into your program.
15.
a new value!
Nor the variable A is assigned the OLD value of A plus the constant 2. The old value of A is 1 from
statement 25. So now the variable A has the new value 3.
16.

Statement 75 displays the characters between the quotation marks Fi*= followed by the present

value of the variable A, which is 3. Therefore, statement 75 displays: = .

7-4

17.

18.

19,

20.

Put Numbers Into Your Program While It's Standing Still

Before you study the assignment statement further, take a closer look at variables and variable
names.

Variable: In BASIC, the word “variable” means the same thing as it does in algebra. It’s the
name of something that can take one value or a succession of values in a problem or program, one

value at a time. For instance:

Thing Possible Variable Name | Possible Values
A girl’s height in centimeters Ht 160,170
Area of a circle in square centimeters AREA 4.32,17.3
Price of gasoline in dollars Price 1.27,2.31

Variable Name: In addition to a single letter (like A in the A + 2 program), words or
abbreviations like Ht, AREA, and Price (as in step 18) can all be used as variable names in the
HP-86/87. So you can name your variables with descriptive names that help you remember what
they stand for.

In fact, a variable name, or “identifier”, can consist of up to 31 characters (letters and/or numerals)
and underscores. The characters may be upper or lower case. The first character of the identifier
must be a letter.

However, you cannot use variable names that are the same as HP-86/87 BASIC words. (You can
find a list of HP-86,/87 BASIC words in the HP-86/87 operating manual or in the HP-86/87 Abridged
BASIC Dictionary in the HP-86/87 BASIC Training Supplement booklet.) If you use a BASIC word
as a variable name, you will get an error when you press to enter the line in the program.

Some of the more common words you might try to use that can cause trouble are: |if

P11 . These are BASIC words and cannot be used as variable names.
Still, the HP-86/87 offers you an almost unlimited number of descriptive names for variables.

However, in return for this flexibility, it demands that you be careful to separate the name from
other BASIC words with a blank space before and after the variable name. (Separation from special

characters such as: ==, #, ¥, =, etc. is not necessary.)

To help you recognize a valid variable name, I’ve prepared another quiz that uses the BASIC
Training disc. Let me tell you how the quiz works before you get into it. The screen will show 20

collections of letters and numbers, one after the other. Some are valid variable names. Your job will

variable name, you would enter ', If you’re wrong, the screen will explain why the other answer is
correct. Whether right or wrong, you will then be asked to enter your answer for the next question.

At the end of the quiz, you'll receive your score. Good luck.

Put Numbers Into Your Program While It's Standing Still 7-5

IF YOU NEED HELP with step 21, see page H-22, No. 28.

21. This Variable Names Qu.lz is in program “CH7.” If thls program is st1ll in the computer s memory,

simply execute FilM

3, Otherwise, execute L.I1FHII7{HT , then ELIH Zf@E,

Don’t forget to press after you type either | or i,

22. Thope you aced your quiz. Now for some important truths about the assignment statement:

ASSIGNMENT STATEMENT
VITAL RULES AND REGULATIONS

(Couragel! I'll give you some program examples later to help you understand these.)
e When i, or any variable, is on the LEFT of the = symbol:

1. The variable always stands alone.

NOT ALLOWED! 18
oK

18 LET L=4.2 means i isnow 2.
1w BT H=1 means isnow |
+
28 LET M=+ means Hisnow 1+ or 2.

: means E is now

E:i'-:?"i means £ is now i,

i’'s earlier value, 73, is gone.

® When f1, or any variable, is on the RIGHT of the *= symbol, it always has an old value, which is
used to get a single number on the RIGHT of the = symbol.

This variable, i, has an old value, i (from statement 1), which is used to get a single number, -3,
on the right of the = symbol.

7-6 Put Numbers Into Your Program While It's Standing Still

e If the SAME variable DOES appear on both sides of the == symbol, its OLD value is LOST.

Since i DOES appear on both sides of the i symbol, its OLD value, 1, is LOST. This OLD value is
replaced by a NEW value, 3.

of Hisstill 1.

We have used single character variable names here to keep things simple, but the same principles
apply, of course, to all variables, regardless of their names.

23. Let’s look at some more programs using assignment statements.

24, Program1:

What’s happening?

25,

The variable ¢

is assigned the value &

does the assignment.

Put Numbers Inte Your Program While It's Standing Still 7-7

26.

a 6. I'll share
it with you.

Since - appears only on the right, it KEEPS its value. At the same time, it SHARES its value &,

with the variable i

27.

My value is
B, and I'd be
proud to have

Now the message I i is displayed on the screen, ungrammatical, but true. The variable £ got

its value, £, in statement & &,

28.

My value is 6
also, and I'm
prouder to have it
displayed last.

i
..... .

[

and L7 kept its value in statement 2 &3,

7-8 Put Numbers Into Your Program While It's Standing Still

29. SUGGESTION: To understand an assignment statement more easily, it often helps to read it from
right to left. You first determine the number on the right, and then assign that number to the

30. Program 2:

Let’s take a closer look.

31.

The calculation is performed first, producing the number %, This number is then assigned to the

variable £,

32,

My value is 3, and
I'm keeping it! Wait
until I'm multiplied,
and you may have
my child.

As soon as you
figure out your
value, hand it

over!

Again, the calculation is performed first, then the resulting value, i, is assigned to the variable ..
Note that the variable i KEEPS its value.

Put Numbers into Your Program While It's Standing Still 7-9

33.

And
together

* statements, these
variables, i” and &, KEEP their values.

34. Program 3:

This time, try to predict what happens when each statement is executed before I tell you.

35.

The variable il is assigned the value i, A variable cannot be used in a program unless it is first

given some value—unless it is initialized. Zero is a popular value used to initialize variables, If your

7-10 Put Numbers Into Your Program While It's Standing Still

program does not initialize a variable, the HP-86/87 will initialize it to zero, give you a WARNING

MESSAGE:
Foon lime 38 EIRHIEN
and continue the program. Note that the message tells you where the variable is used. ili.L.
LI T means “uninitialized numeric variable.” I’ll tell you more about warning messages later in
this chapter.
36.
Here, the variable i is assigned the value .
37.

| need you!
I'm nothing
without you!

Don't kid
me! All
you want is my 4.
But I'm a

sucker for a sob
story, so let's join.

Come on! Gel
your act together
and give me your
final value!

:J@"

L/
\ /£
=&

appears only on the right, so its value, # is kept. The calculation, Z:i/+{f or ¥ -+ %, is performed,

and then the single number, #, is assigned to the variable *

38.

Put Numbers Into Your Program While It's Standing Still 7-11

39.

Statement 73l displays the message: =ii=, The variable %L was assigned value ¥ in statement

1, but statement % i changed its value from to .

40. There are two general ways variable values may be printed or displayed:

PRINTING OR DISPLAYING VARIABLE VALUES

With Text Without Text
You've seen these Here are the same
statements already. statements rewritten.

41. Let’s take a look at one more program before you learn more about warning messages and write

another program.

“B+ X” Program

7-12

42.

43.

44.

45.

46.

47,

48.

Put Numbers Into Your Program While It's Standing Still

What would statement & print?
I'll give you a statement by statement analysis so you can check your answer.

The value =% is assigned to the variable *. So now

¥ equals 3,

The sum of ¥ and = is assigned to the variable . Now

Ef equals 7.

The sum of the old values of i and # is assigned to the
variable Li,

R From statement 1 i

From statement -

If you figured out by yourself what statement #&! would print, GREAT! If not, you might read
through chapter 7 again to get these critical ideas well in mind. The assignment statement is one of

the foundations of the BASIC language.

You'll soon be writing another program, but first let me finish my remarks about warning messages.
These are a special class of error messages. A beep is heard, the message is displayed, and the
program continues to run. So a warning message is even friendlier than the normal error message,
which stops the program. A warning message reports that the HP-86/87 has assumed a value for a
variable or for a calculation to prevent a program halt. The value assumed by the computer and the
line number where the trouble occurred are both displayed, as well as a description of the trouble.

Error and warning messages are sometimes called diagnostics because they help you diagnose your
trouble. In general, they have these meanings:

ERROR MESSAGE: “Sorry,Idon’t understand you, so I've come to a screeching halt. Please try
again. I'll do my best to obey.”

WARNING MESSAGE: “Idon’t completely understand you, but I'm assuming you mean [one of
several things, depending on the message]. I'm going ahead using my assumption, but I'm letting

you know so you can stop me if I'm wrong.”

Appendix F of your operating manual lists all error messages. The first eight are the warning
messages. The “default” value is the value assumed by the HP-86/87.

Now about that program. Its name is “23 Skidoo.” (“Skidoo” has nothing to do with the program,
but “23” just doesn’t do it by itself.)

i,

38 Y

Put Numbers Into Your Program While It's Standing Still 7-13

Try your hand at writing, entering into the HP-86/87, running, and listing on the printer a program
that does the following:
a. Assignsthe value5 to a variable.
b. Multiplies that variable by 8.
¢. Divides the result by 2.
d. Adds3 tothe new result.
e. Assignsthis final result to a second variable.
f. Prints the name and value of the second variable.
49. To see my version of “23 Skidoo,” see page H-23, No. 29. Don’t worry if your program is different

from mine. If your program prints the correct output, it’s OK. Of course, you can use any variable

names you wish. The correct output is: 23.

50. If you were unable to get your “23 Skidoo” program to print the correct value for the second variable,
do not despair, you're not alone. Before moving on, however, study my version to make sure you
understand how to write such a program. As the course proceeds, your programming opportunities

will become more challenging, so it’s worthwhile to get these early programs well in mind.

Summary of Chapter 7

® Variable: Thename of something that can take one value or a succession of values in a program,

one value at a time.

* Variable name: Any letter or group of letters, numerals, and underscores, up to 31 characters in
length can be used to name a variable. The first character must be a letter. Upper and/or lower case
letters are acceptable. A variable name cannot be the same as an HP-86/87 BASIC word and it must
be separated from other BASIC words by a blank before and after the name. Examples:

=i oy et e
(o= IR AR E o N W T

same variable name appears on each side of the * symbol, its old value is lost. In statement =&
below, i1 i’s old value is replaced by a new one. If a variable name appears only on the right

%7 retains its previous

7-14 Put Numbers Into Your Program While It's Standing Still

e Toinitialize a variable means to assign the variable the first, or initial value it has in the program.

Before a variable can be used in a program, it must be initialized.

* Warning message: In certain error situations, the HP-86/87 will assume a value for a variable or
for the result of a calculation, and continue program execution. A beep is heard, the number of the
first executed statement using this variable is displayed, and program execution continues.

Review Test for Chapter 7

This test is on your BASIC Training disc. Your instructions will be printed by the program. To start the
test, load “TESTT7” and run it. Remember how to do this? Here’s how:

L7 (ENDLINE).
When the disc drive stops, press (RUN).
May you get 100 percent.

Review Test for Chapters 1-7

a. This test uses both this workbook and a program, named "&E

TEH" on the HP-86/87. The
workbook gives you 17 problems, each with one blank. Responding to your orders, the HP-86/87 will
print an answer list for you. Your job, for each problem, will be to choose an item from the answer

list that makes the problem a true statement, and then enter the number of that item into the
HP-86/8"7.

Please, do not type the answers into the HP-86/87, just read them. All the HP-86/87

wants is your answer numbers.

If you enter the correct answer number, you’ll be suitably praised. If you enter the wrong answer
number, or just press (END LINE), you'll see the correct answer and an explanation on the screen and
printer. In either case, you will automatically be asked to enter your answer number for the next
problem,

b. Togive you a better idea of how this test works, I’ll walk you through the first two problems. Step cis
for reading only. Keep your fingers off the keys until step d.

c. I will ask you soon to load and run a program. When you do, your answer list will be displayed and

printed automatically, and you will see this message on the screen:

IF YOU NEED HELP with step d, see page H-23, No. 30

Put Numbers Into Your Program While It's Standing Still 7-15

d. OK.Now insert your BASIC Training disc, then execute L.{

Here’s problem 1:

1. When this statement is executed,

IF YOU NEED HELP with step f, see page H-23, No. 31.

i Enter the answer number #, get your reward, and see the HP-86/87 ask you for your answer number
for problem 2.

Here is problem 2:

2. Toclear your screen, pressthe ____ key(s).

g. Youknow the answer to this one is (SHIFT) + (S[{¥), so find

&

on the printed answer list. Enter i3, get your pat on the head, and then see:

This starts the real test. Read problem 3 in step h, choose an item from the answer list that puts the
right word in the blank, find its answer number in the right hand column, and enter this number.

Then continue, problem by problem. May success be yours!

h. Here are the problems that count towards your score:

Note: If you enter an incorrect answer number or you press only (END LINE), I'll give you the correct

answer number and an explanation.

7-16 Put Numbers Into Your Program While It's Standing Still

3. You type the following into your HP-86/87 and press after each line.

Statement £ will print the number

4. Thefollowing is added to an HP-86/87 program, and is pressed after each line is typed.

As aresult, statement =

5. Astatement musthavea(an)______ | while a command doesn’t use one.
6. When you enter a statement or execute some commands,the _________ key is the last one you press,
7. When the BASIC word i.E 1 appears in a statement, that statementisa(an) ________ statement.

8. The highest number you may use for a statement number is

9. A(An)_____ may be used anywhere within quotation marks in a command or statement and is
always preserved by the HP-86/87. Outside quotation marks it must be used carefully in accordance
with HP-86/87 syntax rules.

10. You have just commanded the HP-86/87 to load program “CH?” from your disc, and instead of
' DHY B i2* (END LINE) your screen

loading you get an error message. Before you typed ..
looked like this:

1@ PRINT
TES."

20 END
OF LATE YEARSPLT HAS BECOME FASHIOWABLE, FOR LADIES IN MANY CITIES AMD YILLAGES,
TO ANNOUNCE IN THE NEWSFAPERS THE FACT OF THEIR INTENWNTION TO RECEIVE CALLS UPON
NEW YERR’S DAY, WHICH PRACTICE IS VERY EXCELLENT, AS IT EWABLES GEMTLEMEMN TO
KNOW FPOSITIVELY WHO WILL BE FREFARED TO RECEIVE THEM (M THAT OCCASION, BESIDES,

"THE TOTALITY OF THE 1931 ECLIFPSE IN HAWAII WILL LAST ALMOST SEVYEM MIMNU

11.

12,

13.

14.

15.

16.

17.

Put Numbers Into Your Program While It's Standing Still 7-17

To avoid the error, and to preserve the two statements on the screen, the key(s) you should have
pressed before typing 1.1

iis(are)

The BASIC word(s) — should always be used in the highest numbered statement in any
program.

To understand an assignment statement, it helps to read the statement from

In the following program, the cursor in statement i should be replaced by what character to
produce the output shown? Note that this problem concerns statement I &, not statement = i,

10 PRINT “FRIENDLY:M”H“F”
20 PRINT "UNFRIENDLY:M"[J'F"
30 END

Desired output:

You now realize you must add a new statement at the very beginning of your program. You must
changeorenter_ statements to add that one extra line.

Let’s do number 15 over again. This time you've used statement numbers &, &

Ty By e MW

e
o

£l Now you must enter orchange__ statement(s).

In an assignment statement,a(an)__________is often on the right of the = sign.

/_‘\

Chapter 8

Put Numbers Into Your Program While It’s Running

Preview

In chapter 8, you will:

]

Enter a savings account program that asks for your starting balance, your interest rate, and the
length of time your savings will be held, and then tells you your ending balance.

Learn how to answer a program when it asks for numbers.

Learn how NOT to answer a program when it asks for numbers.

Learn how you can write a program that asks for one number or several numbers at a time.

Learn how to determine the values of a running program’s variables at any time from the keyboard.
Learn how to delete with one command a group of statements from a program.

Learn how to list only part of a program on the printer or screen.

Learn about another kind of math power you can use in your program.

Learn how the HP-86/87 tells you a program on your disc is secured.

Note: Since this chapter is rather long, I've given you two places where you may conveniently
interrupt your studies for several hours or several days. These break points are page 8-5, step 15 and

page 8-15, step 49. I'll tell you about these break points when you reach them.

Chapter 8 continues on your BASIC Training disc. When you finish with the program, you will

IR D S

continue chapter 8 below. Now to see an important new BASIC word, 1.1

press (RUN].

and

Now that you’ve entered your “SAVINGS” program, play with it. Below I suggest some values you
might enter for your present balance, interest rate, and number of years held. Remember, enter
means type in and press (END LINE). For instance, to enter a present balance of $500, press (5)(0)(0)
(ENDLINE).

If you’ve entered “SAVINGS” correctly, you should get the final balance figures shown in the table.
8-1

8-2 Put Numbers Into Your Program While It's Running

FIVE RUNS OF "SAVINGS" PROGRAM

Run Present | Interest | No. Years
No Balance % Held Final Balance
) B | Y
1 500 6.25 1 531.25
2 325.14 7.25 5 461.38
3 50000 8.76 100 219733648.56
4 10 6.5 350+7/12 387540110.74
b 1000 10 500 4.96984196731E23

3. Notice, in run no. 3, how the $219 million balance you're leaving your great grandson was displayed

SAVI NGS

L.i. output shown allows all of run 3 to be seen

'NHRT Is YOUR F'RESENT SHVINGS HLCDUNT EHLHNCE :

]
_5@@@@

':NHHT IS S&L INTEREST </)

'a 75

2
: 10@

HCIN MF!NY YEHRS NILL. SHVINGS BE HELD

:IMTHILL, however. (Just run the program in

~ AFTER 100 YEARS YOUR ORIGINAL $ 50000 WILL GROW TO $ 21373388.56 .

1L.1. Output of Run 3

T\

Put Numbers Into Your Program While It's Running 8-3

4. Rund4, shown below, is even more interesting:

: SQVINGS 5
'_NHQT IS YDUR F‘RESENT SAViNGS QCCDUNT BALRNCE
P ; 5 :
S 1@

ﬂNHAT IS salL INTEREST % _”

e

& Eﬁ-f' = =
. HCIN MQNY YEF\RS WILL SAVINBS BE HELD
1'3@1-7/12 '

anTER 35@ 58331o33‘ YEARS YOUR ORIGINAL $ 1 WILL GROW TO & .q7$4¢¢¢@,§4:.

FETHTHLL Outputof Run 4
Besides showing how a tiny dime can grow into a mighty fortune for a whole town full of
descendants to fight over, it shows other things as well:
a. Youcanenter a number smaller than one (.10).
b. Youcan enter 350 years 7 months as 350 + 7/12.

c. Since the number of years cannot be expressed exactly as a decimal, the HP-86/87 gives the
number its maximum 12 digit treatment.

d. Thefinal zero of your 10 cent present balance was dropped when line 150 was executed:

words beyond the scope of this course, F = I I’

covers these topics.

5. Hereisrunb:

FwHﬁT IS YnUR PRESENT savxwas ACCDUNT BALachmir"7
b :
1000

erAT IS S&L INTEREST "z

s

10

?How MANY YEQRS‘NILL savxwea BE HELD

AFTER S00 YEARS YOUR ORIGINAL % 1000 WILL GROW TO & 4.96984196731E2Y ,

8-4

10.

Put Numbers Into Your Program While It's Running

What happened to the final balance? Did the HP-86/87 have a seizure? No, but the incredible size of
your balance caused the HP-86/87 to shift gears, and display the number in a form of numerical
shorthand called exponential notation. This is the only chapter in which I'll mention exponential

notation in this course, and you’ll have no review test questions on it. The =% following the F- at the
end of this final balance number is the exponent of 10 when the number is written like this:

or, using the symbols of algebra:

496984196731 X 1023

How does this number look without the exponent? Like this:
496,984,196,731,000,000,000,000

which results when the decimal point is moved right 23 places. So your distant descendants will

share almost five hundred sextillion dollars.

You've already stored or recorded your “MONEY” program on your BASIC training dise back in

[

5. Now let’'s store “SAVINGS.” Remember that the HP-86/87 uses no more than ten

characters, including spaces, as the name of a program. As you recall, these ten (or fewer) characters

chapter

should be followed by a period, then the volume label (six characters or less) of the disc. The name

and volume label must be enclosed by quotes when you use the = ./ commands. We
will name your savings and loan program “SAVINGS” and store it on your BASIC training disc

which has the volume label

After storing the program, we’ll learn a little about how to protect a program once it has been stored,

to prevent accidental changes or deletion of the program. This process is called securing a program.

Now let’s store the “SAVINGS” program. Be sure your BASIC training disc is inserted in the disc

drive. Now press (SHIFT) + (KB),) O m o S0
(END LINE). Your disc drive light should come on for a few moments, then go out. Your “SAVINGS”
program is now stored on the disc. (We used the typing aid, (k7), = | LRz, for convenience, but could

also have typed =71 {if
Not only is a copy of your “SAVINGS” program safely on the disc, but the original program still

remains in your computer’s memory. You can press and see the program listing if you wish to
verify this.

Now, secure the disc copy of the program. Press (S)(E)(O)(WRIE) O EAMOM@EE0)
EBAE0O0CoCOOYmmem @ U@ m Now, try to store the program on disc again
by repeating step 9. After you type = 11 15127 and press m the disc
drlve light should light up momentarily; then the HP-86/87 will beep and display & ey 55
1. The =k - command prevented the HP-86/87 from storing anything further under

the program name “SAVINGS.”

1,

12,

13.

14.

15.

16.

157

Put Numbers Into Your Program While It's Running 8-5

As you can see, securing a program on a disc is a useful way to protect it from being accidentally

changed or overwritten by another program. To use the i command you must follow the

word ' = by the program name (in quotes), by a comma, then by a two character security code
(also in quotes), another comma, and finally the security type (a number); then press (END LINE). The

security code may be any two characters you desire to use (we have used *H*

' here, but you might
wish to use your initials). The security type was .. This security type prevents another program
from being stored on the disc under the same name. Other security types can be used to secure
against other activities such as listing or editing a program. See chapter 10 of this manual, or your
HP-86/87 operating manual for more information on the various security types.

To remove the security on a program you simply need to type followed by the identical

program name, security code, and security type you used to &

Now that your “SAVINGS” program is safely stored and secured you may remove your disc from
the disc drive.

Remember, you have only copied “SAVINGS” from memory onto the disc, not transferred it.
“SAVINGS” is still in memory. Press to confirm this. Now that it’s running, try to make more
than 500 sextillion dollars.

You'll be doing more with “SAVINGS” in step 16, but if you wish to interrupt your study for a few
hours or a few days, this is a good place. You may switch the HP-86/87 off without losing

“SAVINGS.” When you start again, simply execute ...: and begin at

step 16 (although you might wish to do a little reviewing to get up to speed). At step 49 in this
chapter, I'll give you another break point.

If you're coming back from a break, make sure “SAVINGS” is loaded into the computer’s memory.

Now let’s look at your first i T statementin detail. When

is executed during the running of your program, these things happen:

a. A’/ isdisplayed on the screen.

b. Your program waits for you to type in a number and to press (END LINE).

The HP-86/87 has difficulty understanding any other response, as you shall see.

For the next several steps, please press keys only when I tell you to. Press , then press (RUN).

8-6 Put Numbers Into Your Program While It's Running

18. Instead of entering a number for your present savings account balance, enter a letter. Press
END LINE), The HP-86/87 is uncertain. It's warning message:

SAVINGS

WHAT IS YOUR FRESENT SAVINGS ACCOUNT RALANCE

[
Warning 7 : NULL DATA

WHAT IS Skl INTEREST (%)

which you’ve seen before in chapter 7, says two things:

a. Your program has continued. Note that you're now asked to enter S & L (savings and loan)

interest.

b. You did not enter a value for present savings account balance. In this situation, the HP-86/87
assumes you want a value of zero and it assigns zero to your variable. You now have a zero

savings account balance. Sorry about that.
What’s happening?

The letter C is a valid variable name. Even though you haven’t mentioned C in your program, the
HP-86/87 accepts it, with a warning, and assigns the value 0 to it. In computer talk, you used a

variable name in your program before it was initialized; that is, before it was given an initial value.

19. Now your program asks you your S & L interest. This time, press only (END LINE). Do not type any
letter or number. Now the HP-86/87 is a little more serious:

SAVINGS

WHAT IS5 YOUR FRESENT SAVINGS ACCOUNT BALANCE
C
Warning 7 @ NULL DATA

WHAT 15 S&L INTEREST (%)

Error 43 on line 79 : NUMERIC INFUT

e}

This message says: Ididn’tlike that input. Try again.

Notice the question mark inviting you to give it another shot. Also notice that the HP-86/87 tells you

the line number, ¥ &, where the problem occurred.

20.

21.

22

23.

Put Numbers Into Your Program While It's Running 8-7

This time, make the HP-86/87 happy by entering a number, say 10 percent. Press (1)(0) (END LINE).

For the number of years savings will be held, press A (R) (8) (ENDLINE). The line

number has changed, but the message is the same:

HOW MANY YEARS WILL SAVINGS BRE HELD

=
5 YEARS
Error 47 on line 10@ : NUMERIC INFUT

o

5 years is not a valid variable name nor a numerical input, so the HP-86/87 asks you to try again.

Try the number 5, and learn that when you start with nothing, you get nothing:

HOW MANY YEARS WILL SAVINGS BE HELD
?

% VEARS
Error 42 on line 12@ : NUMERIC INFUT

Clear your screen.

Since that’s clearly an unsatisfactory result, run “SAVINGS” again. Start with $500 as your
present savings account balance. For an interest rate, enter i, another valid variable name. Your

screen should now look as shown below (except your screen will, of course, also display a cursor).

SAVINGS
WHAT IS YOUR PRESENT SAVINGS ACCOUNT ERALANCE
2
S00

WHAT IS5 S&L INTEREST (%)
B

HOW MANY YEARS WILL SAVINGS BE HELD

8-8 Put Numbers Into Your Program While It's Running

Where is b1}

[B L

ri? Has the HP-86/87 grown tired of giving you warning
and error messages?

24. Enter i again for the number of years savings will be held, and see:

WHAT I8 YOUR PRESENT SAVINGS ACCOUNT EBALANCE
é@@

WHAT IS S%l. INTEREST (%)

B

HOW MANY YEARS WILL SAVINGS RE HELD

-

HE

AFTER 5@@ YEARS YOUR ORIGINAL $ 5¢@0 WILLL GROW TOD $ 5.95107188325E391

=

25. Look at that final balance! 500 years in the future, your descendants will own at least half of the
entire galaxy! That number is about 6 followed by 391 zeros!

Obviously, the HP-86/87 is generous, but is it sane?

26. The HP-86/87is sane and, as always, obedient. When you entered { for S & L interest, the HP-86/87
checked to see if a value had been assigned to the variable . Indeed it had. You entered &

[statement, line 50, assigned

your present savings account balance, and the corresponding

i to &. So when you entered ¥ in response to the next two T statements (in response to the
next two question marks), you were, in fact, entering 500 percent interest and 500 years for the

length of time your savings were to be held.

27. Let me summarize what can happen if you enter a valid or invalid variable name in response to the

question mark of an

a. Youenter a valid variable name.

1) The variable name you entered has not been assigned a value. The HP-86/87 displays:

assigns zero to the variable, and continues executing your program.

2) The variable name you entered has been assigned a value. The HP-86/87 takes this

previously assigned value and assigns it to the variable used in your !

Put Numbers Into Your Program While It's Running 8-9

b. Youentered an invalid variable name. The HP-86/87 displays:

FE el o B = A

The new ' the HP-86/87 displays invites you to try again to respond to the same |
statement.

28. How about another try at running “SAVINGS”? First, clear your screen.

29. Start with $100, and for S & L interest, try 5% instead of 5.5 (remember, A means insert one space):
A

The HP-86/87 took it without even a burp! Maybe mixed numbers are OK after all (but don’t bet on
it).

Enter ! for the number of years, and see:

SAVINGS
WHAT IS YOUR FRESENT SAVINGS ACCOUNT BALANCE
?
1o

WHAT IS S%. INTEREST (%)
5 1/2

HOW MANY YEARS WILL SAVINGS RE HELD

e

1

AFTER 1 YEARS YOUR ORIGINAL % 109 WILL GRDW TD % 125.5 .

You have picked one good savings and loan association. Your $100 grew to ¥ 1 % | ¥ ip just one

year! Before you spend it all, however, let’s look again at that percentage interest.

The HP-86/87 generally ignores spaces in numerical inputs, so it sees & 1 .~ as &

Dividing 51 by 2 gives an interest rate of 25.5%, which explains the impressive $125.50 return after

one year. As you recall, you can avoid this problem by pressing END LINE) or (5] (%)
3

* The HP-86/87 can produce the final zero to give you « 22, but this requires two BASIC words beyond the scope of this course,

. Your operating manual covers these topics.

FRIMT USING and §

8-1

0] Put Numbers Into Your Program While It's Running

30. Hereis a new key you’ll be using later in step 36 where I'll discuss how to recover from wrong inputs.

The key is . See figure 63 for its location.

k2

2 |G

i S ::D':
LA ~"&—"

I ! | - '-‘

S " S —
1 i SIPLST| |

=) — 3l = '-—ST |

_r

32.

33.

r 7 = THEERD "'i.,r [_ 1
4 ser || 11
i ” ‘)

!

Figure 63. Location of (PAUSE

is closely related to (CONT). You can pause a running program at any time by pressing
(PAUSE), and start it again at the same place by pressing (CONT). When (PAUSE)is pressed, you hear
a beep, and the program goes into a stand-by condition. When the program goes into stand-by, the
HP-86/87 goes into calculator mode, and the keyboard becomes alive. You could type text and do
calculations as you did in chapters 1 and 2.

It’s time for some definitions, one new (input loop) and two old.
Program mode: The HP-86/87 is in program mode whenever it is running a program.

Calculator mode: At all other times, except when turned off, the HP-86/87 is in calculator mode,

allowing calculations, text writing, and program writing.

Input loop: After a program has executed an I 1!7 statement, but before the entry or input has
been made, the program is said to be in an input loop. If no entry is made, an input loop will last as
long as the HP-86/87 and power last, or until the program is paused.

To Change from Program to Calculator Mode:

A way that always works: Press (&t). A beep will sound, indicating that the running program
has been paused. Another way that works except during input loop: Press almost any key. A beep
will sound, indicating that the program has been paused. The pressed key’s action will also occur,
except when is pressed.

Since pressing always works, and performs no other action, I suggest the following:

Put Numbers Into Your Program While It's Running 8-11

Safety rule: To change from program mode to calculator mode, press (PAUSE) unless you're sure of
what you're doing.

34.

35.

36.

37.

DANGER!

After you pause a running program, you can, by mistake, delete lines from the program you just
paused, which could easily destroy the program in memory. Since the keyboard is alive after a
program is paused, you are free to edit the program that was just paused. If you type a number that
is the same as a line number in the program, and then press (END LINE), you have deleted that line.

i ABASICWord

oo
[»

A program may be paused using the i.i= i statement. However, no beep is heard when a ' &

statement is executed in a running program. Whenever you saw L} i

statement had just been executed. As soon as

L1M7 displayed by one of my programs, a
you pressed (CONT), my program began executing at the statement number immediately following
statement.

Now—How to Recover from Wrong Inputs

a. Error realized before (END LINE) is pressed. No problem. Simply erase your mistake with (Z5¢5),
and try again.

b. Error realized after is pressed. The safest thing is to press to halt your
program (you’ll hear a beep) and run your program again. (Whenever you press (PAUSE) while a
program is running, the HP-86/87 tells you the program has halted by saying “beep.”)

Determining Values of Program Variables
Follow this example in figure 64.

Let’s use “SAVINGS” one more time. Clear your screen and press (RUN). Start with $7000 at 8.06
percent interest. Now, before entering the number of years, you’d like to assure yourself that your

program is using the correct values for B and I. This is done in calculator mode by typing the

variable name and pressing (END LINE).

After responding to the first two input requests with 7000 and 8.06, press to get into
calculator mode. Next press and see B’s value, ¥
and see & . &5, Since the correct values for B and I are being used, start your program
just where it halted by pressing (CONT). Respond to the new question mark by entering | & years,

i

1, displayed. Similarly, press (1)

and see your ending balance of ¥ 1

8-12 Put Numbers Into Your Program While It's Running

PAUSE) pressed here, after ** was displayed. SAYINGS

Tl

The HP-86/87 now in calculator mode. WHAT I5 YDUR PRESENT SAVINGS ACCOUNT BRALANCE
Program execution halted. ?
ogra n ha L oih
Current value of B displayed by pressing WHAT S&L INTEREST (%)
?
END LINE). 8.06
Current value of I displayed by pressing (1) | || HOW 1"ANY YEARS WILL SAVINGS BE HELD
(ENDLE). B
7000
1
pressed to put the HP-86/87 back in 8.06
. ?
program mode. Program execution resumed. 10

' is again displayed by “number of years”

" statement, but “Enter number of
yvears’” message not repeated. Value of 1&i
for Y is entered, and final balance

calculated.

RFTER 1@ YEARS YOUR ORIGINAL $ 7@00 WILL GROW TO $ 1519B8.&4 .

Figure 64. R IMT

Say you wanted to delete one line, for instance, line 50. You would press

(SHIFD + (k) (k5) () (0) (END LINE)

Line 50 could also be deleted by pressing:

(8)(0) (ENDLINE)

Of course, the program having the unwanted line 50 must be in the computer’'s memory at the time,
but the listing need not be displayed.

39. The real power of the L
50 through 100 inclusive.

- command is exercised when you want to delete a group of lines, say

All that’s needed is to press:
&5) ()@ © () (ENDLINE)

and the deed is done. You'll be deleting a group of lines from “SAVINGS” in step 41.

40,

41.

42,

10
20
)
4@
b]

=1

70
B&
9@

Put Numbers Into Your Program While It's Running 8-13

Multiple Inputs

£ g e
il i

So far, the 11 statements you've used ask for only one value at a time. A program like
“SAVINGS” can be shortened by making one 1 M 11T statement do the work of three. First, I'll ask

vou to modify “SAVINGS” to combine your three ¥

T statements into one, and then I'll give
you some points to remember about multiple inputs.

By no coincidence, the lines I'd like you to remove from “SAVINGS” to modify it for multiple inputs

= (®OO@O0)(ENDLNE).

are 50 to 100 inclusive. So press |

After completing that short task, list “SAVINGS” and change line 30 as shown in figure 65. Don’t
forget to clear the remainder of your line ((.LINE)) before pressing (END LINE). Now change line 40
and enter the new line 50 as shown in figure 65. Then renumber lines 110 through 140 to 60 through
90.

DISE. " ; SAVINGS"
DISF
. DISF "ENTER YOUR FRESENT SAVINGS ACCOUNT RALANCE, S%L INTEREST (%) ,AND"

DISF "NUMBER OF YEARS SAVINGS WILL EE HELD."
INFUT B,I1.Y

DISF :

DISF “AFTER":Y:"YEARS YOUR ORIGINAL $":;H:"WILL GROW TO $":

DISF INT (BX(1+I/1@@) "YX100+.5)/10@;"."
END ;
Figure 65. i. of “SAVINGS'* CRT Listing Modified for Multiple Input
Clear your screen, then run this new “SAVINGS” and respond to the ** by pressing (5)(0)(0)(0) ()

BN . See figure 66 for the output.

BAVINGS

ENTER YOUR FRESENT SAVINGS ACCOUNT BALANCE, S%L INTEREST (4), AND
NUMBER 0OF YEARE SAVINGS WILL BE HELD.

5000, 8. 06,25

AFTER 25 YEARS YOUR ORIGINAL % S0@@ WILL GROW TO $ 24721.15 .

Figure 66. Execution of “SAVINGS" Modified for Multiple Input

8-14 Put Numbers Into Your Program While It's Running

44. Notice these points about multiple inputs:

a. Youenter the exact number of values required by the I ¥

entered values by commas.

b. The values must be entered in the same order as they appear in the I

¢. Inthe I MFLIT statement, variable names are separated by commas.

d. Torecover from input error, all values must be entered again,

i statement (line 50), and separate

LHT statement.

45. Inthe next step you will deliberately violate points a and d. Follow your troubles in figure 67.

46. Run “SAVINGS” again. First respond to the enter request by typing in only one value, I Eiil

followed by (END LINE). The HP-86/87 checks your work and discovers that your I ¥ LIT statement

H] oy

El

line 50, wants three values. It then refuses to accept your single value and invites you to try again.

Don’t despair! Try again by entering all three values. Now the HP-86/87 rewards you with the final

a4 e e

balance, # 1 &

SAVINGS

NUMBER OF YEARS SAVINGS WILL EBE HELD.
?

Attempt to enter one value—not accepted.

ENTER YOUR PRESENT SAVINGS ACCOUNT BALANCE, Sl INTEREST (%),

AND

100
Error 44 on line S@ : TOD FEW INPUTS

e

Attempt to enter remaining 2 values—neither accepted.

3.1
Error 44 on line 5@ : TOO FEW INFUTS

7

To recover, must enter correct number of values.

100,5,1

AFTER 1 YEARS YDUR DRIGINAL $ 100 WILL GROW TO % 105 .

) J Y

Figure 7. [THLL Execution of "SAVINGS'’ Showing Multiple Input Errors

47.

48.

49,

51.

Put Numbers Inte Your Program While It's Running 8-15

CONCLUSION: To correct a multiple input error, you must re-enter all values, not just one or two
or a few.

You won’t need this multiple input version of “SAVINGS” anymore, so do not store your

program. If you do, using the same name “SAVINGS,” you'll get F-r oy 23

since we secured “SAVINGS” when we last stored it, in step 11. You'll need that stored version later.

Here’s another good place for a break.

If you've just come back from a break, welcome!

When an [HFUT statement is used to assign values to variables, a message is almost always

displayed or printed telling the user what values to enter. Most often this message appears just

before the I i+F

i1 statement, and many times this message can be a question. In such cases, the

question mark generated by the

that moves the question mark. The trick is to put a semicolon at the end of the message preceding
the iMLIT statement. This semicolon goes outside the final quotation mark. Also, no period is
used at the end of the message.

Program segment. Conventional & 200 DISP "ENTER YOUR DIMENSIONS,"

statement. 21@ INPUT A,B,C

Program segment output. IHFIIT <97 ENTER YOUR DIMENSIONS
displayed on separate line. ?

o e e

Same program segment. LIl % statement)

i TR T wgn
modified to put [HFLIT 7 200 DISP "WHAT ARE YOUR DIMENSIONS";

>
message. Period removed, semicolon put 210 INFUT R,B,C
after final quotation mark.

i : X] "_:" 25 IH
Program segment output. I®HFLIT ? WHAT ARE YOUR DIMENSIONS?

follows displayed message.

Figure 68. How to Move " Displayed by 111! Statementto End of Message

Displayed by Preceding Li I =1~ Statement

8-16 Put Numbers Into Your Program While It's Running

52.

53.

PROBLEM:

Load your “SAVINGS” program and revise it in a snmlar manner to that shown in figure 68 (but

without the multiple inputs) to move each I ¥ i “"?” to the end of each question. Run your revised
program. Compare your revised listing and output with mine. See pages H-24 and H-25, No. 33 in the

supplement.

When you’re satisfied with your revision, unsecure your “SAVINGS” program. Type

i |"'l [

name i TR S When you execute 1 i

'.r] n=.v[il._ i:"ri:_',i:i:-—’ls you Wlll

destroy your previously recorded version, but that’s fine, this version’s better. You’ll be using this

revised version in chapter 9.

IMPORTANT: After storing “SAVINGS,” secure it. See steps 11 and 12 to refresh your memory

on securing and unsecuring a program.

T Power

)

and Fi. 15T commands list

g i
i

[can delete a group of lines, so can the i. 1%

portions of a program. Here’s how you can list lines 30 through 120 of “SAVINGS™:
Press (DS aBF @O @D@)(0) (ENDLNE)

If your “SAVINGS” is like mine, you should see these statements on your screen:

Note: The symbol A means press the space bar to produce one space.

LIST 3¢,120
3¢ DISP "WHAT IS YDUR PRESENT SAVINGS ACCOUNT BRALANCE"j
4@ INFUT B

5@ DISF

6@ DISF "WHAT IS S%L INTEREST (X)"j
7@ INPUT I

80 DISF

¢ DISF "HOW MANY YEARS WILL SAVINGS BE HELD"j

1@ INFPUT Y

11@ DISP

120 DISF "AFTER":Y; "YEARS YOUR ORIGINAL #";B;"WILL GROW TO $":

To print the same program segment:

Press @) DO @@ 4 3@V @D@ (O (ENDLINE)

Now your printer should show the same lines.

Put Numbers Into Your Program While It's Running 8-17
56. Note that you must press (P) (L) (1) , not the P LST abbreviation on the key cap.

57. You can also display or print just one line by typing the same line number both before and after the
comma, then pressing (END LINE). To get practice, reproduce the examples shown below:

LIST 3@,30
30 DISF "WHAT I8 YOUR FRESENT SAVINGS ACCOQUNT BALANCE":
FLIST 3@,%Q

10 DISF "WHAT IS YOUR PRESENT SAVINGS ACCOUNT BALANCE!;

58. Finally, you can display or print all the lines of a program starting with any line by pressing

@) A[/ine number]

or
O OE@ alline number]

Say you had a program in the computer’s memory with statements numbered 10 to'2000, using the
standard interval of 10 between statement numbers. If you pressed

LOE @A B (ENDLNE)

the screen would fill with program statements starting with number 500. To get the next screenful,
you could press the single key :

This version of the i1

I command ((L) (1) [/ine number] (ENDLINE)) is perhaps the most

often used. When you're writing a program, you often wish to see one or more screenfuls of

statements starting with a particular line number. To print the same statement starting with 500,
you would press

EOLOEO aE©@ @) (ENDLNE)

The HP-86/87 would start with line 500, and print all the remaining statements in the program.
Pressing any key would stop the printout.

59. More About Functions

The i 17 function used in “SAVINGS” is a typical function. You supply a number and 7 will
give you the largest integer less than or equal to that number. The number is called the argument,
and the function gives you the value. For example:

function = [HT &4, 71 gives © « value

argument

8-18 Put Numbers Into Your Program While It's Running

As in statement 150 in “SAVINGS” shows, an argument can be a complicated expression, but it
always boils down to a single number. The function then acts on that single number to give the
value. Looking again at our example:

i+ which gives .

* boilsdown to LT

60. What aboutan [T function with a negative argument, like 1 7 %

It will help to look at a number line.

—-2.15

The largest integer less than or equal to —2.15 is —3. Whether the argument X is positive or negative,

you can always evaluate I FH7T <X by finding X on the number line and moving left to the next

integer.
61. Integer Quiz

Fillin all the blanks below, then check your answers against mine shown at the bottom of page 8-22.
Remember, to find the 1! value of an argument, place the argument (number) on the number line

above, and move left to the first integer. That first integer is the value you’re looking for.

a. INT(2.57)=
b. INT(-1.01)=
c. INT(-.52)=
d. INT(1.97)=
e. INT(-1.97)=
t. INT(11)=

Summary of Chapter 8
e IHFLUT: ABASICWord

ITHFLIT statement.

Put Numbers Into Your Program While It's Running 8-19

When executed, statements 35 and 80 each display a “*#” on the screen, and the HP-86/87 goes into
an input loop. The program continues to run, but it idles, like a car at a red light. The next
statement beyond 35 (or whatever number the I

! statement has) is not executed until the light
turns green. The user turns the light green by entering a number or numbers in response to the
displayed “**.’ The i i

it statement’s variable(s) (R or X, Y and Z in the examples) is (are)
assigned the value(s) entered by the user. This number entry and value assignment turns the light
green, and program execution continues.

To enter a mixed number like 3%, press .

{ Warnings and Errors

LIT wants a number, and you enter a valid variable name, and

a. ifentered variable name has not been assigned a value, the HP-86/87 enters 0, displays

and continues program execution.

b. if entered variable name has been assigned a value, the HP-86/87 enters that value, and

continues program execution.

1 wants a number, and you enter an invalid variable name, or press only (END LINE), the
HP-86/87 will display:

After the error message is shown, a ¥ is displayed, inviting you to try to enter your number again.

How to recover from input errors

Error realized before (END LINE) is pressed—before entry is completed.
Erase wrong characters ((SHIFT) +) and try again.

Error realized after is pressed—after entry is completed.
SAFETY RULE: Start over. Press , then press .

To Use Multiple Inputs:

BT

Enter exact number of values required by L7 statement, separated by commas.
Values must be entered in same order as they appearin I i+Fii7 statement.

To recover from input error, all values must be entered again.

8-20

Put Numbers Into Your Program While It's Running

To move ** displayed by It

type semicolon as last character of |

before (END LINE).

A Command

Copies program in memory onto a disc. The program in memory is unaffected.

A Command

Enables you to prevent programs or data from being acc1dentally changed or overwritten. The

AHz status may be removed by use of L.

include the exact program name, security code and security type.

command if a

This error message is displayed when an attempt is made to execute a =T IHRE
program with the same name is already = v C LR Ed with type 2.

To successfully
Program mode: Whenever the HP-86/87 is running a program, it is in program mode.

Calculator mode: Whenever the HP-86/87 is not running a program, unless turned off, the

HP-86/87 is in calculator mode, allowing calculations, text writing, and program writing.

Input loop: Whilean i statement waits for an entry, the program is in an input loop.

The (PAUSE) Key

Pressing not only halts a running program, but also sounds a beep and puts the HP-86/87

into calculator mode.

Pressing most keys during a running program, except during input loop, halts the program and puts
the HP-86/87 into calculator mode. Also, the action of the pressed key will occur except when
is pressed.

SAFETY RULE: Pause a running program by pressing rather than some other key.

A BASICWord

When a "L 5 statement is executed, the effect is identical to pressing (PAUSE), except no beep is
heard.

CAUTION! When a program is paused, a line of the program can be acccidentally deleted by typing
aline number and pressing .

To determine value of program variable while program is running:

il Y

Review of Chapter4 i.:

Put Numbers Into Your Program While It's Running 8-21

Press (PAUSE) [varfable name| to see current value displayed. Then press (CONT) to resume

program operation.

Example: To see value of program variable E while program is running, press (PAUSE
END LINE).

tiz: A Command

Deletes one or a group of statements from program in memory. For instance, to delete line 75, press

= A (DB (ENDLINE)

To delete a group of statements from a program in memory, say 110 through 225 inclusive, press

ADOOLE@@E (ENDLNE)

i- Tk typing aid is located on special function key #5. To use it press + (k5).

=T: ACommand

Lists program or program segment on screen.

Fr e e

FLtmis ACommand

Lists program or program segment on printer.

'Material
To display a listing of all program statements in memory, press to get first screenful of

statements, then press (LIST) again to get next screenful of statements, and so on.

To print a listing of all program statements in memory, press (SHIFT +‘T0 stop printout,
press .

To list one statement:
On screen: press (1) (1) (S) (T) A [/ine no.]1 (D[/ine no.](END LINE).
On printer: press (P) (L) (1) A[ftine no.1()[line no.] .

Example: To listline 35 on the printer, press
OLOEMAEEOEGE) (ENDLUNE)

To list a group of statements, but not the whole program:

On screen: press (L) (1) (S)(T) A [first line no.] () [/ast line no.](END LINE).

On printer: press (P)(L)(1) A[first line no.] ([/ast line no.] .

8-22 Put Numbers Into Your Program While It's Running

Example: Tolist lines 100 through 140 inclusive on the screen, press
LOEOAOO@OOUMEM®) @) (ENDLUNE)

® Tolist all program lines starting with a particular line number:

On screen: press (L) (1) A [/ine no.] (END LINE) to get first screenful of statements, then press
LIST) to get each succeeding screenful of statements.

On printer: press (P) (L) (1) A[line no.) . To stop printout before last program line,
press .

Example: Tolist a screenful of lines starting with line 340, press
0 A @

To get additional screenfuls of higher numbered lines, press repeatedly.

Functions
When executed, a function does something to the number within () and produces another number. A
function has three parts. Using 147 ¢ X * as an example:
function—~ I HT £X 7 gives Y =~ value
t
argument
s [iHT¢{X*: AFunction

Gives the largest integer equal to or less than X. Examples:

INT (3)
3
INT(-2.9)
-
INT(Z.9)
2

ANSWERS TO INTEGER QuUIZ

a. INT(2.67)=2

b. INT{—1.01)=-2
c. INT{—.562)=-1
d. INT{1.97)=1

e. INT{—1.97)=-2
f. INT{.11)=0

Put Numbers Into Your Program While It's Running 8-23

® The HP-86/87 expresses an inexact decimal as a 12 digit number. (If the 12th digit of an inexact

decimal is zero, the final zero(s) is (are) normally dropped.) If a number is exact, the HP-86/87
normally drops trailing zeros. Examples:

I+4/7
3.971428571473
205.10%2
410,32

Review Test for Chapter 8

The answers are on page 8-24, immediately following this review test.

1.

R Sy e e R

Say you're running a program, and it displays the following:

IR T = T = T v o
Mg LN LE HiRD Y

You press these keys: (2)(6)a (ENDLINE).

The HP-86/87 now believes you are how old?

Now how old does the HP-86/87 believe you to be?

Let’s look at a partial listing of this same program:

]

fad
oo
EE R e R

3

n, e el
ERCE S S I |
i S e

1Ty

i
S

MEE YO

e

You run it again, and when il

(k2 WOHIY is displayed, you press . How
old does the HP-86/87 believe you to be this time?

Say you are 26'2 years old. When this same program is run, you make an incorrect entry when

HEL YIS, While the program continues to run, you realize your

responding to Hiild i
mistake. You wish to correct your error in a safe, sure way. What are the first two keys you should
press?

8-24

5.

Put Numbers Into Your Program While It's Running

In December 1872, the steam corvette H.M.S. Challenger, 2306 tons displacement, left England on
what became one of the most important voyages of discovery in the history of oceanography. She
traversed 68,890 nautical miles in the Atlantic, Pacific and Southern oceans, and returned to
England in May 1876.

You are running a program on the HP-86/87 testing your knowledge of the Challenger expedition.
Here is one of the displayed questions:

HOW MANY TONS DID H.M.S. CHALLENGER DISPLACE, HOW MANY NAUTICAL MILES DID SHE
COVER, IN WHAT YEAR DID SHE LEAVE ENGLAND, AND IN WHAT YEAR DID SHE RETURN?

6.

i

What keys should you press to answer this question correctly?
The Challenger test question in problem 5 uses these variable names:

TNS means tons displacement
Yearl means year of departure
Year2 means year of return

Miles means nautical miles covered

Write the [M# LT statement relating to this Challenger question. To agree with my answer, use line

number 100. No need to write the LI statements associated with this question. Just write the

it statement,

You have answered the Challenger question shown above, and later, as the program is running, you
wish to review the answer you gave for the number of tons displaced by the Challenger during her
famous voyage. What keys do you press to review this number and to start the program running
again where you stopped it?

You're writing a program describing how to build a true perpetual motion machine. You have some
concern over a part of your description, contained in statements 150 through 325 inclusive. You are
now in calculator mode. You wish to list these statements on the printer. What keys do you press?

After reviewing the statements you printed in problem 8, you realize they must be removed. To

remove them from your program, what keys do you press?

Put Numbers Into Your Program While It's Running 8-25

Answers to Review Test Questions for Chapter 8
1. 130.5 yearsold

2. Oyearsold

3. 600 years old

4.

5. @R0E0OEEE®EWLOEEDE@LME @ E) ENDLNE)

7. (PAUSE) (M (W) () (END LINE) (CONT)
8. PHLIDEOAOEO@OE@E) (ENDLNE)
9. DELEOEHsOEO@OE@E) (ENDLNE)

Chapter 9

Plan Your Program

P iH. .
Preview
In chapter 9, you will:
® Learn about four simple questions whose answers can help you write programs.
¢ Improve your “SAVINGS” program to include the effect of inflation.
® Learn how to chart the flow of your program before you write it.
® Learn how to easily renumber your program’s statements.
® Learn how you can order your [[%¥ statements to print and your 5 I H7T statements to display.
Also learn why anyone would wish to give such strange orders.
¢ Learn one way to make your programs friendly.
® Write a program for “Mole Mitt” Morrison.
qm ¢ Learn how to write messages that are meant only for the eyes of one reading your listing—they
neither print nor display.
Just as each of us writes in his own way, so does each of us plan differently. A planning routine that
works fine for one may not be all that great for another. However, it might be wise to start with the
scheme I'll give you, and then modify it to suit your own way of working.
Program Planning Questions
Before writing your first statement, answer these questions:
1. What answers do I want?
il 2, What things do I know?

3. What methods will I use to find answers using things I know? That is, how would I solve the
problem with paper and pencil?

4. How can BASIC and the HP-86/87 help me find answers?

Say you were faced with the task of writing your “SAVINGS” program printed by program “CHS8.” Here’s
an acceptable set of answers to the program planning questions:

9-1

9-2

Plan Your Program
What answers do I want?

I want to know the ending balance in a savings account after a certain number of years. I want to
get this answer for a variety of interest rates, and a number of different years. Also, I'd like the
ending balance rounded to the nearest cent.

What things do I know?

I know the formula needed to calculate ending balance.

B = starting balance
I = annual percentage rate of interest
Y = number of years savings held

Ending balance = INT(B(1 + 1/100)Y X 100 + 0.5)/100

What methods will I use to find answers using things I know? That is, how would I solve the
problem with paper and pencil?

I'll solve the formula using chosen values for B, I, and Y.

How can BASIC and the HP-86/87 help me find answers?

W1z and ITHPLUT statements will be useful. I'll have the HP-86/87 display requests for B, I, and Y
values, then display the answer. I[i"LiT statements will allow me to enter these values into the
program. I'll plug the formula directly into the |

% statement which gives the answer.

After you’ve gained some programming experience, you’ll write a program as simple as “SAVINGS”

without writing these answers out on paper, But you’ll still answer these questions, or ones like them,

even though you may not be aware of it. When you first learn to drive a car, you're very conscious of every

driving question and answer. Later, ordinary driving becomes second nature.

As you program, you’ll form programming habits just as a driver forms driving habits. On the other

hand, no matter how experienced you become, some programming tasks will profit from careful planning

just as an experienced race driver, to be successful, must plan well.

Flowcharts

An important planning tool is the flowchart. As the name suggests, a flowchart charts the flow of a
program. Figure 69 shows the flowchart for “SAVINGS.” The two kinds of symbols used in all my
flowcharts are:

Start or END @

LR
| LWL §

Plan Your Program 9-3

The arrows connecting the symbols in a flowchart show the direction of program execution. If no arrow is
shown, program flow moves from the top of the flowchart towards the bottom.

The first few flowcharts I'll show you will give the program’s line numbers that correspond to each task

(or to END). These line numbers will help you see the relation between the flowchart and its program.

START

DISPLAY ,
TITLE Line 10
Y
DISPLAY MESSAGE TO 20
INPUT SAVINGS BALANCE 30
v
[INPUT B | a0
¥
DISPLAY MESSAGE TO 50
INPUT INTEREST RATE 60
Y
[INPUT | |70
v
DISPLAY MESSAGE 80
TO INPUT NUMBER OF 9%
YEARS SAVINGS HELD
!
[INPUT Y | 100
¢
CALCULATE AND DISPLAY 110
ENDING BALANCE = 120

INT (B » (1 + 1/100)A Y100 + .5)/100 | 130

END 140

Figure 69. Flowchart for “SAVINGS"’
Flowcharts make it easy to:
1. Plan program
2. Change program plan
3. Explain program to others (and later to yourself)

As the programmer, you’re the one to decide how detailed your flowchart should be. It’s your tool—use it

in a way that helps you most.

9-4 Flan Your Program
EXAMPLE: Entering Long Statements

You’ll soon be improving your “SAVINGS” program, and in the process, you may choose to write some
statements over two screen lines long. Writing such long statements can get you into a new kind of trouble

that you’re going to experience right now.

Type but do not enter the following statement:

f1@ PRINT "THE HP-86-87 CAN HANDLE LINES UF TO 159 CHARACTERS (ALMOST 2 SCREEN WI
DTHS) LONG. THIS IS WHAT CAN HAPPEN WHEN YOU TRY TO ENTER A STATEMENT THAT IS T
0o LEING.".

Now press (END LINE) and see:

1@ PRINT "THE HP-B6-87 CAN HANDLE LIMES UP TO 153 CHRARACTERS (ALMOST 2 SCREEN WI

DTHSE LONG., THIS IS WHAT CAM HAPPEM WHEM YOU TRY TO ENTER A STATEMENT THAT IS T
00 LONG."

Error 892 : SYMNTAX

The HP-86/87 is confused, but why? Notice that your statement contains 169 characters, including
spaces, or over two full lines, As you recall, the maximum number of characters the HP-86/87 allows in
one statement is 159. So 169 is too many, resulting in an error when is pressed.

Whenever you try as shown above to enter a statement over 159 characters long, the HP-86/87 will give
you:

PROBLEM: Write the “Inflation’ program

As some of us have learned to our sorrow, a savings account increases in money but not necessarily in
buying power. Following the steps below, modify your “SAVINGS” program to include the effect of
inflation. A flowchart for “Inflation” is shown in figure 70.

1. Load your “SAVINGS” program.

2. Print alisting of your “SAVINGS” program for later reference.

Lo

3. See statements 52 and 54 in figure 71 on page 9-6. These generate the enter message and the | !

statement for inflation rate.

4, Add these three statements (52, 54, 56) to your “SAVINGS” program.

START

Plan Your Program 9-5

DISPLAY TITLE | Line 10
DISPLAY MESSAGE TO INPUT 2
SAVINGS BALANCE
INPUT B | 40
DISPLAY MESSAGE TO 50
INPUT INFLATION RATE 62
Y
INPUT F | 54
DISPLAY MESSAGE TO INPUT 56
INTEREST RATE 60
Y
[INPUT | | 70
DISPLAY MESSAGE TO INPUT 80
NO. YEARS SAVINGS HELD 90
Y
INPUT Y 100
Y
CALCULATE AND DISPLAY
SIZE OF INITIAL SAVINGS 110
BALANCE B AFTER Y YEARS = 120
INT (B » (1 +1/100)A Y « 100 + .5)/100 |130
Y
CALCULATE AND DISPLAY WHAT IT
WILL COST TO BUY IN Y YEARS WHAT |[140
B DOLLARS BUYS TODAY = 150
INT (B« (1 + F/100) A Y « 100 + .5)/100

END 160

Figure 70. Flowchart for *‘Inflation’”

9-6 Plan Your Program

1@ DISP " INFLATION"

29 DISP

30 DISP "WHAT IS YOUR PRESENT SAVINGS ACCOUNT BALANCE';
49 INPUT B

S@ DISP

S2 DISP "WHRT IS INFLATION RATE (X)";

5S4 INPUT F

56 DISP

EQ DISP "WHAT IS S&L INTEREST (x)";

70 INPUT I

8@ DISP

3@ DISP "HOW MANY YERARS WILL SAVINGS BE HELD";
100 INPUT ¥

11@ DISP

120 DISP "AFTER";Y;"YEARS YOUR ORIGINAL $";B;"WILL GROW TO $";

Figure 71. Partial Listing for “’Inflation’’

5. The additional new formula used by the “Inflation” program is shown at the bottom of the
flowchart, figure 70, just above END.

INFLATION

WHAT 15 YOUR PRESENT SAVINGS ACCOUNT BALRNCE?
500

WHAT IS5 INFLATION RATE (%)%
1@.5

WHART IS S&L INTEREST (x)7?
9.25

HOW MANY YEARS WILL SAVINGS BE HELD?
3

AFTER S YEARS YOUR ORIGINAL ¢ 500 WILL GROW TO $ B45.77

AFTER S YERARS IT WILL COST § BZ23.72 TO BUY WHAT $ S50@ BUYS TODAY.

Figure 72, I 1.1 Output of “Inflation’’ Program

IF YOU NEED HELP with step 6, refer to my complete listing for “Inflation.” See page H-25, No. 34 in

your supplement,

6. Using the “Inflation” flowchart (figure 70), partial listing (figure 71) and output (figure 72), complete

your version of “Inflation.” To help you write your statements using information on the flowchart
(figure 70), study the relation between the flowchart and listing for “SAVINGS.” The “SAVINGS”

flowchart is figure 69, and you printed its listing in step 2 above.

Plan Your Program 9-7

8. Run “Inflation” using any numbers you choose and as often as you like.

A Command

I for renumber is a very useful command. It is not programmahle It is used to renumber any program

of 10 between each line, to give the famlhar i

specify the beginning line number and the interval, if you wish. For instance,

@@.A.@D.@m

i for the first line number, and

gives .. for the rest.

i, ... and so on. List

Use | to renumber your “Inflation” program statements as 1
“Inflation” to see if the HP-86/87 understood you.

If you wish to preserve your “Inflation” program, unsecure your “SAVINGS” program (see step 53 of
chapter 8), and store “Inflation” using the same name “SAVINGS” you used before. The old “SAVINGS”
will be lost, but this new version includes all the abilities of the old “SAVINGS.” Don’t forget to resecure
the program when you finish storing it. (See step 10 of chapter 8.)

“Inflation” is still in the computer’s memory, so play around with ¥ some more. Renumber your

program i 5% .. etc. Press (LIST) again to check.
One way & is useful is during extensive program modifications. Say you wanted to add 15 lines

between lines 50 and 60. You could renumber using an interval of 20 and get room for your 15 lines plus 5

extra for possible additions.

I'd like you to do more more experimenting with “Inflation.” I’ve got two new, related BASIC words and

commands to give you, and a good way to find out what they do is to use them.

Here they are:

A BASIC word and command
i*: A BASIC word and command

Now clear your screen and execute the command:
CROAOEA@DO@OOE) () (ENDLNE)

(In this case, the spaces are optional.)

Next, run your “Inflation” program with your printer turned on and the first question, including the
question mark, will be printed rather than displayed. Press LINE FEED on the printer several times to

* 701 is the printer address. If your printer has an address other than 701, substitute its address wherever you see 701.

9-8 Plan Your Program

see the result. (The printer must not be on line.) The only characters that will be displayed will be those
you type in from the keyboard.

When the printer stops enter

as your present balance, and continue, entering a 1. 7 percent

inflation rate, a i . 23 percent interest, and i years respectively, after each subsequent printer action.
Figure 73 shows what your printout and screen should look like when you finish.

INFLATION

WHAT IS YOUR FRESENT SAVINGS ACCOUNT EALANCE?

WHAT 1S INFLATION RATE (%)7

WHAT 1S Sl INTEREST (%) 7

HOW MANY YEARS WILL SAVINGS BE HELD®

AFTER 5 YEARS YOUR ORIGINAL $ 500 WILL GROW TO $ &45.77 .

AFTER 5 YEQRS IT WILL COST % B2E.7Z2 TO BUY WHAT $ S00 BUYS TODAY.

CRT IS 701,80

- S00 i
10,5
525
5
Figure 73. “Inflation’’ Qutput After i I i 1 is Executed
To cancel ZHT 1% i, execute i % i by pressing (C)(R)(T) A (D(S) A (1) (END LINE).

Now, using the same figures, run “Inflation” again, and see the same display as shown in figure 72.

Here’s what’s going on. The numbers “1” and “701” used in 31 are

called addresses. The code for the screen (CRT) is 1, and the code for the printer is 701. To summarize:

Output Device | Address

SCREEN or CRT 1

PRINTER 701

With

Il executed, any operation (except typing and editing) that normally puts characters
on the screen will, instead, print these characters. Examples of such operations are the execution of

“ statements, the computer’s execution of error messages, the result of calculations, and the

display.

Plan Your Program 9-9

There are two other similar BASIC words and commands you should know:

1: A BASIC word and command

chapter 2)

i statements were run with ~

If a program containing ! % 1 executed, all &

statements would output to the screen. Also, if ¥ 1 were executed, the program listing would be

displayed, not printed.

I% 1. These
! statements are displayed, in case the

When the HP-86/87 is first turned on it automatlcally sets & i and

are called “default” modes and insure thdt both &

user forgets to provide a ¥ © statement. Executing either of these commands (or executing

statements using these BASIC words) would have no effect on the computer s operation. Their only action

would be to cancel either & or

program, is to cause a " I 7T statement to print its message at one pomt in a program and to display

the same message at another point in the program. By using some additional BASIC words yvou’ll meet

Ll

later, the i 11 statements defining the message need appear only once in the program. When

I message will appear on the screen. Then,

1 is executed in the program, the |

is executed, the same i1 I message will be printed on the paper. You've

seen one example of this technique in the way

has appeared on the CRT and on the printer in the same program.

These four commands or BASIC words are summarized below:

Command or BASIC Word Function
CRTIS 701 All normally displayed characters are printed,
except for typed characters.
CRTIS 1 All normally displayed characters are
displayed.
PRINTERIS 1 All normally printed characters are displayed.
PRINTER IS 701 All normally printed characters are printed.

If the HP-86/87 has recently run a program containing |

statements, or if these commands have recently been executed, another program using

statements can give some strange results when run. Unexpected results can also occur when L. T

9-10 Plan Your Program

i is executed. You saw an example of the strange results ! i can produce when you

ran your “Inflation” program a few paragraphs back.

I L% 1 istoreset the HP-86/87 (press (SHIFT) + (F7)). As you recall,
pressing (RESET) puts the HP-86/87 into its wake -up”’ condition, except memory is not changed. But
remember that doing this also executes i}

An easy way to make sure i

L% FE I are all BASIC words and commands. It turns out that most BASIC words are also commands
(and conversely, most commands are also BASIC words). An easy way to fmd outifa BASIL word is also

a command is to use it without a line number. For instance, type |

“ and press

(ENDLINE). Your printer instantly leaps into action. Both
only two.

FT are commands, to name

i before listing “Inflation” on page 9-7.
You executed !

» L Why the .
the command specifies the maximum number of characters to be printed (or displayed) per line. The
HP 82905A/B Printer is capable of dlsplaymg 80 characters per line, as is the HP-86/87 screen. So when

17" A good question. The . portion of

we executed the command UF T £1 we specified not only that the printer was to assume the

role of the displaying device, but also that it wou]d “display” (i.e., print) a maximum of 80 characters per
line.

Now run “Inflation” again, using a 32 character line. Just execute i
printout should look like this:

*. The resultant

INFLATION

WHAT IS5 YOUR FRESENT SAVINGS ACC
OUNT BALANCE?

WHAT IS INFLATION RATE (%) 7
WHAT IS S%L INTEREST (%7

HOW MANY YEARS WILL SAVINGS BE H
ELD?

AFTER 5 YEARS YOUR ORIGINAL %
SO0 WILL GROW TO % 645.77 .

AFTER S YEARS IT WILL COST %
B2Z.72 TO BUY WHAT % S00
BUYS TODAY.

Note: If you have connected your printer using a serial interface, the output may not look exactly like

this one.

Plan Your Program 9-11

The same command syntax can be used with any HP-86/87 i1
specify the maximum number of characters per line. It's another powerful tool to help you in formatting
yvour displays and printouts.

Notice that earlier in this course when we executed

other number to specify the line length. We were relying on the fact that, when the HP-86/87 has;ust been
turned on, it “defaults” or assumes a value of 80 characters per line both for the screen and the printer.

However, if the HP-86/87 has been in use and is left on this may no longer be true. So it’s a good idea to

specify the desired line length in all your & Z commands.

As a matter of fact, we had better do it now, since we left the line length at 32 with our last command. So

execute !, 1+ B to get back to the desired line length for the rest of these exercises.

Friendly Programming

Hereis a programmmg option you may wish to adopt in some situations. It takes advantage of the fact
that the i

k commands are both programmable. To emphasize these facts:

1.1
i

A BASIC word and command
=: A BASIC and command

As you’ve seen, users can put the HP-86/87 in a state somewhat removed from its “wake-up” condition. As
a programmer, you can insure that your program will run on an HP-86/87 which acts as though the user

had just pressed before pressing . This set of statements will do it:

(needed only if your program contains statements)

(needed only if your program contains [statements)

- gtatements)

Such friendly programming might cause someone using your program to meet frustration. Here’s how a

user of your friendly program might become frustrated and how such frustration can be conquered.

Say your program starts as follows:

10 CRT IS 1,80

20 PRINTER IS5 701,80

30 NORMAL

40 CLEAR

w0 DISF "THIS FROGRAM DESIGNS AN AUTHENTIC FERPETUAL MOTION MACHINE. "
60 DISF "THIS MACHINE IS5 AN ENERBY MULTIFLIER. ENERBY OQUTFUT IS 100"
70 DISF "TIMES GREATER THAN ENERGY INFUT."

9-12 Plan Your Program

A user of your program wishes your ii [= statements to be printed as well as displayed. So she executes

command before starting your program. She is frustrated to see the printer remain

r* statements appear only on the screen. Do you know why? The answer involves

your line 30.

As soon as statement 30 is executed, her F Fi.i. command is cancelled. How does she easily

conquer her frustration? She conquers it with a new BASIC word, the symbol ! or

it ABASICWord, or
i+ ABASIC Word
Either form of this BASIC word means “remark.” A remark is a message that appears only in a program

listing.

It is neither displayed, printed nor calculated. It is intended to be read by one who looks at the listing. A
remark is used to label a group of related statements, to give the purpose for a group of statements or of an
entire program, to give the program’s author, to show the program’s name, to give credit to sources which

inspired the program, or to give any other comment the programmer wishes to make.

The symbol ! allows a remark to be added at the end of an otherwise complete statement. For instance:

All characters follnwing the { symbol are taken by the HP-86/87 to be a remark. All characters 1ncludmg

{11 %F statement. Here area few more remarks:

9 F-!EN. "FERFETUAL MOTION PROGRAM"
390 LET A=0 ! THIS FROGRAM DESIGNS AN AUTHENTIC PERPETUAL MOTION MACHINE.
70 ! THE MACHINE® S OUTPUT LIMIT IS ONE BILLION MEGAWATTS.

Note the use of quotation marks in the remark in statement 5.

Now let’s get back to the frustrated user of your program. She can easily preserve the action of her

{.. statement into a remark; that is:

Plan Your Program 9-13

When she wishes to change back she need only delete the | symbol from statement 30 and re-enter the

statement into the HP-86/87 (press).

Note that =¥

two ways:

i can be used only to begin a statement devoted entirely to a remark, while | can be used in

1. Tobegin a statement devoted entirely to a remark. (This is the only way may be used.)

2. Todevote the last part of a line to a remark where the first part is used for any other kind of BASIC

statement. An example of this use for ! is:

S0 LET A=0 ! THIS FROGRAM DESIGNS AN AUTHENTIC PERFETUAL MOTION MACHINE.

Example: “‘Mole Mitt’ Morrison' Program

“Mole Mitt” Morrison, a strip mining engineer, is one of those fortunate people whose work is his hobby.
He loves to dig. His new home in Suburbia is his pride and joy, but it lacks one feature strongly favored by
his family and peculiarly suited to his own skill. It lacks a swimming pool. Mole Mitt lacks something
else: money. “Who,” Mole Mitt asks, “is better equipped than I to dig my pool, thereby saving a bundle?
No one,” he answers. So, trusty shovel in hand, Mole Mitt begins.

Let’s see just how big a hole Mole Mitt is digging for himself. How long will it take him to dig his pool?

Program Description. Each shovelful of dirt will have certain dimensions, it will take a certain
average time to dig one shovelful of dirt, and the finished pool will have certain dimensions. Dividing the
pool volume by the volume of dirt removed by each shovelful will give the number of shovelfuls required to
dig the pool. Multiplying the average time to dig one shovelful by the required number of shovelfuls will
give the total digging time required. Certainly Mole Mitt will not dig 24 hours a day, 7 days a week. His
schedule will be 8 hours a day, 5 days a week, with 5 weeks off a year for holidays, vacation and sickness.
Combining this information, we get the number of hours available per year for digging. Finally, dividing
the total digging time required by the digging time available per year gives the number of years, or
fraction of a year, this money saving project will take.

Important Formulas

Iusethe If

[< I function in some of these formulas to avoid the display of 12 digit numbers.

1. Vol=W*L*D
Where Vol = volume of pool in cubic yards
W = width of pool in yards
L =length of pool in yards
D = average depth of pool in yards

9-14

2, Shovel 1 = INT(46656/(A * B* ())
Where Shovel 1 = shovelfuls of ditt in one cubic yard
A = width of shovelful of dirt in inches
B =length of shovelful of dirt in inches
C = average depth of shovelful of dirt in inches
Note: There are 46,656 cubic inches in one cubic yard. ~
3. Shovel 2= Vol * Shovel 1
Where Shovel 2 = shovelfuls of dirt needed to excavate pool
4. Sec =Sec Shovel * Shovel 2
Where Sec = seconds needed to excavate pool
Sec Shovel = seconds needed to shovel one shovelful of dirt, including time for coffee breaks,
rest periods, wheelbarrow time, etc.
5. Hrs =INT (Sec/3600)
Where Hrs = hours needed to excavate pool. (There are 3600 seconds in one hour.)
6. Days=INT (Hrs/8)
Where Days = days needed to excavate pool
"_‘-\.
7. Yrs=INT ((Days/5/47* 10)+ .5) / 10
Where Yrs = years needed to excavate pool. (This expression has a special trick to round the number
of years.)
Note: Mole works a total of 47 weeks each year, 5 days a week. Hence, there are 47 * 5 work days per
year.
Answers to Program Planning Questions. At the beginning of chapter 9 you were introduced to the
four program planning questions. You saw how these questions might be answered by one planning the
“SAVINGS” program. Now take a look at the way these four questions might be answered by a writer of
the “Mole Mitt” program.
1. What answers do I want?
I want to find out how long it will take Mole Mitt to dig his pool. I want this answer in seconds,
il

Plan Your Program

hours, days, and years. I want this answer for a variety of pool sizes, various dimensions for a

shovelful of dirt, and different intervals of time needed to shovel one shovelful of dirt.
What things do I know?
I know the various formulas shown above.

What methods will I use to find answers using things I know? That is, how would I solve the

problem with paper and pencil?

Plan Your Program 9-15

I'll choose pool dimensions and shovelful of dirt dimensions, as well as the time interval needed to
shovel one shovelful of dirt. Then I'll solve the formulas.

4. How can BASIC and the HP-86/87 help me find answers?

“and IHFLT statements will be useful. I’ll have the HP-86/87 display a request for the pool
dimensions in yards, W, L, and D, then the program will calculate and display Vol, the pool’s
volume in cubic yards. Next, the HP-86/87 will display a request for the shovelful of dirt dimensions
in inches, A, B, and C, and the number of shovelfuls in one cubic yard, Shovel 1, will be calculated.
Following this, the total number of shovelfuls, Shovel 2, will be calculated and displayed. Now the
HP-86/87 will display a request for Sec Shovel, the number of seconds needed for one shovelful.
Finally, Sec, Hrs, Days and Yrs, the seconds, hours, days and years needed to excavate the pool, will
be calculated and displayed.

Construction of Flowchart

As you can see, the construction of the flowchart, figure 74, follows directly from the answer to

programming question 4. Compare this answer, sentence by sentence, with each element of the flowchart.

9-16 Plan Your Program

Dimensions of pool in yards

W = Width

L = Length

D = Average depth

Vol = Pool volume in cubic yards

Dimensions of shovelful of dirt
ininches

A = Width

B =Length

C = Average depth

Sec Shovel = Seconds needed to shovel
one shavelful of dirt

Shovel1 = Sovelfuls of dirt in one
cubic yard

Shovel2 = Shovelfuls of dirt needed to
excavate pool

Time needed to excavate pool:

Sec: Inseconds
Hrs: In hours
Days: Indays
Yrs: Inyears

Figure 74.

START

Lines 10-40] INITIALIZE
50| DISPLAY TITLE]
60-80 DISPLAY lt‘lESSAGE:
ENTER W, L, D
20| INPUT W, L, D |

100| CALCULATE Vol = W*L*D

110-120 | DISPLAY Vol H
130-140 DISPLAY MESSAGE:
ENTER A, B, C
150[INPUT A, B, C. |
160-170 CALCULATE SHOVEL1=
INT (46656 (A * B * C))
¥
175-180 CALCULATE Shovel2 =
Vol* Shovel 1
190 | DISPLAY Shovel2]
¥
DISPLAY MESSAGE:
00228 ENTER Sec Shovel
¥
230| INPUT Sec Shovel |-
240-2 CALC. Seconds =
(a0 Sec Shovel * Shovel 2
Y
CALCULATE Hours =
260-270 INT (Sec/3600)
280-290 CALCULATE Days =
INT (Hrs/8)
|
CALCULATE Yrs =
300-310 | \nT (Days/5/47 * 10) + 5)/10
1
DISPLAY Sec, Hrs, Days
320-370 Yrs WITH MESSAGE

Flowchart for *“Mole Mitt’"

Plan Your Program 9-17

Listing for “Mole Mitt"”

Figure 75 shows the listing for “Mole Mitt.”” Enter this program and run it.

If you want a suggestion, you might try a 100 by 50 by 2 vard pool (think big!), an 8 by 8 by 4 inch
shovelful of dirt, and a 30 second time interval to shovel one shovelful. Check figure 75 to see how long it

would take poor Mole Mitt to dig such a pool.

10 ' "MOLE" PROGRAM

200 CRT IS 1,80

30 NORMAL

40 CLEAR

50 DISF * MOL.E"

&0 DISP

70 DISF "ENTER WIDTH, LENGTH AND AVERAGE DEFTH OF SWIMMING FOOL IN YARDS. "™
80 DISP "SEFARATE NUMBERS BY COMMAS."

90 INPUT W,L,D

100 LET VYol=WXL %D

110 DISF

120 DISF "FOOL VOLUME IS"3Vol

130 DISP

140 DISF "ENTER THE WIDTH, LENGTH AND AVERAGE HEIGHT OF A SHOVELFUL OF DIRT IN 1
NCHES. "

150 INPUT A.E,C

160 DISF

14645 ! Shovel 1I=SHOVELFULS OF DIRT IN ONE CURIC YARD.

170 LET Shovel 1=INT (4646567 (AXBXC))

175 ! Shovel 2=SHOVELFULS OF DIRT NEEDED TO EXCAVATE POOL.

180 LET Shovel 2=Vol ¥Bhovel 1

190 DISF "THE NUMBER OF SHOVELFULS OF DIRT NEEDED TCQ EXCAVATE THE FOOL IS8"j;Shove
12; won

200 DISP

210 DISF "ENTER TIME IN SECONDS REGUIRED TO SHOVEL ONE SHOVELFUL OF DIRT."™
220 DISF "INCLUDE ENDUGH TIME TO COVER COFFEE BREAES, WHEELEBARROW WORE, ETC."
230 TNPUT SecShovel

240 DISF

245 | Sec=SECONDS NEEDED TO EXCHVATE POOL.

250 LET Sec=SecShowvel%*Shovel2

260 | Hrs=HOURS NEEDED TO EXCARVATE POOL.

270 LET Hrs=INT (Sec/3E00)J

280 | Days=DAYS NEEDED TO EXCRVATE POOL.

290 LET Days=INT (Hrs-B)

300 ! ¥Yrs=YEARS NEEDED TO EXCHYATE POOL.

310 LET Yrs=INT (Dayss5-47/%10+.5)-10

320 DISP "TIME NEEDED TO EXCRYRTE POOL:"

330 DISP
340 DISP " SECONDS: « s Sec
2Bl ARG s o [U] s s bl e
360 DISP " DRYS: ";Days
3?0 DISP " YERRS: Sins
380 END

TIME NEEDED TO EXCAVATE FOOL:

SECONDS 54600000

HOURS 2 15166
DAYS: 1895
YEARS: 8.1

Figure 75. Listing for “"Mole Mitt"* and Length of Time it Would Take Mole Mitt

to Complete His Pool Project

9-18 Plan Your Program

You probably found yourself .= Ting and rel. ling your program while you were typing it in,
checking and debugging it and finally testing it. (I know I always do.) Sometimes you may have been
frustrated that you could only see fifteen or sixteen lines at a time on the display. Well, the HP-86/87 has a

feature that should help. It’s called ¥

: A Command Controlling Your Display

When you turn on the HP-86/87 the screen normally can display 16 full lines of text. However, the
HP-86/87 screen also has the optional ability to display 24 lines of text in a single screenful. To allow it to

do so we can make use of a new command,
END LINE). To return to the normal 16 lines of text, use |

screen can now hold 24 of them, Clear your screen and execute i. :
thru 190 displayed. Next type |
happened to lines 10 thru 90?

i. You will see statements 10
..... = (ENDLINE) to return to the regular display. What

With

using ™}

7 you can see one and one-half times as many lines on a single screen as when

i So it is a handy option either for faster scanning of your program listing or
displaying more lines of text during execution of a program.

i is a programmable command and thus can be used in a BASIC statement to control the
contents of the display during program execution.

Comments on Program Planning and Writing

If you're like most people, you will not construct your final flowchart on your first day. Even after you
have finally answered your questions to your satisfaction and have drawn an elegant flowchart, you'll
probably go back and change both once or several times after you begin writing your statements. On the
other hand, you may find it unnecessary to answer the programming questions or construct a flowchart,
at least for some programs. Use the program writing system that works best for you.

As the job gets more difficult, and as the desire for perfection gets stronger, more trial and ervor,
scrapping, and starting over will occur.

Summary of Chapter 9

® Program planning questions
1. What answers do I want?

2. What things do I know?

Plan Your Program

9-19

3. What methods will I use to find answers using things I know? That is, how would I solve the

problem with paper and pencil?

4, How can BASIC and the HP-86/87 help me find answers?

Flowcharts help to:

m Plan program

m Change program plan

m Explain program to others and later to yourself

Flowcharting symbols

m Start of program or E

m Task

: ACommand

statement

Renumbers statements of a program. T'o renumber starting at 10 and using an interval of 10, press

To renumber starting at any number and using any interval, press

(R)(E) (W) (END LINE)

(R)(E) (N) A [starting number] () [interval]

Example: To start numbering at 100 and using an interval of 20, press

Output device addresses

Four BASIC words

RIEMADOO@O@ @) (ENDLNE)

Output Device | Address
SCREEN or CRT 1
PRINTER 701

9-20

Plan Your Program

Command or BASIC Word Function

All normally displayed characters are printed,
except for typed characters.

LETOIE 1 All normally displayed characters are
displayed.

All normally printed characters are displayed.

L All normally printed characters are printed.

L% 1, reset the HP-86/87 (press +

S 1 and set ¥

To easily cancel i

CED).

Most BASIC words are also commands and most commands are also BASIC words.

A BASIC Word

-il.1.. Also cancels some other commands covered in later chapters.

A BASIC Word

Clears the screen.

Friendly programming

The following set of statements, when executed, cancels commands which might otherwise cause

the program to execute in undesirable ways. The statement numbers used and the order of these

statements are not critical, except that they should execute before any [£ 1147 statement.
(needed only if your program contains i statements)
(needed only if your program contains T statements)
(needed only if your program contains 1! I % statements)

A BASIC Word

Either form means “remark.” A remark is a message that appears only in a program listing. It is not
displayed, printed, or calculated. It is a message for a reader of the program listing.

To temporarily remove a line from a program, use |.To make the line active again, simply delete the
! and reenter the statement. Example:

iL. (active)

- (inactive)

. (active)

[number of lines]: A Command

Plan Your Program 9-21

Sets the display screen page size at 16 or 24 lines. To execute the command (say, for 24 lines), type

i1ZE 2+ (ENDLINE).

Default mode, when the HP-86/87 is first turned on, is 16 lines. - is programmable.

Review Test for Chapter 9

Answer all questions, then check your answers against mine on page 9-22.

1. Aprogram is first renumbered by pressing (R)(E)(N)(END LINE). This causes one line of the program
to look like this:

Now the program is renumbered again by pressing (R) (E) (N) 4 (5)(0) (J (2) (5) (END LINE). What

line number will this same statement have after this second renumbering?

2. These commands are executed, one after the other:

Will this message be
a. displayed,
b. printed, or

e. both displayed and printed?

3. These commands are executed, one after the other:

and then is pressed.

Now a program containing these two lines is run:

a. On what output device or devices will

b. On what output device or devices will 1. FE

9-22 Plan Your Program

4. The HP-86/87 is operating in a “just-turned-on” condition. A program is run containing this
statement:

AT
apon il

How many exclamation marks will be displayed when statement 45 is executed?

Answers to Review Test Questions for Chapter 9

1. The statement number will be 100, as shown below:

Line numbers after the | Line numbers after the
first renumbering second renumbering
"M 50
20——— — — — 75
-0 100+
40— — — — — — 125
50— —— — —— 150

2. a. displayed

The final command, ! i, cancels the earlier command, ZF7T [% 71 and causes

all normally displayed characters to be displayed. So all [I = statements will be displayed on

the screen.
3. a. CRT

b. screenor CRT

Pressing (RESET) ((SHIFT) + (F55F)), puts the HP-86/87 into a “just-turned-on” condition. So
i

1 LM7T statements are printed and [i1:
reassigned to 1 (the CRT).

- statements are displayed, because the printer is

4. No exclamation marks will be displayed. All characters following the first | are part of the remark.

No characters in a remark are displayed, printed, or calculated.

Notes

9-23

Chapter 10

Put Your Program Away and Get It Back

Preview
In chapter 10, you will:
® Learn how to tell your disc drive where to go.
® Learn how to find out what a disc remembered.
® Learn how to keep your discs from forgetting.
¢ Learn how to get your disc in a mood to memorize.

e Write a program for “Pail-Face” Trudgebottom.

e Say “Adieu!” to a good friend, i

-7, and “Allo!” to a trimmer, more popular assignment statement.

You’ve survived a couple of long, tough chapters so ’'m giving you two short ones as a reward.

Reviewing the Disc Drive

Your disc drive is a mass storage device. This is a good descriptive term since the disc can store large
amounts of information: computer programs, files of numerical or alpha data, and even graphic
displays.

You learned in earlier chapters how to use your disc drive to load and store programs for your computer’s
use and how to secure them from accidental overwriting. In this chapter we are going to learn more about
some of the basics of using the disc drive. For more complete details and information not covered in this
section, refer to section 20, “Accessing your Mass Storage System,” in your HP-86,/87 operating manual.

So far, you have used a disc for storing and loading programs only when the disc was inserted in Drive 0
of the disc drive. Also, you had carefully turned on the HP-86/87 after the disc drive was turned on, if your
disc drive had a power switch, so that the HP-86/87 would know where the disc was located, by “default.”

But you're not limited to using only Drive 0, nor to using only one disc at a time in your disc drive. In order
to store or load programs from other drive locations, however, you need to know how to tell the HP-86/87
and the disc drive where to look. In other words, you need to have either a name or an address for the disc
so that the HP-86/87 and disc drive will know how to find the disc you wish to use. You must give specific

instructions, or your computer may become confused and display an error message.

Volume Labels—Names for Your Discs

When we loaded programs in chapters 3 through 9 we used, in addition to the program name, a volume
label. The volume label acts like a name for the disc and can be used to tell the HP-86,/87 and disc drive
which of the discs present in it you want to use.

10-1

10-2 Put Your Program Away and Get it Back

The Mass Storage Unit Specifier—An Address
The other way to tell the HP-86/87/disc drive which disc you want to use is to give it the address of the

slot where the disc is located. This address is called a mass storage unit specifier, or msus (pronounced
“M-SOO0S™) for short. Don’t let the complicated sounding name scare you. The msus is much like the

simple address you used with the ¥ [HTER I3 % statement.

The msus, or address, of a particular slot in vour disc drive is : Li7 ¥, where the letter x stands for the
number of the drive or slot in which the disc you wish to use is located. For example, if you have the

HP 82901M disc drive, and ynu want to use the DRIVE 1 slot, the msus, or address, of that slot would be

i statement is used to “name,” or assign a volume label to a disc. The complete

The

statement consists of:

" imsus’® “volume fabel ™

The msus is, of course, the address of the slot in which the disc is located. The volume label is any name,
up to six characters in length, that you want to give to the disc.

_l
B

So, if you have a dlsc in Dnve 1 and you wish to name it * you would simply type:
N U " then press (END LINE) and you would have assigned the volume label

" to it. Nouce that the colon, (!) before the msus and the quotation marks around the msus

and the volume label are required.

i statement can also be used to change the volume label of a disc. The form of the

The %t 11
statement is then:

. oldvolume label”™ 1% "new volume label’

(Note that the old volume label must be preceded bY a permd) To change the volume label of ©

* and press (END LINE

1¥: A Statement

Remember how, when the system was turned on in the proper sequence, it “defaulted”, or assumed, that
the disc you wished to use was in DRIVE 0. In other words it assumed an address of | i, Exactly the

S E!‘ In

same thing can be achieved by executing the statement:

other words, the ¥ 1 statement is used to specify the location of the disc you wish to

use. For instance, if you w1shed to use a disc located in DRIVE 1, you would type: i

...... " statement sets the default mass storage device (the slot or drive specified
by the msus). The HP-86/87 will automatically use the disc located in that slot to load or store the
program you specify.

Instead of using the msus, or address of the disc, in the
the volume label of the disc. The statement: MH&H g
default mass storage device to be whichever drive has the disc with the volume label

Put Your Program Away and Get it Back 10-3

statement, you can use
* will set the

Loading and Storing Programs

Earlier, when we loaded nr stored a program, we always used the disc drive in the default mode with

DRIVE 0 as the mass storage device and we usually used the volume label as well as the name of the

program. Your new knowledge of volume labels, the msus, and the |

. o statement

frees you from these restraints.

- commands consist of the command word followed by a file specifier (in

quotations). The file specifier can have any of three different forms:

1.

It may be just the name of the program, as in L.ii5] S * The
HP-86/87 will attempt to obey your command using the disc in the default drive. Ifitis told to load a

program, it searches for the program only on the default device disc. If it cannot find a program of

that name, it will not search any other disc, but gives you an F & i i

message. If told to store the program it will store it only on the disc in the default drive.

The file specifier may consist of the name of the program followed by the volume label of the dise

you wish to use, as in L.L . The volume label must be separated from the

program name by a period. The HP-86/87 will search and load only from the disc having the given
volume label, regardless of which drive it is in or how the default is set. Ifit cannot find the program

Pt iny message, The

it will give you the same ! command will store the program only

on the disc having the given volume label,

The file specifier may also consist of the program name followed by the msus of the drive where the

[P In

disc you wish to use is located. An example of this would be:

this case the program would be stored on the disc located in DRIVE 1, regardless of its volume label

or the default setting. Similarly a | { command would search for and load the program only

from the disc in the location specified by the msus, giving you the & ¢ 1"z ¢ &7 message if it cannot
be found there. The msus must be separated from the program name by a colon ({) when using this
type of file specifier.

10-4 Put Your Program Away and Get it Back

The following table helps summarize these options and their actions:

Command
File Specifier
LOAD STORE

Program name only Searches and loads only from Stores only to the default device
Example: o the default device disc (or disc disc {or disc specified by i}

specified by 5 i
Program name and valume Iabel Searches and loads only from Stores only to the disc having
Example: : {2 | thedisc having that volume that volume label.

label.
Program name and msus Searches and loads only from Stores only to the disc located in
Example: " the disc located in the drive the drive specified by the msus.

specified by the msus.

You probably will find it most convenient and foolproof to use the program name . volume label™ form of

the file specifier when loading the storing programs Wlth your HP 86/87 BASIC Training disc. If you do
you won't have to worry about setting defaults, using :

. commands, or always
putting the disc in a specific drive. Remember the volume label of your BASIC Training disc is

Disc Catalog—The 57

You'll soon write a program to help Mole Mitt’s neighbor with his pool project. But first, learn more about
how to find out what is on HP-86/87 discs. You can easily see the contents, called the directory or catalog,

of any HP-86/87 disc by executing the L' T statement. To print the catalog of your BASIC Training disc,
insert the disc in the disc drive.

Statement

Since the 1T statement normally dlsplays rather than prmts the Ldtalog, you will want to execute |

(ENDLINE).

Your disc drive will run as the HP-86/87 seeks the Cdtalog Then the Ldtalog w1ll be prmted with a
heading showmg the volume label of the disc. If you executed ’
rather than .51

Notice your i

The next column, T %' i, shows that all the contents are program files.

Put Your Program Away and Get it Back 10-5

[Volume 13
Mame

WOk

CHE

H4

TESTH

(HE

FONEY

MATH
Criall T

The third column on your catalog, ="

& (short for records) are closely

connected. See the section on the file directory in your HP-86/87 operating manual for more information.

For now it’s enough to say that the approximate length of a program on this disc, in bytes, is given by

= column. You’ll find

multiplying the number in the &% TE % column, Z 5, by the number in the

that no program on this disc uses more than 18688 bytes, since a larger program would not fit in the
memory a standard HP-87 has available for a user. For instance, CH4 has 56 records, or 56 X 256 = 14,336

bytes. Actually, a little less than 14,336 since the 66th record is not full.

Disc Capacity
You’ll be writing a number of programs as you continue this course. Since you may wish to store your

completed programs for later use, you might like to know how many more programs you can store on this
dise.

Your BASIC Training disc can hold 112 files and about 1054 records (270,000 bytes). I can’t give you an
exact number of records or bytes since the actual amount of disc used by one record depends on the
material contained in the record. When your BASIC Training disc left our factory, it contained 605
records and 20 files. So you have about 449 records or 92 files left. As you store your programs, chances are
you won’t run out of space. However, if you should, don’t worry about it. If you attempt to store a program

that tries to use unavailable records, this friendly error message will be displayed:

10-6 Put Your Program Away and Get it Back

If you try to store file 113, you’ll see this message:

In either case, your program would remain unharmed in the computer’s memory.

Securing and Protecting Your Programs

Any particular program name can be used only once on any one disc. For instance, your BASIC Training
disc cannot accept two programs named “MONEY.” If you attempted to store a second “MONEY”
program, that new program would be stored, but your chapter 5 “MONEY” program would be lost. So

inspect your catalog before storing a finished program to make sure the program name you intend to use

has not been used already, and use the - statement to protect the programs you have written.

We learned in chapter 8 how to : " a program to prevent it from being accidentally overwritten if
you were to try to store another program using the same name. As you recall the statement consists of
3 ' “file specifier™ . “security code" . security type. The security code consists of any two
characters you wish to use (we have used " Hi* " in all of our programs). The security type is a number,

through -%, that designates the type of activity to be secured against. Type i secures against L. I &1 ing,

making a duplicate copy of the program. Type : secures against storing (overwriting). Type - prevents
the name of the program from appearing in the catalog.

We have secured all the critical programs on your HP-86/87 BASIC Training disc against accidental

overwriting, using security type 2.

A program can be unsecured by using the command 1. “file specifier " , " security code’ .

security type.

But, be careful. There are several dangerous instructions that you may see in the HP-86/87 operating

manual that can erase or alter part or all of your disc’s memory, including programs, data files and the

LET o R e

catalog. These are instructions like LML 7T I8 T © statement will not

protect against these instructions. So be very careful never to use them when your BASIC Training disc is
in the disc drive.

There is a way to protect your entire disc from all of these destructive instructions. Figure 77 shows the
write-protect slot in the protective cover of your disc. Covering this slot with one of the self-adhesive paper
PROTECT DATA tabs enclosed with new packets of discs will prevent accidental erasures or alterations

of the disc. However, it also prevents you from storing programs on the disc, so we had you remove the tab
from your HP-86/87 BASIC Training disc.

Put Your Program Away and Get it Back 10-7

Write-Protect Slot Write-Protect Tab

) N B
rmx

/O O

a

Ry

Figure 77. Covering the Disc Write Protect Slot to Protect Data

A Dangerous Statement

At some time you might wish to store a program on another disc, especially if your BASIC Training disc
is full. If this disc is brand new, you’ll have to prepare it to accept programs. This is called “initialization”
and is explained more fully in your HP-86/87 operating manual.

CAUTION
The disc initialization procedure erases all data from a used disc, destroying all of the old files.

This statement can be very dangerous to the health of any disc that is in the disc drive, because a simple

error in addressing the disc can erase your disc. So when you use the {1 7 1 #i.

i~ statement:

1. Remove all discs from the disc drive.

2. Insert ONLY the disc you wish to initialize.

3. Executethe 1M ITIFL 17 statement:

PUT T
A N |

“new volume label" . ¥ imsus®

o
i

where the new volume label is the label you wish to give the disc and the msus is the address of the
drive in which the disc is located.

4. Thediscdrive light will come on and the drive will run for about 2 minutes as it initializes the disc.
When it is through, the light will go out and all data on the disc will have been erased.

5. Your disc now has the volume label assigned to it and is ready to be used for storage of vour
programs.

10-8 Put Your Program Away and Get it Back

For example, initializing a disc with the statement: [RI7T1Iri.

HE

would erase the discin Drive 1, prepare it for program storage, and assign it the volume label ' & Fi

Don’t forget the quotes around the volume label and the msus, and the colon (!) before the msus.

For more information regarding initialization of a disc consult the chapter entitled Accessing Your Mass
Storage System in your HP-86/87 Operating and BASIC Programming Manual, '

The Work File

The first program on your disc is named “WORK.” It is a workspace provided as a temporary storage

place for any unfinished program you might be working on. If you wish to store an unfinished version of a

program, execute : <, BHI 107 and the partial program will be stored.

Note: [f you are developing two different programs concurrently, you must use a different name for
one of them. Otherwise, if you store a second program in “WORK,"" you will lost your first program. It
will be destroyed.

To get your program back into the HP-86/87 for further writing, execute 1.1

matter what program you’re working on, to store it temporarily, always use the name “WORK.” Each
time you store an unfinished program using the name “WORK,” you’ll erase the previous contents of the

WORK file. So don’t use the name “WORK” to store your final version of a program you wish to keep.

A Word About Example and Problem Programs

You'll be seeing many programs described during this course that I'll offer as examples, and many more
that I'll ask you to write. Your disc does not contain most of these programs. Rather, listings of these
programs will be in this workbook and in the Supplement.

However, a few of these programs are on your disc. I'll tell you clearly when to load such a sample
program, or when to load my version of a program I’ve asked you to write. If you try to load a program
that is not on the disc, you'll see this error message displayed:

If you see this error message, you’ll know the program you've asked for is not on the disc.

Problem: Write the “ ‘Pail-Face’ Trudgebottom” Program

Right next door to Mole Mitt Morrison lives “Pail-Face” Trudgebottom. If Mole Mitt was born with a
shovel in his hand, Pail-Face greeted the world with a water pail clutched in his tiny right fist.

Pail-Face has learned of your analysis of Mole Mitt's swimming pool project, and asks you to analyze a
pool project of his own. While Mole Mitt decided to save money by excavating his pool with his trusty

shovel, Pail-Face, having no hose, plans to save money on his pool by filling it using his faithful pail.

Put Your Program Away and Get it Back 10-9

Pail-Face’s pool is the same size as Mole Mitt’s, and it’s further along. In fact, his will be ready for water
at the same time Mole Mitt’s excavation is scheduled to start. Pail-Face wants to know if he should bet his
neighbor that his pool will be filled with water before Mole Mitt finishes his dig. Trudgebottom has asked
you to calculate how long it would take him to fill his pool using his pail.

Program Description. Trudgebottom’s pail has a certain effective capacity, perhaps 2 gallons. It will
take a certain average time to fill, transport and empty one pailful of water. The finished pool will have
certain dimensions. Dividing the pool capacity by the pail capacity will give the number of pailfuls of
water needed to fill the pool. Multiplying the average time to empty one pailful by the required number of
pailfuls will give the total pail filling and emptying time required. Trudgebottom’s work schedule is the
same as Morrison’s, 8 hours a day, 5 days a week, with 5 weeks off a year for holidays, vacation and
sickness. Combining this information, we get the number of hours available per year for pail work.
Finally, dividing the total pail time required by the pail time available per year gives the number of years,
or fraction of a year, this thrifty project will take.

Important Formulas

1. Vol=W*L*D
Where Vol = volume of pool in cubic yards
W = width of pool in yards
L =length of pool in yards
D = average depth of pool in yards

2. Pails =Vol * 201.97/Pail
Where Pails = pailfuls of water needed to fill pool
Vol = volume of pool in cubic yards

Pail = usable volume of pail in gallons
Note: There are 201.97 gallons in one cubic yard.

3. Minutes = Min Pail * Pail
Where Minutes = minutes needed to fill pool

Min Pail = minutes needed for one pail filling and emptying round trip

4. Hrs=INT (Minutes/60)
Where Hrs = hours needed to fill pool

5. Days=INT (Hrs/8)
Where Days = days needed to fill pool

6. Yrs=INT ((Days/5/47 * 10) + .5)/10
Where Yrs = years needed to fill pool. (This formula is simply a trick to round off the number of
years to tenths of a year.)

10-10 Put Your Program Away and Get it Back

Your Turn. Try your hand at answering the four programming questions:

1. What answers do I want?
2. What things do I know?

3. What methods will I use to find answers using things I know? That is, how would I solve the

problem with paper and pencil?
4. How can BASIC and the HP-86/87 help me find answers?
To see one way the program planning questions can be answered, see page H-26, No. 35.
When you’re satisfied with your answers, draw your flowchart.
My flowchart for this program appears on page H-28.

Finally, write, run, and list on your printer a program that will help Pail-Face decide whether or not to
suggest a little wager to Mole Mitt. Your program should offer the same kind of choices as “Mole” does.

That is, you should have three | I statements. Also, put some suitable remarks into your program.
In fact, your program should be rather similar to “Mole,” although a little simpler, since there’s one less

formula. Good luck.

If you wish to store your unfinished program and continue your programmmg several hours or days later,

IHMEOOEEE@

insert your BASIC Training cartridge, and execute *

WOEKOEM®EOEC)(ENDLNE)).

When you wish to resume programming, execute i ¥ and go to it.

The listing of my version of “Pail” is on page H-27.

Good-by L.k 1
The BASIC word .}

all programs I'll show you from now on, and chances are most BASIC programs you’ll see elsewhere will

T need not appear in HP-86/87 assignment statements. ..k 7 will be missing from

omit i. 1 as well.

Remember, whenever you see [statement no.] [variable name)] * ... you're looking at an assignment
statement. Like:

complicated it looks.

Put Your Program Away and Get it Back 10-11

Summary of Chapter 10

¢ Mass storage unit specifier

An address that specifies the mass storage device (disc drive and drive number) you wish to use.

Usually referred to as the “msus,” the mass storage unit specifier has the form ! [7

the drive number.

* Volume label

A name assigned to a disc. It enables the HP-86/87/disc drive to find the disc vou wish to use

without specifying the msus. Volume labels have a maximum of six characters and are preceded by

a perwd (), when usedin i

o LM 1% A Statement
May be used to asmgn a volume label to a disc or to Lhange the volume label of a disc. Use the syntax
: ' I% "new volume label™ UME " . old volume fabel” 15 new
. 1%t A Statement

This statement sets the default mass storage device. From then on the system automatically uses
that device or disc for all disc reading or writing operations unless another msus or volume label is
specified.

. volume flabel " .

® File Specifier

Specifies the program name and disc volume label or msus when using b0 LTI
commands. See the table on page 10-4 for a summary of various file specifiers and the results of their

use. It is usually most convenient to use the form “ program name . volume label*

Executing i.F 7 " . volume label* displays the catalog of the designated disc in the dise drive. The
catalog is a list of all active programs and other files on the disc. It is recorded on all active
HP-86/87 discs. Information on the file type, the number of bytes per record, and the number of
records in each file is also displayed.

10-12 Put Your Program Away and Get it Back

This statement is used to prepare a disc for program or data file storage. BE CAREFUL!

T T T 7T

will destroy all the data on a used disc.

Be sure to remove your BASIC Training disc from the disc drive before using IHI T 1811

To initialize a new or used disc: type IHITIFIL 1:

press(END LINE).

¢ L.ET isnotrequired for an assignment statement. What is required to assign a number to a variable

is:
[statement no.][variable name] = [expression that always reduces to a single number]

Example:

Notes 10-13

Chapter 11

Tell Your Program Where It Can Go

Preview

In chapter 11, you will:

® Learn how to tell your program to wait as long as you wish, then have it continue automatically.
¢ Learn how to tell the HP-86/87 to beep.
¢ Learn how to tell your program where it can go.

¢ Learn how to order the HP-86/87 to number your program statements for you.

A BASIC Word

This is an easy one. For example:

means wait 1 second.

means wait 10 seconds.

‘i) defining pitch and

I will be used without an argument

A BASICWord
Here is one of the big guns of BASIC. 5117 (i does just what it sounds like. It directs execution of a BASIC

11-1

11-2 Tell Your Program Where It Can Go

program to a specific location in the program. It is used to change the usual sequential flow of the
program in order to branch to a different portion of the program.

. must always be followed by the specific location to which you wish to direct program
etc.) but with the HP-86/87 it may
also be specified by a label. A label is a new concept we will discuss in the following section.

The word s

execution, The location is usually a line number (i.e., i f3¥

An example ofa [

LABELS: A Convenient Feature

Your programming skill is growing rapidly now. As a program becomes longer and more complex you will
find it convenient to refer to specific points or sections of it by some means other than line numbers.
Humans usually find it easier to remember names or labels rather than numbers, and so the HP-86/87

allows you to label specific points in your program.

To label a section of program you merely type, after the line number, the word you wish to use as a label

and follow it with a colon (:). For instance, say the data input portion of a program began at line 90 and

the calculation of results at line 250. We could label these sections as follows:

the previous section, we could type:

)
4z

and

Labels are not designed as substitutes for line numbers. They are merely additional names for program
lines.

-y
o B d

Labels can be used in this manner not only with the {3 7ii statement but also with other statements that

we will learn later in this course: the several types of [F - THE statements which we will study in
chapter 12 and the &2

R

i statement which is introduced in chapter 20 as well as with the ¥
statement which is explained in chapter 17.

Tell Your Program Where It Can Go 11-3

Labels can have the same format as variable identifiers, which we studied in chapter 7. They may consist
of upper or lower case letters and/or numerals. The first character must be a letter. As with variable
identifiers, they cannot be the same as any HP-86/87 BASIC word.

FiIT: A Command
I'd like you to use a new time-saving command, ¢ to enter the 11 statements of “Beep,” an example

&, and =01 TEL After a little work with Fiil T,

you'll enter and run “Beep.”

Clear your screen and press (A) (U)(T)(O)(END LINE). See the statement number 1 & appear automatically
at the left margin of the next line. Now press (ENDLINE) and see the line number =& appear. Press

ahead.

Using HUT{! with no argument (that is, with no numbers typed in before is pressed)
automatically numbers your program lines starting at 10 and advancing 10 every time is

A,)

pressed, giving the usual 1, 21, ... series of line numbers.

Once you have your automatic line number generator going, how do you stop it? Simple. Press +
to erase the last LI T (i generated line number, then use the HiiF il command (type the word
ifii., then press). You’ll use this method when you enter the “Beep” program a little later.

LEe
L

Here are two other ways to cancel HiiT 1k

a. Say you wanted to display a listing of the program or program segment you have just entered using
11T Pressing will list your program and also cancel #1171,

b. Say you wanted to run the program you have just entered. Press (RUN). Your program will run

(hopefully), and .71 I will be cancelled.

The Fill 71 typing aid allows the FL1T i1 command to be executed by pressing

(SHIFT) + (XBE) (k1) (END LINE)

Say you wanted to start numbering at 100, and advance 5 numbers for each line. You'd press

(SHIFD + () (D (D (@ (@ () (5) (ENDLINE)

11-4 Tell Your Program Where It Can Go

Fil.. command was executed.

50
RUTO 100, 20
100

120

140

160

180

AUTO 1000, 100
1000

1100

1200

1300

Figure 78.

Example: “Beep” Program

To fix FLiT i in your mind and to enter “Beep” at the same time, follow these keystrokes and instructions.

a. First, scratch memory.

b. Next, clear your screen.
c. Press (1) (O) (ENDLINE) or use the typing aid, and see i & displayed on the next line.
d. Press(1) A (B)(E)(E)(P)(END LINE) and see

e. Now your screen should look like this:

displayed on the next line.

AUTO
10 ' BEEP
20

Pan

Tell Your Program Where It Can Go 11-5

f. The “Beep” program CRT listing is shown below:

7o
£
4

' HEERF

CRT I 1.0

NOF AL

CLEAR

Interval =200 ! INITIAL VALUE OF INTERVAL BETWEEN REEFS.
DIGSF "T0O S7T0F, "BEEF,” FRESS FAUSE."

BREEF

WelIT Interval

Interval=.%9%Interval

16e GOTEHD 7a
112 END

g. Now enter statements 20 through 100 inclusive, letting the HP-86/87 display your line numbers for

you.

h. Now your screen should look like this:

1
26
e
a0
20}
&l
T
=1t}
P
1Ge
11@

AUTO

' BEEF

CRT I8 1,80

NORMAL

CLEAR

Interval =206 ! INITIAL VALLWE OF INTERVAL RBETWEEN REERS,
DISF "TO STOF, "REEF,” FREBS PAUSE."

BREEF

WAIT Interval

Interval=.2%Interval

EOTO 7o

11-6 Tell Your Program Where It Can Go

i. Now press (E)(N)(D) and see:

ALIra
1o 1 REER®

2@ CRT IS 1,86

2 NORMAGL

4o CLE/AR

S0 Interval =2009 | INITIAL VALUE OF INTERVAL BETWEEN REEFS,
&2 DIGF "TO STUF, *REEF.° PRESS FAUSE.Y

7 BEER

8o WAIT Interwval

@3 Interval=.%%Interval

1@@ GOTO 7@

11d END

1za

j. Tocancel the HiI'T i command, press (SHIFT) + (E&K),

1#il.. command, and see:

AUTE

L@ ' HEEF

@ CRT IS 1,86

2@ NORMAL

4@ CLEAR

S Interval=2000 ' INITIAL VALUE OF INTERVAL RETWEEN BEEFS.
&4 DIBF "TO STOF, “EEEF,” FRESE PAUSE. "
7 BEEF

8¢ WAIT Interval

P¢ Interval=.%9%Interval

1ad GOTO 7a

11¢ END

NORMAL

Tell Your Program Where It Can Go 11-7

i

k. Toconfirm that ili7T (! has been cancelled, try to generate line number 120 by pressing (END LINE):

1@
v]
v
4G
S
&
70
g
P

The HP-86/87 generates a blank line with no line number, so

P

AUT

'OREEF
CRT s 1.80
NCHRMAL.
CLEAR

Interval=2@da | INITIAL VALUE OF INTERVAL

LISE "TO sTOF, "HEEFP,” PRESS FAUBE.M
EEEF

WAIT Interval

Interval =, 2% Interval

la¢ 5070 7@
11¢ END
MNORMAL

should see:

i@
2@
o
4
S
o
7o
8@
4]

BETWEEN BEEFS.

4TI has indeed been cancelled.

. To confirm that “Beep” has been successfully entered, clear your screen and press (LST). You

! BEEP
CRT IS 1,80

NORMAL

CLEAR

Interval =209 ' INITIAL VALUE QOF INTERVAL
DISF "TO BSTOF, "BEEF.’ PRESS FAUSE."

HEEF

WEIT Interval

Interval=.%9%Interval

lagg GOTO 76
1id END

e
2R25@

BETWEEN BEEFSG.

11-8 Tell Your Program Where It Can Go

! statement is replaced in the flowchart

i statement, as all BASIC
programs should, but when the “Beep” program is executed, & 14L! is never reached. The program goes
into an endless loop. Fortunately, pressing stops the beeping.

START

[INITIALIZE | Lines 10-40

A flowchart of “Beep” is shown in figure 79. Notice that the &

by a line which traces the flow of the program. This program has an

| INTERNAL = 2000 | 50

DISPLAY MESSAGE: 60
TO STOP, PRESS PAUSE

- -1
=y
[BEEP 1 70
Endless *
[WAIT INTERVAL] 80
loop 4
r CALCULATE NEW INTERVAL| 90
=.9 *INTERVAL
. '———<—|
/ END 110
This line
replaces the
GOTO statement,
line 100

Figure 79. Flowchart for “‘Beep””

These four statements

are executed over and over. Each time they’re executed, Interval gets smaller and smaller (10 percent
smaller each time) until it becomes small compared to the execution time of these four statements. At this
point, a further decrease in Interval is not audible. The small delay between beeps is due primarily to the

execution time of these statements.
Run “Beep” if you wish.

Example: A “Beep” Program Using a Label

We can easily modify our “Beep” program to use i:Li T {f with a label. Press (LIST) and see your “Beep”
program listed on the screen. Then enter the lines:

(Don’t forget to press after each line is typed, in order to enter the line.)

Tell Your Program Where It Can Go 11-9

Now list your program again. It should look like the following listing.

14 ! BEEF

20 CRT I8 1,8

2@ NORMAL

4 CLEAR

S@ Interval =2owa ! O INITIAL VAaLUE OF INTERVAL BETWEEN REEPS,
ao DISF “TO 8TOF, “BEEF, " FPRESS PAUSE."
7@ BEEFER: REEF

20 WARIT Interval

Go Interval=.9%Interval

1@ GOTOG BEEFER

119 END

We have just used the label i at the beginning of the endless loop section (see the ﬂowchart in
figure 79) and told the HP-86/87 to go back to that point in the program with the 7%
statement at line I ¢

1. Otherwise, it works exactly the same as the original program.

Problem: Work With the “SECRET” Program

Here’s an exercise that will make ! a more familiar BASIC word. Load “SECRET” from your

BASIC Training disc. When you run it, you'll see the program print a partial listing of itself. This is

possible because 1. I %7 (and i. f)are programmable Now run “SECRET” and trace the flow of the

program portion you see listed. Rewrite it omitting all ¥

I} statements. That is, end up with a new

program consisting primarily of ¢ statements that print the secret message when the new

program is run.

i

Hint: Not all the i1 statements in “SECRET” are part of the secret message.

Another challenge: Find an easy way to print the message without rewriting the program.

To see the answers, go to page H-29.

Summary of Chapter 11
i it ABASICWord

General form:

line number } i no. of milliseconds

Al

then continue execution automatically with the next statement.

i statement instructs the program to halt execution for the specified number of milliseconds,

11-10 Tell Your Program Where It Can Go

Example:

When this statement is executed, the program halts for 1000 milliseconds (one second), then

continues execution automatically.

A BASIC Word

General form:

fine number k.

o LiITLE ABASIC Word

General form: 5. Y

line number 15517 {1 line number

i:11TLl statement instructs the program to execute next the statement whose line number follows

Example:

When statement 128 is executed, program execution moves to line 517. Line 517 is the next line
executed after the execution of line 128,

¢ Labels: A Convenience

Labels may be used to refer to line numbers in i (or other similar) statements. Labels consist of i
a word or a combination of letters and/or numerals identical in format to variable identifiers. Upper
or lower case letters are allowed. The first character must be a letter. Labels are always followed by a

colon. Example:

They are not substitutes for line numbers, but are merely another name for a line number. Labels
cannot be the same as HP-86/87 BASIC words.

Tell Your Program Where It Can Go 11-11

LIS A Command
Automatically displays a new line number each time (END LINE) is pressed. Useful when entering
program statements into memory.
To begin the line number series 10, 20, 30, 40, 50, ... press o) or use the HilT1
typing aid on special function key (k1), by pressing END LINE).
To begin another line number series, execute i1.i T i [first line no.] () [interval between line numbers]
(ENBIRE).
Example: To begin the line number series 100, 150, 200, 250, 300, ..., execute LT A (D) (0) (@) ()
(5)(0)(END LINE).

. ‘1] command, press +($%) to erase last line number. Also, executing the

i command will cancel 7,

Review Test for Chapter 11

This test reviews material from earlier chapters as well as from chapter 11. It is on your BASIC Training

disc. Insert your disc, then execute i. LB 2", and run it. Your instructions will

appear on the screen. Program “TEST11” will also give you the answers. May you do well.

Chapter 12

Teach Your Program to Make Decisions

o~
Preview
In chapter 12, you will learn how to:
e Teach the HP-86/87 the difference between bigger, the same size, and smaller.
® Teach the HP-86/87 the difference between true and false.
e Tell the HP-86/87 to go this way if something is true, or that way if the same thing is false.
e Tell the HP-86/87 to stop.
e Tell the HP-86/87 to go this way if two things are true, or that way if either of the two things is false.
e Tell the HP-86/87 to go this way if two things are false, or that way if either of the two things is true.
& Tryyourluck at the Craps table.
e Write a program that sizes people up.
M ¢ Write an HP-86/87 Sweepstakes program giving all who enter an excellent chance to win big money.
® Write three other programs, including two quizzes.
Conditional Expressions
You're soon going to become immersed in [¥ ... | i statements. These are concerned with the truth of
such expressions as
Aisbiggerthan B
X7is smaller than 7
YisequaltoM +3
As you’ll learn later, the action of an 1§ statement depends on the truth of such expressions;
that is, the action is conditional on the truth of such expressions. That’s where the term “conditional
— expressions” comes from.

BASIC borrows math symbols for these conditional expressions as follows, where “A” and “B” each
stand for any number, variable name, or numeric expression, like 3*C/7+D.

(A > B) means A is greater than B.
(A =B) means A is equal to B.
(A <<B)means Aisless than B.

The parentheses are optional.

12-1

12-2 Teach Your Program to Make Decisions

How about A is not equal to B?

(A <>B)or(A # B) means A is not equal to B

Here are the locations of the keys you press to get these symbols displayed.

shifted function of the key, two keys right of (M).
= the (L] key, two keys left of (Z5%) (but you knew that already).
“: the shifted function of the (T) key, just right of (M).
= first type *, then type .
#: the shifted function of the ({) key, above (E).

For “not equal to,” you may type either = = or #,.

Here are some examples of conditional expressions that are true:

4 <5 48 <49
6#2 49> 48
6>2 49 <>48
3=3 48 # 49

Test 12A: <,>,<>and#

A little drill won’t hurt. Load “TEST12” and run it. The “TEST12” program is on your BASIC Training
disc.

More Conditional Expressions

BASIC allows the truth of two more conditional expressions to be determined:

(A <<=B) means A is less than or equal to B.
(A >=B) means A is greater than or equal to B.

Examples of true conditional expressions:

4<<=5
6>=2
6>=6
4<=4
4>=4

Test12B: <=and>=
Run “TEST12" at line 3000 for another drill.

Teach Your Program to Make Decisions 12-3

Ie . THEMN: ABASIC Word

a question. I i

An example:

In this program segment, if A equals B; that is, if the conditional expression A = B is true, then program
execution “branches” to line 70. C then becomes the product of A and B. However, if A is not equal to B,
the conditional expression A = B is false. There is NO branching to line 70. Instead, the next line, 50, is
executed, and C becomes zero.

. (Remember, a

label is just a different way of specifying a line number.)

Instead of branching to a line number after T i you could use an executable statement. For example,

you could use an assignment statement, such as I i1, if it were appropriate, or take the opportunity to

print or display a message.

line number
label
executable statement

later.)

Assignment Statement vs. the Conditional A=B

Take another look at lines 40 and 50 in the example above. The expression i in line 50 is an

assignment statement because it does follow directly after the line number 50. However, the expression

% in line 40 is not an assignment statement because it does rot follow directly after the line number 40.

Example: “Less Than Five” Program

10 | LESS THAN FIVE

20 DISP "ENTER ANY NUMBER."

30 INPUT A

40 IF A>= 5 THEN 70

30 DISP "YDOUR NUMBER IS LESS THAN FIVE."

BEO GOTO B8O
70 DISP "YOUR NUMBER IS 5 OR GREARATER."
80 END

Figure BO. Listing for ‘’Less Than Five"

12-4 Teach Your Program to Make Decisions

Enter and run this program (figure 80). Run it several times. Try to fool it. Perhaps, one time, the
HP-86/87 will think four is greater than five. Figure 81 shows the flowchart for “Less Than Five.”

START A = Any number

DISPLAY MESSAGE: | , .
ENTER NUMBER | € 20
Y
| INPUT A | 30
v Y
—< A> =57 > 40
YN
Y DISPLAY MESSAGE: |
A IS LESS THAN 5
——
- ¥ This line
DISPLAY MESSAGE: 70 [<—Tepresents
A IS 5 OR GREATER. 60 GOTO 80
END 80

Figure 81. Flowchart for “’Less Than Five'’

Note the new conditional expression flowchart symbol:

<>

This symbol is used in this course whenever a true-false or yes-no decision is to be made, and results in a
branching of the program flow.

Here is another conditional expression symbol:

Itis used in your operating manual, and is often used by professional programmers.

When statement 40 in “Less Than Five” is executed, the value A is compared to 5. If A is greater or equal
to 5, the expression A > = 5 is true (the answer to the question: Is A > = 5? is YES) and program
execution branches (goes to) line 70. If A is not > =5, the question: Is A > =5? gets a NO answer (the

expression A > =5 is false), no branching occurs, and line 50 is the next statement executed.

Teach Your Program to Make Decisions 12-5

A BASIC Word

is one of the simplest BASIC words around. It operates just like &

i, except it may be used as any

program statement but the last, whereas i 14ii should always be the last statement in a program. =

also uses the same flowchart symbol as

Ess)

The availability of

I suggests a change in “Less Than Five.”

Problem: Modify “Less Than Five” Program

Change one line in your “Less Than Five” program to a ' “ statement without affecting the visible
operation of the program. Run your revised program to confirm your solution. Finally, draw a flowchart

of your revised program.

To check your solution against mine, see page H-30. My flowchart shows line numbers, but they are

optional. Most flowcharts do not show line numbers.

Example: “Social Security, Anyone?” Program

10 | SOCIAL SECURITY, ANYOME?

20 DISP "HOW OLD ARE YOU";

30 INPUT RGE

40 IF AGE<ES THEN 80

SO DISP "YOU SHOULD BE RECEIVING SOCIAL SECURITY PRYMENTS, ;
60 DISP "SINCE YOU’RE";AGE;"YEARS OLD."

70 STOP

80 DISP "YOU’RE TOO YOUNG FOR SOCIAL SECURITY PAYMENTS, ";

90 DISP "SINCE YOU’RE";AGE;"YERRS OLD."

100 END

Figure 82. Listing for "’Social Security, Anyone?’’

Enter and run “Social Security, Anyone?,” figure 82,

Problem: Flowchart for ““Social Security, Anyone?” Program
Draw a flowchart for this program. To see an acceptable version, turn to page H-31. Again, line numbers

on the flowchart are optional.

Problem: Shorten ‘““Social Security, Anyone?” Program
Now shorten this same program by one step without affecting its visible operation. Run your revised
program to make sure it operates the same way. To see my listing and flowchart, turn to page H-31.

Again, line numbers on the flowchart are optional.

12-6 Teach Your Program to Make Decisions

it expression was not true the T}

statement was ignored and the program went on to the next line? The 1 .., THiH

statement
allows you to do something other than just go to the next line. It can be used to send execution to some

remote part of the program as with a =i T LI statement, or can be followed by an executable statement, for

instance, to display or print a message.

- statement can take are:

] statement number statement number
tabel label
executable statement executable statement

With the

[Statement

Teach Your Program to Make Decisions 12-7

I won’t make you refer to your BASIC Training Supplement for the answer to this one; it is:

10 | SOCIAL SECURITY, RANYOME?

20 DISP "HOW OLD ARE YOU";

30 INPUT Age

40 IF Age<ES THEN DISP "YOU’RE TO0O YOUNG FOR";ELSE DISP "¥0U SHOULD BE RECEIVING

S0 DISP " SOCIAL SECURITY PAYMENTS,
680 END
Problem: Write the “Size” Program

Program Description. This program tells the user whether he or she is above average height, near
average height, or below average height for his or her sex.

Important Data. For this program a man is said to be near average height if he is 68, 69, 70, or 71 inches
tall. A woman is said to be near average if she is 63, 64, 65, or 66 inches tall.

Hint. In your answer to programming question 4, you might have the user of your program enter one
number if male and another number if female. After your I HF

statement, you could then branch to a
particular part of your program depending on the user’s sex.

Your Turn. Answer the four programming questions in a way that will be most useful to you. The four
questions are repeated below. Use descriptive multicharacter names for variables and branch to labels
rather than line numbers.

Programming Questions (from page 9-1)
1. What answers do I want?

2. Whatthings do I know?

3. What methods will I use to find answers using things I know? That is, how would I solve the
problem using paper and pencil?

4. How can BASIC and the HP-86/87 help me find answers?
My answers to these questions are on page H-32. Compare your answers against mine before proceeding.

Next, draw a flowchart for “Size.” A flowchart that worked for me is on page H-33. Compare your

flowchart against mine before continuing.

Finally, write your version of “Size.” To see one way to write this program, turn to page H-34.

12-8 Teach Your Program to Make Decisions

If you had trouble writing a workable program, rest assured you have plenty of company. Study my
flowchart and my listing. Modify your program based on the ideas they present. Of course, your messages
will be different, and you may do things in a different order. One important thing is to write a program
that solves the problem. Another important thing is to study and understand how my version works.
Some of the techniques I use may be useful to you later on and may suggest other techniques I haven't

mentioned.

As always, the better you understand what you're doing now, the easier, more useful and more fun the rest
of the course will be,

Writing the following two programs will give you more opportunities to use your new 15 ...

Problem: Write the ‘“Sports Quiz”’ Program

Program Description. Test your friends’ knowledge of the sports world with this sports quiz. The
names of six athletes are printed, and six sporting events are displayed. The user is asked to enter the
number of the athlete associated with each sporting event. If the user enters the wrong athlete number, he

is given another chance. In fact, he is given as many chances as he needs.

Each athlete is associated with one and only one event.

Important Data. Here are the athletes and the events:

The Athletes: The events:
1. Mark Spitz 1. First Olympian to win 7 gold medals in single Olympics,
2. Don Larsen 2. First perfect game in world series history.
3. Nadia Comaneci 3. First perfect score in Olympic gymnastics.
4, Mickey Wright 4. Most golf victories in a single year.
5. Bob Beamon 5. World record shattered in long jump.

6. Roger Bannister 6. Four minute barrier is broken in the mile run.

Teach Your Program to Make Decisions

Hint. To help you write “Sports Quiz,” you might wish to refer to my flowchart in figure 83.

1 = Mark Spitz

2 = Don Laisen

3 = Nadia Comaneci

4 = Mickey Wright

5 = Bob Beamon

& = Roger Bannister
ANS 1= ANSWER TO 13T EVENT
ANS 2 = ANSWER TO 2ND EVENT
ANS 3 = ANSWER TO 3RD EVENT
ANS 4 = ANSWER TO 4TH EVENT
ANS 5 =ANSWERTO 5TH EVENT

ANS 6 = ANSWER TO 6TH EVENT

sTaAT
| FIENT MEREAGE DUIZ R
[[osrrar sromms svent awn e |
n
DISPLAY MESSAGE. RIGHT ANGWEN_ |

[INTIALIZE |
A LIST OF 6 ATH

[IHPUT RS]

| mssLay usssace wRcnG answen |

| [HSELAY SPORTS FVENT. FIRST PERFECT

L]
TICHE J
¥
WORLD SEAIES (GAME

I INPUT NS 2 |
v
ANS2=I7
L)
[Cospiav messaar_waang answen |

——

[oweray wessane R suwer |

DISPLAY SPORTS EVEMT: FIRET FE
SCOAE IN OLYMAIC GYMNA!

| NPT AHiS A]

v
N34T

5

I_ CASPLAY MESSAGE: WHOMNG ANSWER |

[ompun messace miaet anawen |

DISPLAY SPOATS EVENT: GROKE
WORLDS RECORD 1N LONG JME

_—.Y

| INFUT ANE §]

B
AMSE &7

H
[Cospiar wrssect wiong anseen |

LISFLAY MESSMIF - FIGHT ANSIWER

TS FVENT- MOST GOLF
ACTORIES 1N SINGLE YEAR

| DISPLAY MESSALE MIHT ANGWER |

[DISFLAY MESSAE END OF UL |

Figure 83. Flowchart for “'Sports Quiz"’

12-9

12-10 Teach Your Program to Make Decisions

Your Turn. Write your “Sports Quiz” program. Store it temporarily, if you wish, using the name
“WORK.” My listing is on page H-35.

Problem: Write the “Science Quiz"” Program

This “Science Quiz” program is similar to “Sports Quiz,” except the names of six scientists are printed
and six discoveries or inventions are displayed. Again, one scientist is responsible for one and only one of

the six scientific contributions.

Important Data

The scientists: The contributions:
1. IvanPavlov 1. Conditioned reflex, 1910.
2. Sir Isaac Newton 2. Law of gravity in 1687.
3. Thomas A. Edison 3. Incandescentlamp, 1879.
4. Eli Whitney 4. Development of the cotton gin, 1793.
5. Lord Kelvin 5. Second law of thermodynamics, 1851,
6. Marie Curie 6. Discovery of radium, leading to radiotherapy.

Your Turn. Write your “Science Quiz” program. If you wish, store it temporarily using the name
“WORK.” My flowchart is on page H-37 and my listing is on page H-38.

Abridged Dictionary of Computer’s BASIC Language

You may have already discovered this section at the back of the BASIC Training Pac Supplement,
starting on page AD-1.

This dictionary collects all the BASIC words, commands, functions, and mathematical operators covered
in this course. If you forget how to use a particular BASIC word, for instance, this dictionary can help
you. The index at the back of this workbook can also be a help. As an example, if you wish to store a

program and forget how to display the disc catalog, you can find help in the dictionary, page AD-5, or in
the index under “Catalog.”

A BASIC Word

Let’s say you wrote a program to tell a visitor from outer space whether or not today is Christmas. The

visitor would enter today’s date expressed as a month number and a day number. The program might
include these statements:

4 N,

Teach Your Program to Make Decisions 12-11

Depending on the values of Month and Day, statement 100 presents 4 possibilities:

Month =127 | Day =257 | Next Line Executed
NO NO 110
YES NO 110
NO YES 110
YES YES 130
The general form of I ... FIMIT . THERMis [F both (Ais true) FiFill (Bis true) THEM go to line number or

label or executable statement.

Otherwise, go to the next line.

Example: “It’s Christmas’ Program

Figure 84 shows the flowchart for “It’s Christmas” and figure 85 shows its complete listing. Using the
flowchart as a guide, study the listing until you feel comfortable with its operation. Then enter this
program and run it. Try a number of inputs. Get ready for those visitors.

12-12 Teach Your Program to Make Decisions

START

DISPLAY MESSAGE:
ENTER MONTH NUMBER

[INnpuT I\:IIONTH]

DISPLAY MESSAGE:
ENTER DAY NUMBER

1

| INPUT DAY |

¥

MONTH =12 \
AND DAY = 257
YN
DISPLAY MESSAGE: 10 | IT/S CHRISTMAS

IT'S NOT CHRISTMAS 20 DISP
30 DISP

* 40 DISP "ENTER MONTH NUMBER (1-12).,"
STOP SO INPUT Month
60 DISP
v

- 70 DISP "ENTER DAY NUMBER (1-313."

80 INPUT D
DISPLAY MESSAGE: 30 DISP &
IT'S CHRISTMAS! 100 IF Month=12 AND Day=25 THEN 130

110 DISP "SORRY, IT’S NOT CHRISTMARS."

120 STOP
m 130 DISP "IT’S CHRISTMAS."
140 END

Figure 84. Flowchart for “’It's Christmas’’ Figure 85. Listing for “It's Christmas””

Problem: Write the “Temperature Conversion’’ Program

Program Description. The program asks the user whether he wishes to convert from Fahrenheit to
Celsius degrees or from Celsius to Fahrenheit degrees. Based on the reply, the program asks for a
temperature to be entered and then displays the converted temperature. To convert another temperature,

the user runs the program again.
If the user makes an input error when asked which conversion he wishes, he is asked again.

Important Formulas. To convert from Fahrenheit to Celsius degrees:

F=9/6%C+32

To convert from Celsius to Fahrenheit degrees:

C=5/9%(F—32)

Teach Your Program to Make Decisions 12-13

Hint. Your program might ask the user to enter 1 if he wants to convert from Fahrenheit to Celsius
degrees, and to enter 2 if he wants to convert from Celsius to Fahrenheit degrees. Then your program can

test the user’s input. If his input is not 1 and also not 2, he has made an input error. You can then have

your program present the input message again,

Your Turn. Draw a flowchart and write a program to help you enter the metric age. Or, if you're already
there, your program will help you to understand those who aren’t. If you wish to interrupt your

programming, remember to store it using the name “WORK.”

My flowchart and listing start on page H-39.

A BASIC Word
Consider the dice game Craps. On the first throw, the shooter wins if his dice total either 7 or 11, A BASIC

program written to play a form of Craps might contain these statements:

Depending on the value of TOTAL statement 360 presents three possibilities:

TOTAL=7? | TOTAL=11? | NextLine Executed

NO NO 370
YES NO 430
NO YES 430

In general, there are four possibilities if two different variables are used in the Ii

statement.

Consider this program segment:

12-14 Teach Your Program to Make Decisions

Depending on the values of A and B, statement 250 presents four possibilities:

A =27 B=5? | NextLine Executed
NO NO 260
YES NO 300
NO YES 300
YES YES 300
The general form of I F ... 1 THERs I 4 go to line number

Example: “CRAPS” Program

This program allows you to play Craps with the HP-86/87. You always throw the dice, and you always
choose the size of the bet. The HP-86/87 always fades your entire bet; that is, the HP-86/87 always bets an
equal amount. Let me review the rules. On your first throw, you win with a 7 or 11 and lose with 2, 3 or 12.
Any other total (4, 5, 6, 8, 9, 10) becomes your point. On subsequent throws, if you throw your point, you
win. If you throw a 7, you lose. If you throw any other total, you neither win nor lose, you simply throw
again.

The “CRAPS” program is on your BASIC Training disc. Execute L.
(RUN)). I hope you have a hot streak.

" and run it (press

Now that you've won (lost?) all that money, look at the listing for “CRAPS,” figure 87. (You could easily
generate the identical listing from the “CRAPS” program you just loaded and ran.) Notice, in lines 50, 220
and 230, that [preview two BASIC words, i
chapter 18. These allow you to “throw” dice using the HP-86/87 with virtually the same element of chance

as if you were tossing the cubes yourself.

and P (for random). You’ll study these in

Now take a look at the flowchart, figure 86. Fifst, satisfy yourself that the flowchart follows the flow of
the game and the rules described above. Next, compare the flowchart with the listing, figure 87. Relate
each task on the flowchart with the corresponding lines on the listing. Before too long, I’ll be asking you
to write programs this complex.

More About Flowcharts

Lay your eyes once again on the “CRAPS” flowchart, figure 86. It is written using English words rather
than BASIC words.

Teach Your Program to Make Decisions 12-15

START

Lines
| INITI?LIZE I Pt
1 DISPLAY INSTRUCTIONS] 80-120

| INITIALIZE AND ENTER BET _]130-170

| DISPLAY MESSAGE: THROW DICE |180—1 920

- T
i |

ROLL DICE, DISPLAY EACH DIE'S 200-280
COUNT, AND CALCULATE TOTAL COUNT
< FIRST THROW?)ﬁ 290
/]N
| FIRST THROW COMPLETED | 350
300 Y Y Y
4 Wi F? > < Wi {q? > 360
N Y N
310
< LOSE? e Y 0sE > 370-380
N N¥
[[| DISPLAY POINT |390-410
320-330 ¥ “~
DISPLAY MESSAGE: This is
THROW DICE AGAIN ¥ ¥ line 420
This - |
el i }
line
240 4 DISPLAY MESSAGE: |[530 DISPLAY MESSAGE: |40 440
YOU LOSE 540 YOU WIN
' '
MAKEWINNINGS | . MAKEWINNINGS |,
NEGATIVE POSITIVE

e N) |
This Thisis __—7 b
is line 560 |__CALCULATE AND DISPLAY WINNINGS]460-510
line 520 B !

Figure 86. Flowchart for “CRAPS"’

12-16 Teach Your Program to Make Decisions

10 ! CRAPS

20 NORMAL

30 CLERR

40 CRT IS 1,80

50 RANDOMIZE

BO WIN=Q

70 TOTWIN=O

8O DISP

90 DISP

100 DISP "YOU AND THE HP-86-87 HAVE AGREED TO PLAY CRAPS. YOU WILL RLMWAYS THROW
THE DICE,"

110 DISP "AND YOU WILL ALWAYS CHOOSE THE SIZE OF THE BET."
120 DISP "THE HP-BB6-87 WILL ALWAYS MATCH YOUR BET."
130 POINT=0

140 ROLL=0

150 DISP

160 DISP "HOW MUCH DO YOU BET (WHOLE DOLLARS ONLY, PLERSE)";
170 INPUT BET

180 DISP

190 DISP "Y0OU THROW YOUR DICE AND SEE:"
200 WRIT 1000

210 TOTAL=0

220 DIE1=INT (B%RND +1)

230 DIEZ=INT (E%RND +1)

240 DISP

250 DISP " “;DIET;" ";DIEZ
260 DISP

270 WRAIT 1000

2B0 TOTAL=DIE1+DIEZ

290 IF ROLL=0 THEN 350

300 IF TOTAL=POINT THEN 430

310 IF TOTAL=7 THEN S30

320 DISP

330 DISP "YOU THROW AGAIN AND SEE:"
340 GOTO 200

350 ROLL=1

360 IF TOTAL=7 OR TOTAL=11 THEN 430
370 IF TOTAL=2 OR TOTAL=3 THEN 530
380 IF TOTAL=12 THEN 530

350 POINT=TOTAL

400 DISP POINT;"IS YOUR POINT."

410 WARIT 1000

420 GOTO 320

430 DISP "YOU WINI"

440 DISP

450 WIN=BET

460 WAIT 1000

470 TOTWIN=TOTWIN+WIN

480 DISP "YOUR TOTAL WINNINGS ARRE ";
490 DISP TOTWIN;"DOLLARS."

SO0 WARIT 1000

510 DISP

520 GOTOD 130

530 DISP "SORRY, YOU LOSE."

540 DISP

550 WIN=-BET

560 GOTO 460

570 END

Figure 87. Listing for “CRAPS’’

Teach Your Program to Make Decisions 12-17

Compare this flowchart for “CRAPS” with the flowchart for “It's Christmas,” figure 84, which uses
BASIC words and phrases like “INPUT DAY” and “MONTH =12 AND DAY = 25.” A BASIC language
flowchart is generally more detailed. Each flowcharted task represents, in general, only a few statements.
For example, no symbol in the “It’s Christmas” flowchart, figure 84, represents more than three
statements. On the other hand, a flowcharted task in an English language flowchart may represent many
statements. Notice how the task symbol in the “CRAPS” flowchart containing “Roll dice, display each
die’s count, and calculate total count” represents 9 statements. When you write a program, it is natural to
construct an English language flowchart, and use BASIC language only when you write your program

statements.

Most of my flowcharts will use more BASIC than English language. When I give you both flowchart and
listing, as I often do with example programs, a BASIC language flowchart allows easier comparison
between flowchart and listing. For problem programs, where I ask you to construct a flowchart and write
a program, you might get stuck and want to use my flowchart as a hint. In this case, a BASIC language
flowchart might be a better hint than one using primarily English words.

Back to Conditional Statements

In a statement like

£

you might find it useful to use parentheses as shown around each conditional expression to help clarify
the statement. However, they are not required. The HP-86/87 is just as happy with

and your listings will omit parentheses.

Both of the examples you just studied, “It’s Christmas” and “CRAPS,” use equalities in the two

conditional statements. For instance, line 100 in “It’s Christmas’"

Of course, the conditionals within the parentheses need not be equalities. Any conditional expression
may be used, such as:

In each case the truth of the first conditional expression is determined first, then the truth of the second

expression is determined, and finally the HP-86/87 decides whether or not to branch to the line number

following 7'+

12-18 Teach Your Program to Make Decisions

Problem: Write the “Sweepstakes’” Program

Tired of entering those junk mail sweepstakes and never winning? Here is a sweepstakes designed for
youT The HP-86/87 Sweepstakes program you will write will not only prov1de you w1th a tidy bundle, but it

Program Description. “Sweepstakes” first displays a message stating that the certificate number to be
requested later should be a whole number between 1 and 9999. The program then calculates a lucky
number and asks for the certificate number. The certificate number that is entered is tested to see if it is a
whole number between 1 and 9999, If it is not, an appropriate message is displayed, and another
certificate number is requested.

When the number passes the test, the certificate and lucky numbers are compared to determine what
prize, if any, is won. Most often, nothing is won, but prizes of $100, $10,000, $250,000 and $1,000,000 are
possible. After this comparison is completed, an appropriate message of failure or success is displayed.
The lucky number is then recalculated, and another certificate number is requested. The program

operates as an endless loop—the =Mt} statement is never reached,

Important Expressions and Definitions. “Sweepstakes” also previews 81
same new BASIC words used in “CRAPS.” Use

». as an early statement, such as:

and use [as shown in expression 1 below:

1. LUCKYNUM =INT (9999 * RND + 1)
Where LUCKYNUM = Lucky number

2. $1,000,000 winner: CERT within 50 of LUCKYNUM.
Where CERT = Certificate number

3. $250,000 winner: CERT within 400 of LUCKYNUM.
4. $10,000 winner: CERT within 900 of LUCKYNUM.
5. $100 winner: CERT within 2000 of LUCKYNUM,

Hint. To test the certificate number you’ll enter when you run the program, use two statements. One can
check to see if the number is smaller than 1 or larger than 9999. If it is, vou entered an incorrect certificate
number. The other can check to see if you entered a whole number; that is, an integer. If CERT is an
integer, CERT would equal INT(CERT). If it doesn’t, the number doesn’t pass the test. Only if CERT
passes both of these tests is it then compared against LUCKYNUM to determine your winnings.

Your Turn. This is your toughest challenge so far. If you complete a satisfactory program without

getting too much help, you’ll be in good shape to continue.

Teach Your Program to Make Decisions 12-19

You’ll find the answers to the first three programming questions (see below) to be no more difficult than
the ones you've already completed. Answering the fourth question will require more thought, but you
have all the tools you’ll need. Remember, the more effort you put into solving this problem yourself before
turning ot the HELP Section, the more you’ll learn.

Here are the questions:

1. What answers do I want?
2. What things do I know?

3. What methods will I use to find answers using things I know? That is, how would I solve the
problem with paper and pencil?

4. How can BASIC and the HP-86/87 help me find answers?

The more completely you answer these questions—especially question 4—the easier time you'll have with
the flowchart and program.

My answers to the questions are on pages H-41 and H-42, Check your answers against mine before

continuing.

Now draw your flowchart. Compare yours against mine on page H-43.

Using your flowchart as a guide, write your program. Remember

E

if you want to store your unfinished

program on your BASIC Training disc, execute =7 iii Get it back by executing

i Bip BT RT3
i i i Em I

Note: You can only store one program in “WORK."” Each time a new version is stored, the old one is

destroyed. Use a different file name if you want to keep the old version.

When you’ve finished, compare your “Sweepstakes” against mine on page H-44. Yours may be better.

Summary of Chapter 12

In this summary, “A” and “B” each represent any number, variable name, or numeric expression.
¢ Conditional expressions

(A > B) means A is greater than B.

(A = B) means A is equal to B.

(A <B) means A isless than B.

(A <>B)or(A#B)means A is notequal to B.
(A <= B) means A is less than or equal to B.

(A >= B) means A is greater than or equal to B.

12-20

Teach Your Program to Make Decisions

Difference between assignment statement ' i and conditional expression i

In the assignment statement, ¥ =i directly follows a line number. The conditional expression Fi:= E

never directly follows a line number.

IF .. THEM: ABASICWord

General form:

line number
line number 1 ¥ conditional expression T it fabel
executable statement

When this statement is executed, the truth of the conditional expression is determined. If the
expression is true, then program execution performs the instruction. If the expression is false,

program execution continues with the next line.

Example:

In statement 45, (A > B) is (6 > 10) which is false. Since the conditional expression is false, program

execution continues with the next line, 50. Branching to line 100 does not happen.

ZTiF: A BASIC Word

General form:

line number =1

When a

execution. :

i each halt program

.1 may be at any line number except the highest numbered line in the program. kM

should appear only at the highest numbered line in the program.

A BASIC Word

General form:

line number line number
label Lk label
executable statement executable statement

fine number 1 F conditional expression |

Teach Your Program to Make Decisions 12-21

If the conditional expression is true the program obeys the instruction following 7}

4, If the
iz 11 portion of the statement and obeys the

conditional expression is false the program skips the T}

instruction following F

Example:

In the example, (A > B) is (5 > 10) which is false, therefore the program skips the instruction !

i, assigning i the value

and instead performs &

General form:

line number
line number I conditional expression i g label
executable statement

If both conditional expressions are true, the program performs the instruction. Otherwise, program

execution continues with the next line.

Example:

In statement 50, (A < B) is (1 < 2) which is true, and (C < D) is (3 < 4) which is true. Since both
conditional expressions are true, the program branches to line 100, Lines 60 through 99 are not

executed.

12-22 Teach Your Program to Make Decisions

A BASIC Word

General form:

line number
fabel
executable statement

line number it

If at least one conditional expression is true, the program performs the instruction. If both

expressions are false, program execution continues with the next line.

Example:

In statement 50, (A = B) is (1 = 2) which is false, and (C < D) is (3 < 4) which is true. Since at least
one conditional expression is true, the program branches to line 100. Lines 60 through 99 are not

executed.

* Flowcharts: English vs. BASIC

When you construct a flowchart to help organize your thoughts, then use the flowchart to help write
your program, it’s natural to use more English than BASIC words to describe your flowcharted

tasks.

However, if you construct a flowchart to help explain in detail how an existing program works, you
might choose to use more BASIC words to describe flowcharted tasks. Then a reader can more easily

relate flowchart tasks to program statements.

The bottom line is still this: Use flowcharting in a way that helps you most.

Teach Your Program to Make Decisions 12-23

Review Test for Chapter 12

The answers to problems 1 through 5 start on page 12-24 immediately following this review test. Program
“TEST12” will direct you to the answers to problems 6, 7 and 8. For each problem, determine at which line
program execution will halt, line 60 or line 70.

Before proceeding, compare your answers to these first five problems with those on page 12-24.

Problems 6, 7 and 8 are on your BASIC Training disc. Insert your dise, load “TEST12” and run it at line
3500. The program will give you instructions and answers.

12-24 Teach Your Program to Make Decisions

Answers to Review Test Questions for Chapter 12
Problems 1-5

1. Line60

(A>B)is (3 >5) which is false
(C <=D)is (7 <=9)which is true

Since both expressions are not true, branching does not occur. The next line, ©

executed, which halts the program.
2. Line70

(A>B)is (3 >5) which is false
(C<=D)is(7<=9) which is true

Since one expression is true, branching does occur to line 70.
3. Line 70

(A < B)is (3 <5) which is true
(C<=D—2)is(7<="7)which is true

Since both expressions are true, branching does occur to line 70
4. Line 60

(A—2=C)is(7=>5) which is false
(B < D)is (7 < 3) which is false

i is executed,
which halts the program.,

5. Line60

{A<B)is(1 <2) whichis true
(C <=D—2)is (3 <=2) which is false

Since both expressions are not true, branching does not occur. The next line, #

executed, which halts the program.

Notes 12-25

Chapter 13

Teach Your Program to Count

Preview
In chapter 13, you will:

® Teach your program to count.
® Learnhow a table can help you plan and check a program that loops.
® Modify two example programs to make them perform fancier tricks.

® Write three new programs.

Counter Basedon A=A + 1

This is an important programming concept. Put it in a place of honor in your bag of tricks.

Example: “Count” Program

Figure 88 shows the listing for “Count,” and figure 89 is the flowchart.

START

| A= 1 | Line 10
10 RA=1
20 DISP A | DISPLAYA] 20
= men Endless
40 WAIT 500 i
g6 abt0 a0 1650 | INCREASE A BY 1] 30
60 END !
| WAIT 0.5 SECOND | 40
This line END 60
represents
line 50

Figure 88. Listing for ““Count’’ Figure 89. Flowchart for “‘Count’”

Enter “Count” into your HP-86/87 and run it to test its performance.

Each time through the loop, one is added to the old value of A, this new value is assigned to A, then A’s
value is displayed. To stop this endless loop, must be pressed. Or, we can program our way
around it as in the following example:

13-1

13-2 Teach Your Program to Count

Example: “One-Ten” Program

Please enter this new line into “Count”:

Name the new program “One-Ten,” put the title in a remark at the beginning, then execute i
press to get the listing shown in figure 90.

18 ! PROGRAM "QOHE-TEHN"
B A=1

38 DISPF A

48 A=R+1

58 IF A*1B THEHW &8

&8 WRIT 588

78 GOTO 38

86 ENI

28341

Figure 90. Listing for “’One-Ten"’

Figure 91 shows the flowchart for “One-Ten.”

START

| A=1 | Line 20
foe——

| DISPLAYA |30

| INCREASE A BY 1| 40

Y
—Y<_ A= 10? > 50
¥N
|_WAIT 0.5 SECOND | 60

(oo)

Figure 91. Flowchart for “One-Ten’’

This line is
statement 70

Teach Your Program to Count 13-3

As you can see, each time through the loop, the variable A is tested in statement 50 to see if it’s greater
than 10. If the answer is no, the number is displayed, and incremented by one (one is added to the

number). When the statement 50 question is answered yes, the program branches to the & statement.

If you haven’t done so, run your “One-Ten” program.

Problem: Write the “One-Hundred” Program

Modify “One-Ten” to create “One-Hundred,” a program that counts from 1 to 100. You might wish to

{7 statement to speed up the action a little. When you’re finished,

reduce the time interval in the &

compare your versioh against mine on page H-45.

Next, draw a new flowchart. Mine is on page H-45.

These two programs illustrate the power of programming. The same size program gives an output ten

times longer.

=

Example: “Sum 1 Thru25” Program
We want a program that will display the sum of the first 25 integers. That is, whatis1 +2+3+4 + ...+ 24

+ 257 Let’s look at one way to answer program planning questions 3 and 4.

3. What methods will I use to find answers using things I know?

Well, I'll take 1 and add 2 to it and get a sum of 3. I'll then add the next integer 3 to the sum giving a
new sum of 6. Next I'll add the next integer 4 to the latest sum and come up with a newer sum of 10,
etc.

4. How can BASIC and the HP-86/87 help me find answers?

I'll call each of the integers I'm adding together I. I'll form a loop including I = I + 1 (next integer =
old integer + 1) to generate each integer in turn. I’ll call the sum S. Within this loop, I'MuseS=8+1

(new sum = old sum + next integer). When I equals 25, I want to get out of the loop. I can use an i ¥

4 to do this. Knowing how the HP-86/87 shakes its finger at me if I don’t initialize my
variables, I had better use I =0 and S = 0 before I get into the loop. When I've added 25 to the sum
and left the loop, then I’ll display the final sum S.

Why assign zero to I and S at the beginning? Why not one? A good question. To answer it, let’s inspect the
flowchart, figure 92, and the listing, figure 93. Each time through the loop, I is increased by 1 (statement
40) and L is added to S (statement 50). I’ll show, step by step, how the program sums the first three integers
when I and S are initialized to zero. Then I'll do the same when I and S are initialized to one.

13-4 Teach Your Program to Count

S = Sum
| = Paositive Integer

I=0] Line 20
Initialize v
[S=0 | 30
—
INCREASE | BY 1 40
=1+ 1
ADDITO S 50
S=5+1
Y

< = 257 ?ifr
L . IN
This is/

DISPLAY MESSAGE: SUM OF 80-90
FIRST 25 INTEGERS IS 5

statement 70

END 100

Figure 92. Flowchart for “Sum 1 Thru 25""

First, [and S are initialized to 0 in lines 20 and 30:

Since I =0 from line 20:

I=0+1
I=1

Since S =0 from line 30 and I =1 from line 40:

S=0+1
S=1

During the second trip through the loop:

46 I=I+1

afile

A

1@ | SUM 1 THRU 25

20 1=0

30 5=0

40 I=I+1

50 S=5+1

60 IF I=25 THEN 80

70 GOTO 40

80 DISP “THE SUM OF THE FIRST 25 INTEGERS"
30 DISP "IS";S;"."

100 END

Figure 93. Listing for “"Sum 1 Thru 25"’

Teach Your Program to Count

Since I =1 from the last execution of line 40:

I=1+1
I=2

Since S =1 from the last execution of line 50 and I = 2 from line 40:
5=142
S=3

In words, the sum of the first two integers (I =1,1=2)is 3(S = 3).

During the third trip through the loop:

Since I = 2 from the last execution of line 40:

I=2+1

Since 8 = 3 from the last execution of line 50 and I = 3 from line 40:

S=3+3
S=6

In words, the sum of the first three integers (I=1,1=2,1=13)is 6 (S =8).

Now let’s try initializing I and S to 1; that is, let’s change lines 20 and 30 to:

Since I =1 from line 20:

I=1+1

13-5

13-6 Teach Your Program to Count

Since S =1 from line 30 and I = 2 from line 40:

S=1+2
S=3
For loop 2:

48 I=I+1

Since I =2 from the last execution of line 40:

I=2+1

Since 5 =3 from the last execution of line 50 and I = 3 from line 40:

S5=3+3
S=6

In words, the sum of the first three integers (I=1,1=2,1=3)is 6 (S =6).

Our analysis has shown that, for this program, we could initialize I and S to one rather than zero.
Initializing I and S to zero lets the program calculate the first integer and the first sum. When I and S are
initialized to one, the programmer has already calculated the first integer and first sum. We have learned

something about this particular program by trying a simple example. Which brings me to
ANOTHER IMPORTANT TRUTH!
This is really a corollary of that other great truth: When in doubt—try it.

This truth is: Test your program with an example whose answer you know.

Let’s ask the HP-86/87 to run the same simple example we just completed by hand. A way to do this with
“Sum 1 Thru 25" is to change statement 60 to

Don’t worry about the text of statement 80.

We know that the sum of the first three integers is 1 + 2 + 3 = 6. Enter “Sum 1 Thru 25” with the revised

statement 60, run it, and see line 90 display 6. Now change statements 20 and 30 to

Teach Your Program to Count 13-7

since your steel-trap brain can figure out that 1 + 2 + 3 + 4 = 10. Now press (RUN). The program agrees
with you that 14+ 2+ 3 + 4 does indeed equal 10. For a final check, change 20 and 30 back to

Press again. Again OK. The final sum is still 10,

Now get the original program by changing 60 to

Press , and discover that the sum of the first 25 integers is 325.
Table of Variable Values vs. Loop Numbers

This is the variable value vs. loop number table for the “Sum 1 Thru 25” program.

Initial General
Values Expression
Loop No. 1 2 3 4 b 6 7
Integer | 0 1 2 3 4 5 6 7 I=1+1
Sum$S 0 1 3 6 10 15 21 28 S=S8+I

To show how each succeeding sum can be calculated just by looking at the table, I'll redraw the table in
this way:

Initial General
Values Expression
Loop No. 1 2 3 4 5 8 7 8
Integer | 0/ 1 /2 }'!3 14 ,‘5 .6)!7 Py I=1+1
Sums$S ot 17] 3% | &t | 10" | 16T | 21+ | 281 | 36 S=S5+I

Start with the initial value for the sum, 0, and add the loop no. 1 value for the integer, which is 1. This
gives 0 +1 =1, which is the loop no. 1 value for the sum. Now start with this loop no. 1 sum, 1, and add the

loop no. 2 value for the integer, 2. Now we have 1 + 2 = 3, which is the loop no. 2 value for the sum.
Similarly:

3+3=6 15+6=21
6+4=10 21+7=28
10+5=15 28+8=236

and so on.

13-8 Teach Your Program to Count

Such a variable value vs. loop number table can help you in two ways to write a program.

1. Ithelps you to understand the problem.

2. Tthelps you to check the program.

Example: How to Write the “Sum Odd 100” Program
This program should sum the first 100 odd integers. That is, it should display the sum of:

1+3+5+74+9+...+197+ 199
(1) @) 3) 1) B (99) (100)

1st 4th 99th
odd odd odd
integer integer integer

Let’s use a variable value vs. loop number table to help us plan this program.

Initial

Values
Loop No. 1 2 3 4
Number Counter 0 1 2 3 4
Odd Integer 0 1 3 5 7
Sum 0 1 4 9] 16

Now let’s try to answer program planning question 4: How can BASIC and the HP-86/87 help me find
answers?

First off, the number counter is familiar: Initialize C =0, then within theloop: C=C + 1. But how about
the odd integer value? If we initialize I = 0, we can get the first odd integer using I =1 + 1. But this would
give us 2 for the second value(I=1+1=1 + 1 =2). The second value should be 3.

Let’s try initializing I = 1. Since odd numbers are two numbers apart, I = I + 2 works, giving:

Loopl: I=142=14+2=3
Loop2: I=1+2=34+2=5
Loop3: I=1+2=5+2=7

and so on.

Teach Your Program to Count

Now we’ll revise the table to show initial values of one instead of zero:

Initial

Values
Loop No. 1 2 3
Number Counter: C 1 2 3 4
Odd Integer: | 1 3 5 7
Sum: § 1 4 9 (16

Now we can study this table and write these expressions:

Initial | Expression Used in Loop
Value | to Get Additional Values
Number Counter | C=1 cC=C+1
0Odd Integer =1 I=14+2
Sum S=1 S=8S+I

Test these expressions by using them to generate the values in the table:

Initial General
Values Expression
Loop No. 1 2 3
Number C=C+1|Cc=C+1|c=c+1
Counter 1T S| sa41 | za+d C=C+1
c =2 — =3—T =4
Odd I=14+2 |I=1+2 |1=1+2
Integer 17 | =1+2 | 53+2 | =5+2 I=1+2
| = = =
oo e~ R
S=S+I\ s=s+m s=s+|\
SumS 17| 21+3"| =4+5" =9+7 S=8+1
=4 —T =9 —1T" =16

Looks like we’re on the right track. Now we're ready for the flowchart, figure 94.

13-9

13-10 Teach Your Program to Count

| C=1 [C = Counter
¥ | = Positive odd
Initialize 1 | =1] integer
Y S = Sum of odd
| S=1 | integers
-
| C=C+ 1 |
'
| I=1+2]
A Y
| S=S+1]
' Y
4 C = 1007 P
5 IN \
Y

DISPLAY MESSAGE: SUM
OF FIRST 100 ODD
INTEGERS IS &

END

Figure 94. Flowchart for “Sum Odd 100"’

Now the listing, figure 95, gives us no big problem. Type it in and run it. You should get 10000.

! SUM 0DD 100
C=1
I=1
S=1
C

C+1

EO I=I+2

70 S=5+I

BO IF C=100 THEN 100

90 GOTO SO

100 DISP "THE SUM OF THE FIRST 100 QDD INTEGERS IS ";S;"."
110 END

Figure 95. Listing for *“Sum Odd 100"

Problem: Write the “100 Odd Sums” Program

Modify “Sum Odd 100" to display each of the intermediate 99 sums as well as the final sum. Since this

modified program uses the same variable value vs. loop number table, you've got a good head start.

Teach Your Program to Count 13-11
Draw a flowchart. I show you one way to draw it on page H-46,

Now write and run your program. See page H-46 for a listing based on my flowchart. Page H-47 shows the
output.

Problem: Write the “Every Ten Times” Program

Program Description. Display the sum of this series every 10 terms:

2 2 2 2 2 .
+ — + Tttt ..
1*3 3*5 H*7 7*9 A*¥(A+2)

That is, after your program forms and evaluates each fraction in this series, it should calculate the sum.
The only sums that should be displayed are the 10th, 20th, 30th, and so on.

The program should continue until the key is pressed.

Initialize your program with some friendly statements so the HP-86/87 will think clearly and normally.

Of course, you’ll need some additional initializing statements to give your variables initial values.

Hints:
1. Usethe general term—Q—to help you construct your variable value vs. loop number table
: A*(A+2) Py Y . 09P :
Notice that only one variable is used. If you could figure out how the value of A changes from one
term to the next, your table would be well under way. Look at the values of A in the first four terms:

1,3,5,7. Howis each successive value derived from the last?

2. Here’s the beginning of my variable value vs. loop number table:

Initial
Values
Loop No. 1
Term counter C 1 2
Denominator variable A 1 3
Sum S 2 s + 2
1*3 1*3 3*5

3. After every 10th term, your program should display the current sum of all terms. Say the term
counter is C. If C/10 = INT (C/10), it would mean the term number was exactly divisible by 10, and
your program should display the current sum of all terms. This trick is similar to the one you used in

“Sweepstakes” to test if the certificate number was a whole number.

13-12 Teach Your Program to Count

4. The sum of the first two terms is .800. To test your completed program, change it for a moment to
display the sum of every second term and see if your program gives .800 for the first sum.

Your Turn. Now draw your flowchart and compare it with mine on page H-48.

Finally, write your program. You may stop your programming and continue hours or days later. Simply
store your unfinished program temporarily on your BASIC Training disc using the name “WORK.”

My listing and output for “Every Ten Times” are on pages H-47 and H-48.

Summary of Chapter 13

¢ Afundamental counting routine of BASIC using a loop is:

¢ Test your program with an example whose answer you know,

® Table of variable values vs. loop numbers: It helps you to understand and to check a program that

uses a loop.

Review Test for Chapter 13

The answers are on page 13-13, immediately following this review test.

1. What, if anything, is wrong with each of these programs that would cause it to generate an error or
warning or otherwise cause it not to count 1, 2, 3, 4, 5, ... ? Resist the temptation to enter these into
the HP-86/87 and let it do your work for you. However, once you have your answer, why not let the
HP-86/87 check it for you?

2. a. Write a general expression for the sum S for the following series. N is the term number.

Series: 1+£+3+E_+2+£+_"+ 2N -1 i+

Teach Your Program to Count

13-13

b. Next, write a program based on this series that displays the sum of any chosen number of terms

M. Have your program ask the user to enter M.

This variable value vs. loop number table may be of help:

Initial General
Value Expressions
Loop No. 2 3 4
Term No. N 1 3 4 5 N
TermT 1 5 X 2. (2*N—1)/N
3 4 5
sms | 1 |8 || 7|4
6 12 60

Answers to Review Test Questions for Chapter 13

1.

a. The variable A is not initialized. The program would count if run, but a warning message,

b. Hereis one way to write the program:

10
20
30
40
20
60
70
80
90

! REVIEW TEST FOR CHAPTER 13,

CRT IS 1,80
CLERR
NORMAL

PROBLEM 3

DISP "HOW MANY TERMS DO YOU WANT ADDED TOGETHER";

INPUT M

N=1

S=1

IF M=N THENW 130

100 N=N+1
110 S=S+(2%N-1)/N

120
130 DISP "THE SUM OF";M;"TERMS IS";S;"."

GOTO S0

140 END

13-14 Teach Your Program to Count

Here is a typical output for this program:

HOW MANY TERMS DO YOU WANT ADDED TOGETHER?
5

THE SUM OF 5 TERMS IS 7.71666EGBEE7

Notes 13-15

Chapter 14

Teach Your Program to Count Without Using its Fingers

ik)
Preview
In chapter 14, you will learn:
e How real programmers tell their programs to count by using a F
e About another trick the little semicolon can perform.
¢ How to make sure a number is optimistic, with a positive outlook.
¢ How to find program bugs.
= ABASICWord
is the way to create and control a loop with more elegance and power than
using i ... T
— Example: “CounttoTen A” Program
N
Is loop START
counter\
Upper
boundary - FORN=1TO 10 [~
of loop
Bod ;
Loop of Y DISPLAY N; LE., DISPLAY i
loop ONE N VALUE PER LINE
Lower
boundary -»[NEXT N >
of loop
DISPLAY N WITH MESSAGE:
VALUE OF N WHEN FOR—NEXT
LOOP IS FINISHED
£

END

Figure 96. Flowchart for “Countto Ten A"’

[loop, loop body, and the upper and lower

loop boundaries are indicated. They are also shown in figure 97, which gives the listing. Note that N is the
loop counter.

14-1

14-2 Teach Your Program to Count

10 | COUNT TO TEN A

20 FOR N=1 TO 10 = Upper loop boundary

30 DISP N = Loop body

40 NEXT N - Lower loop boundary

S0 DISP "WHEN THE FOR - - MEXT LOOP IS FINISHED, N =";N;"."
B0 END

Figure 97. Listing for “Countto Ten A"’

This loop body is as small as it gets, only one line, but it exh1b1ts a feature shared with many loops. The
FE T loops do not use the loop counter

loop counter, N, is used within this loop. Many other ¥
within the loop.

. Tii and the .7 statements.

The boundaries of a loop are always the

Enter this “Count to Ten A” program and run it. Notice a very important point. The value of the loop

counter when the loop is finished is 11, not 10,

Your “Count to Ten A” program should produce the output shown in figure 98.

0 o A e OO RO e

14
WHEH THE FOR - - MEHT LOOF IS FIMISHED, H = 11

Figure 98. Outputof "CounttoTen A"’

Step-By-Step Analysis of “Count to Ten A”

Because i § MEZFT is such an important and widely used tool, it will pay to understand its operation
thoroughly before continuing. Let’s start at the beginning, statement 10, which is simply a remark.

Teach Your Program to Count 14-3

Statement 20 defines the lonp counter variable name. Also deflned are the values this counter will take
during loop execution. If no ¥ 5

* appears in the § | ii statement, a step of +1 is understood. This

means the value of N is advanced by one each time 1 is executed. At this point, N is assigned the

first value, 1

Now the value of N is changed to the next value determined by statement 20. In this case, the next value is
1 higher than its present value. So now, N =1+ 1 =2, At this point, the question is automatically asked,
“Is N greater than 10?” Since the answer is no, the body of the loop is executed again.

The screen shows =, the current value of N.

T T
- F B

o REIT i
WEODHEL e i

)
g

Now N is incremented by 1 to reach 10. Since 10 is not greater than 10, the body of the loop is again
executed.

.21, is displayed.

Nisincreased again by 1, making N = 11. Now the same question is asked: “Is N greater than 10?” Since

11 is greater than 10, the answer is yes, and program execution moves on to the next two statements.

14-4 Teach Your Program to Count

The message contained in these statements is displayed, telling us that N currently does have the value
11.

Now there is only one more statement to be executed:

Example: “CounttoTen B” Program

Let’s modify “Count to Ten A” by adding a i} - gtatement to the body of the loop. Figure 99 shows the

new flowchart, and figure 100 gives the new listing. Run your “Count to Ten B” program. You should get

the output shown in figure 101. Each time through the loop, the Li] =/ statement causes a blank line to

appear on the screen. As a result, each of the displayed numbers is separated from its neighbor by a blank

START
Upper

line.

—=l FORN = 1 TO 10 | +—— boundary
of loop
DISPLAY N; |.E., DISPLAY Body
Loop | 4 ONE N VALE;IE PER LINE of
| LEAVE BLANK LINE | | loop
{ Lower
L—«{ NEXT N |-— boundary
of loop

DISPLAY N WITH MESSAGE:
VALUE OF N WHEN FOR—NEXT
LCOP IS FINISHED

Figure 99. Flowchart for "Countto Ten B’

10 | COUNT TO TEN B

20 FOR N=1 TO 10

30 DISP N

35 DISP

40 NEXT N

SO DISP "WHEN THE FOR - - MEXT LOOP IS FINISHED, N =";N;"."
60 END

Figure 100, Listing for "Countto Ten B"’

Teach Your Program to Count

9
10

WHEN THE FOR - - NEXT LOOP IS FINISHED, N = 11 .

Figure 101.

Note: To display the entire output on your screen, use

Example: “Count to Ten C” Program

Now remove line -

1 HTHL.L Output for ““Count to Ten B

14-5

* from your “Count to Ten B” program, and run an experiment. Add a

semicolon after the N of statement 30. This will give the listing in figure 102 (except for line 10). Then

execute i

and press (END LINE).

Run your revised program. You should get the output shown in figure 103.

10 | COUNT TO TEN C
20 FOR N=1 TO 10

30 DISP N;

40 NEXT N

50 DISP "WHEN THE FOR - - NEXT LOOP IS FINISHED, N =" N;"
60 END

Figure 102. Listing for ““Count to Ten C**

s
on
Ty
=l

Figure 103. Qutput for ““Countto Ten C**

& 9 18 WHEM THE FOR - - HE®T LOOP IS

FINISHED,

H

! (just to be sure your display can handle a long line if it needs to). Type i

11

14-6 Teach Your Program to Count

More Semicolon Power

How did the “Count to Ten C” output happen? The lowly semicolon has another important power in

BASIC besides causing close spacing between items ina & [statement, and moving the

question mark of an I FHi”LiT statement.

When a semicolon is added at the end of Statement 30, the value of I is not displayed each time the loop is

i

executed. The semicolon says to the i.i.

i instruction: “Don’t display that value! Put it in storage
until either

1. Yourstoreroom has 80 characters* in it, or

2. Another ii1 % statement is executed that has no final semicolon.”

“If either of these happens, then display what you have stored. If reason 2 causes you to empty your

storercom, be sure to d1splay your stored characters before the next & " statement displays its

message.” The i instruction has learned to obey the small but mighty semicolon, so it waits

until line 50 is executed before displaying its stored values.

Example: “Countto 100’ Program

Run another experiment. Start by making another small change in your program Add one zero to

statement 20 of your “Count to Ten C” program. Instead of I

. Make sure statement 30 hangs on to its semicolon. Now your listing looks like f1gure
104. (Except maybe you didn’t change statement 10. If you didn’t, you're excused.)

Run this latest modification and see on the screen the output shown in figure 105.

10 | COUNT TO 100
20 FOR N=1 TO 100

30 DISP N;
40 NEXT N
50 DISP "WHEN THE FOR - - MNEXT LOOP IS FINISHED, N =";N;"."
60 END
Figure 104. Listing for “"Count to 100"’
* Actually, this number depends upon the number of characters designated in your "5 7 I = statement. The default mode, at power on

is 80, but you can vary the number as you desire.

Teach Your Program to Count 14-7

1 4 3 & ¥ 8 % 18 11 12 13 14 15 1§ 17 i8
€3 24 2T 26 2728 29 38 31 32 33 34 35 26 37 a3s
4% 44 45 48 47 48 4% 58 51 52 53 5S4 55 S8 57 S@
82 B4 BT &8 BY B3 €9 B F1 FI 73 7 3 Ve PV TE

384 BS 8e BT 85 29 98 1 92 93 94 95 S5 97 9@
WHEH THE FOR - - MEWT LOOF IS FIWISHED, H = 1@l

Figure 105. Output for ’Count to 100

Each full line of displayed numbers shown in figure 105 was displayed because the semicolon storehouse
(called a “buffer” in the computer world) became filled repeatedly with 80 characters. The last 18

displayed numbers, 83 through 100, were displayed because another il " statement, line 50, was

executed that has no final semicolon. Try deleting the final i I %" statement, line 50, and then run your
“Count to 100” program again. You’ll see only numbers from 1 through 82 displayed. When the program

ends, the semicolon storeroom will still hold the characters for numbers 83 through 100. There they will

die of neglect, since no {i i3 statement came along to rescue them.

Problem: Work With Your “MONEY” Program
Remember that “MONEY” pmgram you stored on your BASIC Training disc way back in chapter 5? Now

is the time to execute i.{ " and to display a listing.

I'd like you to make a table of loop counter values vs. loop variable values for “MONEY.” Continue the
table through S = 10, and write the general expressions. Here is how the table looks for the first three

values of 8.

General
Expressions

Loop counter S 1121 3

Square number S 11213

NumberofdollarsD | 1| 2| 4

The table continued through S = 10, plus the general expressions, are on page H-49.

“MONEY” is a simple program, and thisis a simple table. However, the construction of such tables can

14-8 Teach Your Program to Count

Example: “Boredom’ Program

10 | BOREDOM A BORING PROGRAM.
20 FOR N=1 TO 10 A BORING PROGRAM.
30 DISP "THIS IS A BORING FRO ? A BORING PROGRAM.
40 NEXT N GRAM. A BORING PROGRAM.
50 END A BORING PROGRAM.
A BORING PROGRAM.
A BORING PROGRAM.
A BORING PROGRAM.
A BORING PROGRAM,
A BORING PROGRAM.
Figure 106. Listing and Output for “‘Boredom”’
Flexibility of F ik =i =T Loops

1. They do not have to start counting at 1.
2. They donot have to count one at a time.
3. They can count either forwards or backwards.

4. Variables can be used to define loops.

The following programs will illustrate these strengths of

Example: “Squares’” Program

Figure 107 gives both listing and output, and previews the =

10 | SQURRES
20 FOR K=8 TO 16 STEP 2

8 SQUARED = B4

30 DISP K;"SQUARED =";K"2 = 100"

40 NEXT K’ 1@ SQUARED 1

50 END 12 SQURRED = 144
14 SQUARED = 196

16 SQURRED = 256

Figure 107. Listing and Output for '’Squares’’

Teach Your Program to Count 14-9

The loop counter K in “Squares” starts at 8, and the loop stdps when K exceeds 16.

ZTEF: Partof!

If the loop counter is to increase by one each time

"is executed, % T £ F is not required in the F {3F ..

111 statement. For any loop counter change other than plus one, =7

must be used and defined. In

..... 148 . T statement, line 20, causing K to increase by 2 each time

“Squares,” : =

). OF

You'll use f £ X * works:

: . X, which stands for “absolute value of X,” returns a value of
positive X. When the argument X is negative, HES X ¥ returns a value of positive X. Hard to find a
simpler function.

Example: “Big Number’” Program

As the “Big Number” program’s listing and output, figure 108, shows, the loop counter N starts at +5,

than —5. The value of -

to cause M

2.7 in line 30 is always positive, even when N becomes negative. The effect is

147 to take these values as N goes from +5 to —5:

Take a good look at the = 7. L part of line 20. The & T £ value should always change the value of
the loop counter from its initial value toward its final limit. Sometimes, as here, the =T £ value should
be negative.

If asks ““Is N /ess than —5?"

14-10 Teach Your Program to Count

10 | BIG NUMBER 100000
20 FOR N=5 TO -5 STEP -1 10000
30 DISP 10~ABS (N) 1000
40 NEXT N 100
S0 END 1@
1
19
1900
1000
10000
100000

Figure 108. Listing and Output for ““Big Number”’

Here’s a modified table of loop counter values vs. loop variable values for “Big Number’:

Loop N o
Coqr_lter Gk L Display
M
5 10~ ABS(5)=10"5
4 10~ ABS(4)=10"4
3 10"~ ABS(3)=10"3 ik
2 10~ ABS(2)=10"2
1 10~ ABS(1)=10"1
0 10~ ABS(0)=10"0 1
—1 10~ABS(—1)=10~1 | it
-2 10~ ABS(—2)=10~2 | 1!
-3 10~ABS(—3)=10"3 | i&
—4 10~ ABS(—4)=10"4 [it
-5 10~ ABS(—5)=10"~5 | 1t

Teach Your Program to Count 14-11

Example: “Big Step’” Program

100 | BIG STEP

150 FOR N=-5 TO 8 STEP S

200 DISP N

250 NEXT N

300 DISP "THE LOOP IS FINISHED. NOW N ='jnju .0
350 END

-5
a
=

THE LOOF IS FIMISHED. HOW W = 18 .

Figure 109. Listing and Output for “'Big Step”’

Figure 109 shows that it is not necessary for the loop counter to assume the limit value. Here, N never

assumes the value 8, but the program still runs smoothly. Remember, the question asked by HE=T
line 250, is this: “Is N greater than 8?” The i !

not.

I statement has no way of knowing if N equals 8 or

Example: “Rich” Program

This program, figures 110 and 111, uses a variable to define the final loop counter limit value.

C A = 500]

DISPLAY MESSAGE: HOW
MANY TIMES DO YOU
WANT LOOP TO REPEAT?

L INPUT L |

FORK=1TOL |

[ADD ATO M]

DISPLAY MESSAGE:
I'M WORTH M

1

NEXT K]

[ADD ATOM |

DISPLAY MESSAGE: MY
FINAL NET WORTH 1S M

Figure 110. Flowchart for “’Rich’’

14-12 Teach Your Program to Count

10 | RICH

20 M=0

30 A=500

40 DISP "HOW MANY TIMES DO YOU WANT THE LOOP TO REPEART";
S0 INPUT L

B0 FOR K=1 TO L

70 M=M+A

BO DISP "I'M WORTH $";mM;". v

90 NEXT K

100 M=M+R

110 DISP "MY FINARL NET WORTH IS $";M;"."
120 END

Figure 111. Listing for "’Rich”’

Enter “Rich” and run it. Become as wealthy as you choose. Keep “‘Rich” in memory, since you’re going to

use it soon.

Bugs
You've heard about program bugs. They're the pesky little devils that cause a perfect program to bomb. In

spite of massive efforts to wipe these vermin from the face of the earth, they remain epidemic.

We do have effective weapons to use against them, however. I’'ll introduce you to several of these weapons:
a command, a BASIC word, and three keys, and then I'll show you how to use them on your “Rich”

program.

IMIT: ACommand
The I#417 (initialize) command reserves memory for the values of a program’s variables. When you
i, initialization is done automatically. i1 7 is usually executed by pressing +(™NM),

execute ¥ LH
above (9) on the number pad. (INIT)is an immediate execute key.

‘B rli. ABASICWord

... allows the order of execution of a program’s statements to be traced. 7 i
shows the new value of each variable each time it changes. It prints a message like the following:

I e i
H

telling the user that line 120 has been executed and that the HP-86/87 is proceeding to line 130, or:

telling the user that the variable M has been assigned a new value of 500 at line 70.

THA FREACE AL, then pressing (ENDLINE). It is cancelled by
execution of M

Remember that T #HE Hi i results are normally pnnted 80 they would go to the device designated as
the printer. When the HP-86/87 is first turned on and no i 1
either in a program or from the keyboard, F® I 7TEH 5 automatically defaults to 1 (the CRT), so that

Teach Your Program to Count 14-13

all TEFMIUE Hi L statements appear on the CRT. But assoon asa FF 1] statement is

executed, either in the program or from the keyboard, they will be printed.

The (TR/NORM) Key: A Switch
The shifted function of the (CONT) key, located just above (END LINE) m on your keyboard, is marked

. The (TR/NORM) key is a key that switches the

program is running if you press (SHIFT) + (TR/NORM), the '
invoked and the tracing will begin to be printed. To cancel the

(TR/NORM) again. The = Fi L mode is cancelled nnmechately and the HP- 86/87 returns to normal

. function on and off. When a

. funetion will be immediately

.. as often as you like while a program is running,

operation. You can switch in and out of 1} i
without halting the program, by use of the (TR/NORM) m key.

Note that the “normal” mode resulting from pressing the (TR/NORM) key is NOT the same as the

L. statement. It only cancels the T

Fil.i. mode without performing the other functions of

The Key

Each time (SHIFT) + (%) is pressed, the next statement of the program in memory is executed. So
allows your program to be executed one statement at a time. The main power of (STEF) is realized when it’s
‘iz #i.l. command, as described below. The (STEP) key can be used by itself, but

there is generally no advantage in doing so.

Bug Chasing With 7}

If you want to expose a bug or two, an effective way is to execute:

the printer. ©

R el

understandable and complete | = FE ML record.

If your program includes a ik

.. statement, you should convert it temporarily to a remark while

Fil.l., by inserting an | just after its line number.

14-14 Teach Your Program to Count

Using T fiL.L in “Rich”

Practice using this bug spray on your “Rich” program.

and then !

... by pressing (SHIFT)+ (TR/NORM]J.

4. Step through “Rich” one line at a time, by holding down (SHIFT) and pressing m repeatedly
After pressing (STEP), wait until the execution of the statement and its associated i

output is comp]ete before pressmg m again. Watch your display. When -

Figure 113 shows the printout you should get. The listing and the normal program output are shown

in figure 112 for reference.

If “Rich” had a bug, you could find its hiding place by comparing each statement’s | =1
record as it appeared with your knowledge of what the program should do at that statement.

10 | RICH

20 M=0

30 R=500

40 DISP "HOW MANY TIMES DO YOU WANT THE LOOP TO REPEAT";
50 INPUT L

80 FOR K=1 TO L

70 M=M+A

8O DISP "I’M WORTH $";M;“."

90 NEXT K

100 M=M+A

110 DISP "MY FINAL NET WORTH IS $';M;"."
120 END

HOW MANY TIMES DO YOU WANT THE LOOP TO REPERT?
I’M WORTH $ 500

I‘M WORTH $ 1000 .
I‘M WORTH $ 1500 .
I’M WORTH ¢ 2000
I’M WORTH ¢ 2500

I’M WORTH § 3000 .
MY FINAL NET WORTH IS $ 3500

Figure 112. Listing and Output of “’Rich’’ Shown to Clarify T F i Qutput (Shown Next)

Teach Your Program to Count 14-15

These lines displayed only.

(UNIT) and (SHIFT) + (TR/NORM) pressed
here.

;raca line 10 to 20-w= (STEP) pressed here and pressed again
T::E: :::: gg T0030 after every line is printed, except
Trace line 30 A=500 after: HOW MANY TIMES DO YOU
Trace line 30 to 40 WANT THE LOOP TO REPEAT?
Trace line 40 to SO
HOW MANY TIMES DO YOU WANT THE LOOP TO REPEAT? (&) (END LINE) pressed here.
B

Trace line 50 L=B

Trace line 50 to B0 Then (STEP) pressed.
Trace line BO K=1

Trace line BO to 70

Trace line 7?0 M=500

Trace line ?0 to BO

I’M WORTH $ 500 .,

Tracs line BO to 390

Trace line 30 K=2

Trace line 90 to 70

Trace line 70 M=1000

Trace line ?0 to BO

I’M WORTH ¢ 1000 .

Trace line BO to 390

Trace line 30 K=3

Trace lina 30 to 70

Trace line 70 M=1500

Trace line 70 to BO

I’M WORTH ¢ 1500

Trace line BO to 90

Trace line 30 K=4

Trace line 30 to 70

Trace lina 70 M=2000

Trace line 70 to BO

I’M WORTH ¢ 2000 .

Trace line 80 to 390

Trace line 30 K=5

Trace line S0 to 70

Trace line 70 M=2500

Trace line 70 to B0
I’M WORTH $ 2500 .,

Trace line B0 to 30

Trace line 90 K=B6

Traces line 90 to 70

Trace lins 70 M=3000

Trace line 7?0 to B8O

I’M WORTH & 3000 .

Trace lines 80 to 30

Trace line S0 K=7

Trace line 90 to 100 Whenpressed here,
Trace line 100 M=3500

no printout occurred,

showing that program was

finished. Now execute HiiF 5.

Trace line 100 to 110
MY FINAL NET WORTH IS $ 3500 .,
Trace line 110 to 120

Hl.l. and (STEP) on ““Rich”"

Figure 113. Actionof |}

£l
LI | 9

Another effective way to use 1t I printout proceed continuously

i is reached or until you press (PAUSE). You use !

i..i. this way by executing these

14-16 Teach Your Program to Count

(or (SHIFT) +

L A . and
(STEP] are used together, except the printout is continuous. Using (STEP] gives you more control, although
the output is slower.

A BASIC Word

A BASIC Word

includes the actions of

and prints only when
' The two

% is entered with a trace

statements are not executed sequentially, as with i-

numbers are prmted whose lines are executed out of sequence.

Every time a variable in this list changes value, the line

number, vanable name, and new value are printed.

i., execute the ¥

- as a statement in your program.

A, or

statement at the beginning of the segment, and temporarily insert a {F . statement
at the end of the segment. Then run your program in the usual way Only the program segment of interest
will be traced. Don’t forget to delete the 71 L S
statements when you’re through with them.

Summary of Chapter 14

fine number ¥

final limit of loop

counter variable =: amount loop counter variable changes each time loop executes

Ifthe =1 valueis +1, &

Two or more lines below i~ i appears:

line number 1 loop counter variable

Teach Your Program to Count 14-17

Example:

Loop counter variable: C.
Initial value of loop counter variable: 3.
Final limit of loop counter variable: 10.

Amount loop counter variable changes each time loop executes: 2.

Values loop counter variable assumes as i loop executes: 3,5,7,9. Notice that the loop

counter variable need not assume the value of the upper limit.

When program execution reaches } £-, two things happen:

1. First, Cis changed by +2. (If % were absent, C would increase by 1.)

2. Then the program asks itself this question: “Is C greater than 10?”

If the answer is no, program execution continues with line 160.
If the answer is yes, program execution continues with line 210, and the value of the loop

counter variable Cis now 11.

..... , the question asked by

Note: For a negative step value, say -

ilis: "Is Clessthan 3?"

statement, the
message is not displayed or printed. Instead, the characters of the message are stored. These stored
characters are displayed or printed if either:

1. The number of characters stored reaches 80 (or the number of characters designated in the .5 "

...... statement) or,

2. Another 315 or FE [HT statement is executed that has no final semicolon.

If reason 2 empties the storeroom (empties the buffer), the stored characters are displayed or printed

before the other i1 |

or Fi= i 7T statement displays or prints its message.

14-18 Teach Your Program to Count

. X : A Function
Gives the absolute value of X.
e ItiT: ACommand

i LT reserves memory for the values of a program’s variables. It is immediately executed by

pressing +

i

MIT is often used with THFIE,

* The Key

Pressing + executes the first statement of a program. Pressing again executes
the next statement, and so on. For (STEP]) to function, the program must first be initialized. This can

be done with 1117,
. A BASIC Word
General form:

PR, or & Th E. is in force, and a program is
executed with =1L or (STEP), a printout occurs whenever a program statement is not executed
sequentially, When a program branching does occur, two line numbers are printed. These numbers
belong to the lines executed before and after the branching.

e i :
General form:
line number T I F L E variable list
Example:
= THHEDE WHE = B
TEHCE WHFE is often used as a command. After T LFil 1s executed, it remains in force
until it is cancelled with HLHE AL or ik ME is in force, and a
program is executed with i< i or (STEP), a printout occurs whenever a variable in the variable list
changes value. When the value changes, the line number, variable name, and new value are printed.
. Fil.: ABASIC Word

General form:

tine number T RBE SLL

Teach Your Program to Count 14-19

“L.L. is often used as a command. After T}

until it is cancelled with §
L variable list includes all the

program’s variables.

The (TR/NORM) key ((SHIFT) + (TR/NORM J} switches the HP-86/87 in and out of

Fil.L.; pressing it again returns the HP-86/87 to norrnal operation. Note that switching

into normal operatlon is not the same as executing the [statement. It only cancels

Fil. L. without performing other functions of
Powerful bug finder

With program in memory, execute or press:

= rL.i. or press (SHIFT)+ (TR/NORM)
(repeatedly) to execute each statement, one at a time.

Or, to give continuous printout, execute:

Press (PAUSE) to stop printout.

Review Test for Chapter 14

The answers are on page 14-21 immediately following this review test.

1.

What value will A have when each -

14-20 Teach Your Program to Count

4. Without entering these programs into the HP-86/87 (except to check your answers), what will each

program display? On how many lines?

Teach Your Program to Count 14-21
Answers to Review Test Questions for Chapter 14

1. a. 23 c. 11
b. 13 d -5

2. Line 50 should show a negative = T £ ¥, Sinceno & “ appears in line 50, the loop counter variable
A will try to change +1 each time through the loop; that is, from —4 to (—4 +1)=-3, -2, -1, etc. If
the HP-86/87 allowed this to happen, the loop variable would never reach —10. Fortunately, the
HP-86/87 is smart enough to avoid this trap. If a program like this were run, the first execution of

line 50 would cause a branching to the first line following line 80.

4. a. Nothing is displayed. Since the semicolon storeroom (buffer) was not filled with 80 characters
when the program ended, and since no later [[

= statement emptied the storeroom, the 8, 5
and —1 characters died.

The program displays these numbers on 4 lines.

Chapter 15

More Fingerless Counting With a Touch of Math

Preview
In chapter 15, you will:

® Become casually acquainted with three more math functions and three more BASIC words about
math.

! math programs you can write without knowing hardly any math.

® Learn how to indent sections of your program for clarity.

. i performance.

+t with branches.

Functions and Statements

=X *: A Function

This function returns the square root of the argument X.

Examples:

SOR(4)
2

SQR(18)
4

SOR(B)
Z2.B2842712475

L.T9X5: A Function
This returns the common logarithm of X, which is the logarithm to the base 10 of X.

If you don’t know what a logarithm is, don’t worry. You don’t have to know what it is to use it with ease in

this course. All you have to know is that I.1: 7 £ X * is a function that gives the common logarithm of X.

The rest of this brief discussion on logarithms is optional, except you should look at the examples.

15-1

15-2 More Fingerless Counting With a Touch of Math

Truths About Logarithms and Exponents

This Is Equivalent to
Expression This Expression

If 10 ~ N equals X If 10N =X
then LGT(X) equals N | then LOG1opX =N

These truths can be reduced to one sentence: A logarithm is an exponent to which the base must be
raised to equal the argument.

Examples:

LGT(100)
2

LGT(5)
.E9BI70004336

120 M=LGTC(W)~35

i.X : A Function

This is the trigonometric function sine of X,

The HP-86/87 Wakes Up in Radians

To comply with industry standards (American National Standards Institute or ANSI), the normal unit
used by the HP-86/87 to measure angles is the radian.

There are 27 radians in a circle, or in BASIC language, there are & . radians in a circle.

is the ratio of the circumference of a circle to its diameter, and is approximately equal to
3.14159265359

You won’t use & I in this course, but since I’'m on the subject, to type the above approximation of i I into
the HP-86/87, simply press (P)(1). When you press at the end of your expression or statement,

you’ve entered all twelve digits and the decimal point (as well as the rest of the expression or statement).

OK, back to angles. To instruct the HP-86/87 to think in degrees or grads, use the following BASIC words

in statements, or use them as commands.

More Fingerless Counting With a Touch of Math 15-3

A BASICWord

iz &+ selects degrees mode. There are 360 degrees in a circle.

If you plan to measure angles in degrees in your program, be sure to use [:F{: as one of your initializing

statements. Otherwise, your results will be rather strange. Say you forgot to use a [iF {* statement in your

+ command. Responding to an I FFLIT statement in your

program, and you also did not execute the L}

program, you enter 90, thinking you are entering a right angle. Not so. What you did enter was 90 radians,
or about 5156.62 degrees.

Your error would be even greater if you measure angles in grads, and forget to use a L
command. Ninety radians is about 5729.58 grads.

Forgetting that the HP-86/87 wakes up in radians is a familiar error. Watch out for it.

If you're in degrees or grads mode, and want radians mode, use:

I: ABASICWord
111 puts the HP-86/87 into radians mode.

are often used as commands.

Here are some examples of & I §

Program

ZiriX 7, like all functions and simple variables, represents a single number. So it may be used
anywhere a simple variable may be used, as in this example:

15-4 More Fingerless Counting With a Touch of Math

Problem: Write the “Roots’ Program

Program Description. “Roots” displays titles for two columns, then displays the numbers 1 through 9

in the first column and the nine square roots of those numbers in the second column.

Hints:

1. Display your titles before you begin the ik I loop that displays the number and square

root. See my flowchart on page H-50 if you'd like a little extra help.
2. A way to separate words or numbers on a line, as you will wish to do in “Roots” to create two

columns, is to “display” spaces. Consider this program:

Program Display when Run

"FAAAALT FAAAAT

When it’s run, four spaces are “‘displayed” between the i and the .

Let me preview something I’ll throw at you formally in chapter 16. Consider another example where

numeric variables are used instead of quoted characters:

Program Display When Run

T YYYVYVY SR

Running this example gives six spaces between the two numbers, even though only four spaces are
enclosed in quotes in line 120. When a numeric variable is displayed or printed, a leading space is
reserved for a possible minus sign, and a following space is displayed or printed to comply with an
ANSI (American National Standards Institute) standard.

A handy space scale can be made by printing a line of apostrophes on the printer. Simply execute a

el

r'T statement having at least 80 apostrophes within the quotes.

3. Answer the program planning questions (page 9-1) and draw your own flowchart if you feel these

would help you.

Your Turn. Write and run your program. To see my flowchart and listing, see page H-49. Remember, to

be successful, your version need not be identical to mine.

Problem: Write the “Sine” Program

Write a program that prints the angle and its sine for every fifth degree from 0 to 90 degrees.

More Fingerless Counting With a Touch of Math 15-5

My flowchart: Page H-51.
My listing and output: Page H-50.

Problem: Write the “Common Log” Program
Write a program that prints all even numbers from 2 to 50 inclusive and the logarithm to the base 10 for

each.

My flowchart and listing: Page H-51.
My output: Page H-52.

"Loops

As your programs become more complex, you will begin to “nest” your © T loops, as we will
learn to do in the next chapter. It is helpful to use some method of highlighting or setting off portions of

the program so that their operation and relationship to the rest of the program can be followed more easily.

One convenient method is to indent sections of the program which perform special tasks. The HP-86/87
allows you to do this by indentation of lines. After the line number is typed, merely enter as many blank
spaces as desired; then type the BASIC statement. The spaces will be preserved when is
pressed. When you look at the listing later, that portion of the program will be offset for easier viewing,

Indentation is most commonly used to offset I .T loops. We will use it in several programming
examples for that purpose, but it need not be restricted to that use. It could be used to displace labels, or for

a variety of other purposes. Feel free to use it whenever you feel it would be helpful.

Do NOT Branch Into a

Always begin execution of a I i statement. Branching into
the middle of a |

“Forbidden” program. Figure 114 shows its flowchart, and figure 115 shows its listing and output.

1 loop will cause an error. To help remember this rule, enter and run the

Note the use of indentation to highlight the i~ {if

15-6 More Fingerless Counting With a Touch of Math

START

DISPLAY MESSAGE:
ENTER INTEGER
BETWEEN -5 AND +5

{

| INPUTNUMBER |

{NUMBER > 170 10 >

DO NOT

YN
| FORN=1TO10 P DO THIS

| DISPLAY: NUMBER 4 4]
|

DISPLAY: LGT 4
(NUMBER A 4)

[NEXTNUMBER |»—r

END

Figure 114. Flowchart for “'Forbidden’’

10 DISP "ENTER AN INTEGER MUMBER BETWEEW -5 AND +5."
20 INPUT NUMBER

3@ IF NUMBER>1 THEN 5@

40 FOR NUMBER=1 TO 1@

5@ DISP "NUMBER"4 =" ;NUMBER™4

60 DISP "COMMON LOG OF";MNMUMBER"4;"=";LGT (NUMBER"4)
e NEXT NUMBER

8@ END

ENTER HM INTEGER MNUMBER BETWEEM -5 AND +%
7

=
=

HUMBER~4 = 18
COMMOM LOG 0OF 16 = 1.28411933266
Error 47 on Tine 78 ¢ MO MATCHIWG FOR

Figure 115. Listing and Output for "'Forbidden’’

More Fingerless Counting With a Touch of Math 15-7

£+ T loop is allowed. The loop
counter retains its value and may be used in the rest of the program like any other variable. In this
situation, it is also permissible to branch back into the loop. This kind of branch into a ¥ i+
is OK, since the ¥

i* statement has already been executed.

To avoid comphcatlons when writing your programs, it’s generally good practlce to have your program

complete a ¥ loop before it continues. Remember that a ¥ T loop may include
literally hundreds of statements, so your program may begin and complete many ¥ .. THEH and

11711 branches without ever leaving the F {1 —i

Summary of Chapter 15

. X i: A Function
Gives the square root of X.
e [i:T0X72 AFunction

Gives the common logarithm of X (the logarithm to the base 10).
e DIiMIX¥: A Function

Gives the sine of X.

. A BASIC Word

General form:

line number i}

Puts the HP-86/87 into degrees mode.
) il ABASIC Word

General form:

line number i:F

Puts the HP-86/87 into grads mode.

o irilis A BASIC Word

General form:

line number = Fii)

Puts the HP-86/87 into radians mode. The HP-86/87 wakes up in radians mode.

15-8

More Fingerless Counting With a Touch of Math

Indentation of program statements: Highlights sections of programs for ready visibility when

reading program listings. It is commonly used for F Fi=¥T loops, labels or special sections.
Merely enter the desired number of blank spaces after the line number. The HP-86/87 will preserve

them in the program.

T loop. If you do, the HP-86/87 will get confused and

give you an error message.

You may branch out of a ¥ .1 loop, and then stay out or branch back in if you wish.

However, it’s generally safer programming (less chance for errors) if you avoid such branching.

Review Test for Chapter 15

The answers are on page 15-9.

When the HP-86/87 wakes up, in what units does it measure angles?

Do the program segments below violate any BASIC programming rules? If so, which one(s)? Hints:

| A
L

taken by itself.

: are all used correctly. Also, each individual statement is acceptable

More Fingerless Counting With a Touch of Math 15-9

Answers to Review Test Questions for Chapter 15

1. Inradians

2. a. Instatement 150, when A is less than .23, a branch into the middle of a © 5 T loop is
attempted. This is against the rules.
b. This program segment is OK. Statement 180 does branch out of the F ! loop when

SIN(ALF) + GUM is greater than 55, but this is acceptable,

Chapter 16

.'/_‘\ -
Preview

In chapter 16, you will:

® Learn how a | ' loop can contain a '

Fiz# T loop which can contain ...

1 loops are not mixers.
® Learn how one statement can do a lot of assigning.

®* Getsomeidea of how powerful you can make a program using the BASIC smarts you already have.

Nested ¥

When one i

! loop is entirely contained within another, the loops are said to be nested.

Example: “Yawn” Program

/" Enter and run this nested loop program whose listing is shown in figure 116. Figure 117 gives the

flowchart.
10 | YAWN 1 FORO = 1703 | Line 20
20 FOR 0=1 TO 3 L— ; |
30 PRINT "0 =";0 I PRINT O | 30 O = Outer FilR—ExT
40 PRINT loop Count
50 FOR I=1 TO S ! 00p counter
60 PRINT "I =";I ADV@'}'@;:“'NT s |7 Imer FiE
70 FRINT " YRWN" loop counter
b6 NEXT I ONE BLANK LINE
30 PRINT ¥
100 NEXT 0 [FORI=1TO5 |50
110 END

L PRINT | | 60

Quter loop
Inner loop

[_PRINT: "YAWN" | 70

Figure 116. Listing for *'Yawn"'

£ NEXT | | 80
¥
ADVANCE PRINT
PAPER 90

ONE BLANK LINE

—— NE)!TO] 100

Figure 117. Flowchart for “Yawn’’

16-1

16-2 Tell Your Program to Nest Without Laying Eggs

Check your output with mine in figure 118 to make asure the HP-86/87 didn’t make a typing error when

you entered “Yawn.”

Figure 118. OQutput for ““Yawn’' and Table of Loop Counters vs. Output for ““Yawn"'’

Quter
Loop
Counter
0

Inner
Loop
Counter

Printed
Output

=

LE e fad fad i

End

of

program

Tell Your Program to Nest Without Laying Eggs 16-3

A study of your output for “Yawn’ together with figure 118 will help you understand how two nested

—HME T loops work together. (The blank lines are omitted in the figure.)

The key to the operation of nested i " statements. As
* value to the loop counter, the HP-86/87

asks and answers this question: “Do I proceed to the next statement, or do I go back to the statement

i loops is in the location of their *

I EN

you've learned, when a ! [statement gives the next &

£?” When you ran “Yawn,” the first 5 7 that was executed was

immediately following the related !

P s
[

1. The HP-86/87 answered its own question by going back to statement 60, the statement

immediately following the related i This process continued until statement 80 caused I to increase to

6. This time the computer’s question was answered: “Proceed to the next statement.” So a blank line was

-

created on the printer, and 1

i 0! was executed. Again, the HP-86/87 went to the statement
immediately following the related | but this time the related = {1 ¥
Til 2. Therefore, the HP-86/87 went to statement 30, and printed

I was given the value 1 once again, and the cycle repeated.

How Many Loops Can Be Nested?

A large number—in fact, up to 255 nested loops may exist in a program, although available HP-86/87
memory would likely be used up before the 255th innermost loop was created.

In practical terms, you may build as many nests as you wish.

Don’t Mix Up the Nests

Figure 120 is a flowchart of another programming operation that is not allowed. Enter and run this

program listed in figure 119. You should get the output shown in figure 121.

10 | MIX UP

20 FOR MIX=1 TO 4

30 DISP "MIX =";MIX

40 FOR EXTRA=6 TO 7

50 DISP "EXTRA =";EXTRA

60 NEXT MIX

70 DISP "MIX LOOP IS FINISHED. MIX =";MIX

80 NEXT EXTRA

90 DISP "EXTRA LOOP IS FINISHED. EXTRA =";EXTRA
100 END

Figure 119. Listing for ""Mix-up”’

16-4 Tell Your Program to Nest Without Laying Eggs

START

Line 20| FORMIX=1T04 [

This is
3o DISPLAY M | it

1 / allowed

40 FOREXTRA=6TO7 |15
50| DISPLAY X]
60| NEXT MIX el |
70 DISPLAY MIX WITH
MESSAGE:
MIX LOOP DONE
80 NEXT EXTRA >
Y
DISPLAY EXTRA WITH

90 MESSAGE:

EXTRA LOOP DONE

100 END

Figure 120. Flowchart for ’"Mix-up””

Dunng the execution of the MIX loop, the EXTRA loop counter never changes its initial value of 6 since

“ 18 executed, the
MIX loop is cancelled to comply with the standard rules of BASIC Con51der the situation when the MIX
loop is completed. The HP-86/87 tries to execute |

=t1 is never reached. Also, and most important, each time FEHT |

-but discovers there is no

I statement alive and working in its memory. So it expresses its confusion with an error

statement, as figure 121 shows.

MIls =
EXTRA
Ml =
EXTRA 3]
MI¥ =
EXTRA
MIE =
EATEHA
MIK LOOP IS FIMISHED. MIx = 5

Error 47 on line 28 1 HO MATCHIWG FOR

L
(i}

o nan
i

Figure 121. Output for "Mix-up”’

Tell Your Program to Nest Without Laying Eggs 16-5

Problem: Write the “Mix-up Unmixed’” Program

The “Mix-up” program, figure 120, needs attention. le “Mix- up so it runs without error. Each value of
MIX and EXTRA should be displayed. The message i P i, ... should be
displayed for each value of MIX. Finally, the message .. should be

displayed once at the end of the program.

My cure (flowchart, listing, and output) is shown on pages H-52 and H-53.

Example: ‘“Son of Roots” Program

Enter and run this nested loop program, figure 122. Check your output on page H-54.

10 ! SON OF ROOTS
20 FOR D=2 TO 4

30 PRINT "NUMBER ROOT":D
40 FOR N=1 TO 9

50 PRINT N;" "INAC1 DD
50 NEXT N

70 PRINT

80 NEXT D

30 END

Figure 122. Listing for ““Son of Roots”’

Problem: Draw a Flowchart

Draw a flowchart for “Son of Roots”. Mine is on page H-54.

Problem: Write the “Multiplication Test” Program
The computer society is charged by some with creating a generation where brains can calculate only as
far as fingers and toes let them. Here’s a program to stir those unexercised brain cells, and to teach them

the multiplication table.

Problem Description. “Multiplication Test” displays each of 81 multiplication problems in turn, from 1
X1, 1X2,1X3,...upto9X7,9xX8and9 X9, It checks the user’s answers, and tells him if he’s right or
wrong. If he’s wrong, he’s shown the right answer. In either case, the next problem is displayed. The
number of right and wrong answers is remembered and displayed at the end of the test. If the user gets all

problems right, a congratulatory message is also displayed.

The program starts by instructing the user how to take the test on the HP-86/87.

16-6 Tell Your Program to Nest Without Laying Eggs

Hints:

1. You'll use two variables to keep track of the number of right and wrong answers. Say you choose
Corr and Wrong. You'll want to initialize them to zero before you start generating your problems.

Here's a handy way to assign the same value to a number of variables using a multiple
assignment statement:

The only limits on the number of variables that can be assigned one value in one statement is the
159 character maximum length of one HP-86/87 line. For instance, this is a valid BASIC statement:

2. AF * loop may contain many statements (technically as many as 99998, with the loop
body using 99996 statements). My inner loop (loop body plus the ¥
16 statements. It includes an 1F

and !

[statements) uses
- M statement which branches to a line within the loop.
Remember my advice to keep any branches which start within a ¥

i = T loop confined to that
loop. BASIC allows you to branch out of a loop, but experience has taught programmers to avoid

branching out of a loop except when necessary.

Your Turn. If you have trouble with this problem or with any of the others, get some ideas from my
flowchart and then try to write your program before taking a look at my listing. Your most effective

learning will occur when you're busy creating your own programs.

Here’s where you can find my efforts:

Flowchart: Page H-56.
Listing: Page H-55.

[o

Complicated - {iE—E =T Loop Arrangements

Many nested and unnested i < T loops can exist in a single program in a variety of ways. Figure
123 shows one of these possible arrangements. As long as loops do not mix, the arrangements may be as

complex as HP-86/87 memory and your ingenuity permit.

Tell Your Program to Nest Without Laying Eggs

16-7

The blank task boxes might each represent tens or hundreds of statements of all kinds, including many

conditional branches.

Figure 123. Complicated

[FORA=1T03|+—

[FORB = 1TO 5 |«
'

L + |

[NEXTB

|FOF=C=:3T07]<~—

[FORD = 170 5 |=—

L 1

[NE)jTD -
]FORE11T09|4—-
| DISP “MANY”]

[NE)tTE -~

| NE)&TC —

[FOR F = 1 TO 50]=—

| NE:TF Jow
——
L NEXTA |——r
I * il

END

1 Loop Arrangement

16-8 Tell Your Program to Nest Without Laying Eggs

Problem: Flowchart Analysis

If the program flowcharted in figure 123 were run, how many times would the word “many” be displayed?
For the answer, see page 16-9.

Summary of Chapter 16

o TwoF

1 loops are nested when one loop is entirely contained within another.

Example: Loop Bis nested within loop A

START

—{ FORA=1T05 |
—=[FOR B = 1 T0 10]
'
b 4 [I
{
el NE);T B |
—<— NEXTA |
Y
END

* Upto 255 loops may be nested, one within the other.

. T loops may not be mixed.

Example:

—={FORA = 1 TO 3|
Y

VERBOTENI |
—=|{FORB = 1TO 8]

|

o ——
“<{ NEXTA |
{
—=—{ NEXTB |
Y

END

Tell Your Program to Nest Without Laying Eggs 16-9

® Multiple assignment statements

One assignment statement can assign one value to a number of variables. The variables are
separated by commas, and they all appear to the left of the = symbol.

Example:

“ and run it. The program

will give you instructions and answers.

Answer to Flowchart Question

This question is asked on page 16-8,
The word “many” would be displayed 135 times.

The A loop would execute 3 times. For each A loop, the C loop would run 5 times (3,4,5,6,7). For each C
loop, the E loop would run 9 times. 9 X 5 X 3 =135,

Chapter 17

Teach Your Program to Read

Preview
In chapter 17, you will:

® Learn how to increase your control over where things are printed and displayed.
¢ Learn a third way to put numbers into your program.

® Write three programs and modify another.

7: A Function

X and i

seeitin action, run the following example.

* is used only in i statements. It acts like a tab function on a typewriter. To

Example: “Tab” Program

Enter “Tab,” whose listing is shown in figure 124. Notice that statement 40 displays a scale showing each
position of the computer’s 80-position line. Also notice the semicolon in statement 50.

10 | "TAB"

20 DISP "ENTER AN INTEGER FROM 1 TO 80."

30 INPUT N

40 DISP ”)l’,lhul,,)1,JJ’AJ,)!21’),AJ,,93-’,?’AJ).’,4!,J.I'J\”],SJ,’JA."J}E””AJ’JJ?’

’!JAIJJ’B
S0 BISE THB R L
50 END

Figure 124. Listing for **'Tab” Program

Run “Tab” several times, entering a number from 1 to 80 each time. As you see, the | is displayed at the
line position specified by ¥ .F in statement 50. Now work through the following problem to see an

important advantage of 7

17-1

17-2 Tell Your Program to Nest Without Laying Eggs

Problem: Write the ““Grandson of Roots” Program

Rewrite my “Son of Roots” program (see figure 122, page 16-5). Do not use .X I, at least not yet.
Have your “Grandson of Roots” program print the second, third, and fourth roots of the integers from one

to ten, rather than from one to nine. The result will show a cosmetic flaw that you'll soon fix with

Check your listing and output against mine in figure 125.

Notice in figure 125 how all the roots line up nicely for all numbers from 1 through 9, but the three roots of

10 are moved right one place. This results from statement 50:

This statement “prints” four spaces between the number and its root.

The second digit of 10 in the number column moves the four spaces and the root one additional position to
the right.

10 | GRANDSON OF ROOTS NUMBER ROOT 3
20 FOR D=2 TO 4 1 1
30 PRINT "NUMBER ROOT" ; D 2 1.25882104983
40 FOR N=1 TO 10 3 1.442243857031
SiC s PRI N sk YINAC1 /D) 4 1.58740105137
B0 NEXT N S 1.70987594668
70 PRINT 6 1,81712059283
80 NEXT D ? 1.91293118277
90 END 8 2
8 2,0B8008382305
10 2.15443463003
NUMBER ROOT 2 NUMBER ROOT 4
1 1 1 1
2 1.41421356237 2 1.189207115
3 1,73205080757 3 1.31607401295
4 2 4 1.41421356237
] 2.23680B739775 5 1.49534878122
5 2.443948974278 B 1.56508458007
7 2.64575131106 7 1.8265765617
8 2.B2842712475S B 1.68175283051
3 3 g 1.73205080757
10 3.16227766017 10 1.77827341004

Figure 125. Listing and Output for *’Grandson of Roots’’

/—'\-\.

Tell Your Program to Nest Without Laying Eggs 17-3

Now to the rescue comes i

£ X *. Change statement 50 to:

Now run your program again. Your listing and output should look like figure 126 (except for the remark).

10 | TAB, GRANDNEPHEW OF RODTS NUMBER ROOT 3
20 FOR D=z TO 4 1

1
30 PRINT "NUMBER ROOT"; D 2 1.259921049883
40 FOR N=1 TO 10 3 1.44224957031
S0 PRINT Nj;TAB (8);N~(1-D) 4 1.58740105197
B0 NEXT N] 1.70937594668
70 PRINT 3 1.81712053283
80 NEXT D 7 1.81293118277
90 END 8 Z
9 2.0800B8382305
10 2.15443468003
NUMBER ROOT 2 NUMBER ROOT 4
1 1 1 1
Z 1.41421356237 2 1.189207115
3 1.73205080757 3 1.31607401235
4 2 4 1.41421358237
5 2.23B0B79775 5 1.48534878122
& 2.44948874278 3 1.56508458007
7 2.64575131106 7 1.6265765617
8 2.82842712475 8 1.6B8173283051
9 3 9 1.73205080757
10 3.16227766017 10 1.77B27941004

Figure 126. Listing and Output for *'Tab, Grandnephew of Roots"’

© 12 and

4 1. In “Tab, Grandnephew of Roots,”
eighth position from the left, including the roots for the number ten. Then why do the numerals of each

* instructs each root to begin in the

root actually begin in the ninth position? Read on.

Spaces Displayed and Printed with Numbers

Not only do the numerals printed in the root column start in the ninth, not the eighth position, but the
numerals in the number column start in the second position, even though statement 50 instructs N to be
printed in position one. These numbers in fact do start at positions eight and one. The space that every
positive number or zero begins with, whether displayed or printed by the HP-86/87, is reserved for the

minus sign used for negative numbers. So when you use | i £ X * to position numbers, remember that a
positive number will start with a space at position X, and a negative number will start with a minus sign

at position X.
Also, when a number is displayed or printed, a space always follows the number.

These leading and following spaces are displayed and printed with any number, whether represented by a
constant, a variable, or a mathematical expression, like 3*H/V—D.

17-4 Tell Your Program to Nest Without Laying Eggs

Example: “Spaced Out Numbers’ Program

Enter and run this program, figure 127. See the extra spaces that are displayed only with numbers. These

spaces are not displayed when the numerals are used as quoted characters.

10 DISP "'1+2=3"

20 DISP ll1ll;k|+l|;li2l!;ll.Iljllsll Il‘gjg
AGLDISE s e s elEes ! ;Z .,
40 END -
Figure 127. Listing and Output for "Spaced Out Numbers’’
Some T X * Truths

1. When youuse | HEi CX #, you must instruct the HP-86/87
a. What to print or display, and

b. Where to print or display it.

2. Theargumentin’ £ X i may be a constant, a variable or an expression.

Examples:

3.

©X % must be one or greater (X > = 1). If X is less than one (X < 1), a
X 7 is changed to - -

warning message is given, and !

Example program (listing and output) showing a 1|

£X ¥ argument of —5:

Tell Your Program to Nest Without Laying Eggs 17-5

ENTER TAB ARGUMENT

?

-5

Warning 5S4 on line 3@ : THB
WRONG

4, For

an argument X between 1 and 80.5 (1 < X < 80.5), X is rounded to the nearest integer before
o X 3 is executed.

Examples:

For X greater than or equal to 80.5 (X > = 80.5), a whole multiple of 80 is subtracted from X to leave X
positive but less than 80.5 (.5 < = X < 80.5). Then this smaller X is rounded to the nearest integer

before T HE: T X ¥ is executed.

Examples:

6. Always use semicolons with 7

©X 3. If you use a comma instead, you’ll get a wide space rather
than the close spacing you probably want.

Example: “Hard Z” Program
Study the program shown in figures 128 and 129. Enter and run it if you wish. Here’s a good opportunity

to use a position scale. Remember one way to make one? Print a complete line of apostrophes on the
printer. Fold the paper to put the apostrophes at the edge.

Note the i~

I loop, lines 210-230, that advances the printing beyond the lid.

17-6

Tell Your Program to Nest Without Laying Eggs

Problem: Write the “Easy Z” Program

Rewrite “Hard Z” using

.X !. Have your program give an output identical to that given by “Hard

Z,” figure 129. My flowchart and listing are on page H-57.

10
20
30
40
50
g0
70
80
90
100
110
120
130
140
150
160
170
180
180
200
210
220
230
240

! HRRD Z

PRINTE
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

PRINT

R
H

IS 701,80
THIS Is A 2"

EEAXEEXX XXX R XX XX
*H

I
*1'
*ll
*®!
*ll
*“
*ll
*“
*lk
%0
*ll
*”
*ll

START

[INITIALIZE |

| PRINT “THISISAZ |

PRINT LARGE Z USING
ASTERISKS AND PRINT
STATEMENTS

MOVE PAPER SO PRINTING
IS ABOVE TEAR-OFF BAR

EEEXRRREXEEXRRREE
FOR LINE=1 TO 31

NEXT LINE

END

Figure 128. Flowchartand

Figure 129.

END

CRT Listing for *‘Hard Z2"*

THIS IS R 2

HEXEXXXRXEXE XXX X

EEXXAXX LR XX RRNEX

Qutput for “"Hard Z'* and ""Easy 2"*

Tell Your Program to Nest Without Laying Eggs 17-7

Problem: Write the “Center” Program

Write a program using X that prints this familiar heading in the center of the page and moves it

beyond the printer lid.

Page H-58 shows my listing.

A BASIC Word

A BASIC Word

Get an introduction to these new words through an example.

Example: “Average’” Program

Enter and run “Average.” The flowchart is shown in figure 130, while figure 131 gives the listing and

output. Notice how the statement does not appear in the flowchart. The presence of “READ” in the

flowchart means that at least one i statement must be in the program.

When statement 50 is executed the first time, the first number in the i T statement, 5, is read into the

program. The number 5 is then added to the sum S, which was initialized to zero in statement 30. The

second time through the loop, the next number in the I

‘M statement, 14, is read, then added to 5 to
make a new sum S of 19.

This sequence continues until, during the last execution through the loop, the last number, —471, is read.

Statement 70 then sets N to 11, and since 11 is greater than 10, the program moves to statement 80. The

average is computed and printed. The HP-86/87 then skips the i

START 10 | AYERAGE
20 CRT IS 1,80
30 S=0

- statement and the program ends.

| S$=0 | 40 FOR N=1 TD 10
¥ 50 RERD D
FORN=1TO 10 | BO S=S+D
) 70 NEXT N
| READD f 80 DISP "AVERAGE:";S/10
7 SO DATR 5,14,362,43,201,-61,77,-843,2,-471

100 END
[ADDDTO S | _

'

NEXT N]

!

CALCULATE AND DISPLAY _
AVERAGE = SM10 AVERAGE : -67. 1

END

Figure 130. Flowchart for “‘Average’’ Figure 131. Listing and i1 { Hi.L. Output for “"Average"

17-8

10.

Tell Your Program to Nest Without Laying Eggs

The number of | 1 statements in a program is limited only by the 99999 limit on program

statements (or the memory capacity of your HP-86/87).

statements in a program.

i statements need not be equal.

pointer.

't statements read data items, one after the other, the Iifi T Fi statement pointer moves from

As B
the first item in the first L1 T i statement to the last item in that statement, then to the first item in

the second L!#i 7 {4 statement, and so on. The pointer continues to move, item by item, until the last

Il statement is executed, or until the last data item is read.

i statement pointer moves to the next data item (if one exists) immediately after a L

statement reads a data item, and before the next program statement is executed.

A program may have more data items than are used by statements.

{1 statements ask for more items than existin |

i statements.

But, a program may not have |

S

A way around this is 1 i.. More on this later.

t statements are more useful than 1 i

several times using the same data.

Tell Your Program to Nest Without Laying Eggs 17-9

Problem: Write the “Biggest and Smallest” Program

Program Description. This program prints and identifies the largest and smallest numbers in a group
of numbers. The group of numbers is that in statement 90 of the “Average” program, figure 131.

Hint. The first time through the loop, set L (for largest) and S (for smallest) equal to D (the data item). For
subsequent trips through the loop, avoid this statement.

Your Turn. This is a small but tricky program. Good luck!

My program: Flowchart: Page H-59.
Listing and output: Pages H-58 and H-59.

= line number: A BASIC Word

This BASIC word allows a {11 T statement list to be used again.

AR statement

B (like F 1 %), the execution of =i tine

number positions the L} T statement pointer at the first item in the I

t i+ statement at the referenced

line number.

In either case, the L

' statement item located by the pointer will be read when the next F &0

statement is executed.

Example: “Big?” Program

This is an enhancement of the “Average” program, figure 131. After the average is obtained, the program
prints those numbers larger than average in one column and those smaller than average in another. The
flowchart appears in figure 132, while the listing and output are in figure 133,

17-10 Tell Your Program to Nest Without Laying Eggs
START
| INITIALIZE | Lines20-40
| S=0 | 50
FORN =1 71010] 60
v
[READ D | 70,120
[ADDDTO S K
NEXT N] 90
CALCULATE AND DISPLAY |0 ..o
AVERAGE = S/10 10 | BIG?
20 CRT IS 1,80
30 NORMAL
| RESTORE _1 130 40 CLERR
] 50 S=0
DISPLAY COLUMN B PuREEL
HEADINGS: ABOVE AVERAGE{ 140-160 70 ;EQEDD
BELOW AVERAGE %
G 90 NEXT N
¥ 100 DISP "AVERAGE:" ;510
e ~]170 110 DISP
120 DATA 5,14,362,43,201,-61,77,-843,2,-471
READ D | 180,120 130 RESTORE
140 DISP " ABOVE BELOW"
210 Y 150 DISP " RAVERAGE AVERAGE"
C D> S/107? 190 166 DISP
¥N v 170 FOR K=1 TO 10
N D < 5/107 200 180 READ D
= TN 190 IF D»>S/10 THEN 220
¥ 200 IF D<S5-10 THEN 240
DISPLAY D IN ABOVE - 210 GOTO 250
AVERAGE COLUMN 220 DISP TAB (4);D
T - 230 GOTO 250
/‘ ¥ = 240 DISP TAB (14);D
% DISPLAY D IN BELOW 240 250 NEXT K
AVERAGE COLUMN 260 END
¥
1
230 b—ari NEXT K | 250

Y

Figure 132. Flowchart for “"BIG?""

RAYERAGE: -E7.1

ABOVE
AVERRAGE

BELOW
AVERAGE

5
14
362
43
201
-B61
77
-843
2
-471

Figure 133. Listing and Qutput for *’'BIG?"’

Tell Your Program to Nest Without Laying Eggs 17-11

Notice the | allows all the data items to
be read a second time by the second & [if—- "loop, statements 170-250. Statements 190 and 200 sort
the Lii
represented by S/10, thereby saving one step.

. in statement 130. The execution of

i statement items by size. The average value is never assigned to a variable. Instead, it is

Take time to study the “Big?” program. A good understanding of how this program works will help you
master the sorting routine you'll study in the next chapter. If you need to feel more comfortable with its

operation, enter and run “Big?.” Check to see that your output agrees with mine in figure 133.

Summary of Chapter 17

® Spaces displayed and printed with numbers

When any value (constant, variable or evaluated expression) is displayed or printed, a leading space
appears with a non-negative number and a minus sign appears with a negative number. Also, a

trailing space always appears when any value is displayed or printed.

e THECXI: AFunction
m THECX3 works like the tab control on a typewriter. It is used only with i
statements. To display the word “BASIC” starting on the 14th position of the computer’s
80-character line, use this statement:
tine number
m Theargumentin
® Theargument X in 1 #k <X * must be one or greater (X > =1). If X is less than one (X < 1), a
warning messageis given, and | M& CX * ischangedto THEC 1 5
® Foran argument X between 1 and 80.5 (1 < X < 80.5), X is rounded to the nearest integer before
THE X ' is executed.
® For X greater than or equal to 80.5 (X > = 80.5), a whole multiple of 80 is subtracted from X to
leave X positive but less than 80.5 (.5 <= X < 80.5). Then this smaller X is rounded to the nearest
integer before 7 X ¥ is executed.
. it A BASIC Word

General form:

line number = Fii variable name

17-12 Tell Your Program to Nest Without Laying Eggs

A BASIC Word

General form:

line number U311 data item . [data item] . [data item] ...

Example:

® There are no special restrictions on the number of

® The numbers of and 1 statements in a program need not be equal.

m 1 statements may be placed anywhere in a program.

m Bach! 1 statement item is used in order each time any © ' statement is executed. Data
items are read in order of | statement number and in order of appearance within a !
statement.

= i statements may not ask for more items than existin i

. A BASIC Word
There are two general forms:
line number {with no line number)
When executed, the i T statement pointer is repositioned to the first data item in the first
statement.
tine number - [fine number]
When executed, the 't statement pointer is repositioned to the first data item in the L
statement referenced by the - statement.

) ii and ! vs. assignment statements: i and i are more useful for large
amounts of data.

. i and i i1 are more useful if the program is to be run

several times using the same data.

Tell Your Program to Nest Without Laying Eggs 17-13

Review Test for Chapter 17

For answers, see page 17-14.

Enter and run the program immediately following this paragraph. When you’re asked to enter a
value for Y, enter a number between 300 and 320 that will leave 9 blank spaces to the right of the last

displayed character. To get this one right, you should enter the correct number the first try. Here’s
the program:

DISP "WHAT YALUE DO YOU WISH TO ENTER FOR Y*

INPUT Y
DISP TRE (¥J;Y
END

When statement 80 in the following program is executed, to which data item in what [7!
statement will the internal |

1 statement pointer point? For instance, if the pointer pointed to

the first 7 in the first Li 7 I statement, the answer would be item 3 in statement 150.
T=0 110 RERD X

FOR A=1 TO 4 120 T=T+X

IF T>= S0 THEN S0 130 NEXT B

GOTO EO 140 NEXT A

RESTORE 180 150 DATR 4,6,7,4

IF T>70 THEN 80 160 DATR 6,4,3,7

GOTO 100 170 DATA 3,6,3,4

DISP "T=";T 180 DATA 3,7,7,4

STOP 1890 END

100 FOR B=1 TO S

17-14 Tell Your Program to Nest Without Laying Eggs

Answers to Review Test Questions for Chapter 17
1. The number you should enter is 308.

8

-~ ~ -~ ~ ~ S S ~
R ’JJ’1)}IJ))1’2}’,1! JJJJSJ}J’ ,’JJ4J))J JJ}J5J!)} })}}EJJ)J))?J?}JJJ

308

ERE A |

To leave 9 blank spaces, the number display should start at character position 68. This means the
argument of the } i function should be either 68 for a whole multiple of 80 plus 68, like

80X1+68=80+68=148
80 X2 +68 =160+ 68 =228
80 X 3 +68 =240 + 68 =308
etc.

Of these possible arguments, only 308 is between 300 and 320.

2. Ttem 1 in statement 160. If you were very clever, you noticed that the last four statements executed
when this program is run must be:

Regardless of what data item causes T to exceed 70, statement 50 will move the {157 statement
pointer to the first data item in statement 160. (For the record, just before statement 50 was executed
for the last time, the pointer pointed to item 2 in statement 170.)

Notes 17-156

Chapter 18

Preview
In chapter 18, you will:

¢ Learn how your program can handle long lists of numbers with ease.
® Learn a slick way to sort a group of numbers by size.
® Acquire more bug killing power.

® Write two programs to analyze the rainfall in Drench, Oregon.

Arrays

You now have enough BASIC tools available to take advantage of one of the biggest weapons of all:
arrays. What are arrays? Arrays are organized collections of numbers, like lists and tables. Why have
arrays? Arrays allow programs to handle large collections of numbers easily.

The HP-86/87 offers you one dimensional arrays (lists) and two dimensional arrays (tables, with rows
and columns). This course will cover one dimensional arrays. After you finish this course, you should find
your operating manual discussion of two dimensional arrays to be straightforward.

One Dimensional Arrays

There are three important characteristics of one dimensional arrays:

1. They are lists of numbers or values.
2. Each number is represented by a single valued variable, like B(4).

3. Each single-valued variable has a single subseript. For instance, the variable B(4) has the

subscript 4.

18-1

18-2 Sort Those Numbers!

Here are a couple of examples of lists that can be used for one dimensional arrays. See figures 134 and 135.

RACE
Runner's
Finishing 1 2 3 4 5 6 7 8 9 10
Position
Runner’'s
Identification | 4 7 6 1 8 3 5 101 9 2
Number

Figure 134. List of Race Results

Daily Rainfall in Drench, Oregon for January 1978

Date lHainfaII
in Inches

1 3

2 7

3 1

4 19
5 37
6 6
7 1

8 5

9 2

10 4
11 7

12 9
13 8
14 3
15 0
16 2
17 6
18 4
19 3
20 6
21 10
22 12
23 13
24 11
25 14
26 16
27 14
28 13
29 8
30 7
31 4

Figure 135. List of January Rainfall

Array Mysteries Revealed

Here’s another look at the Race table:

Sort Those Numbers!

Runner’s Runner’'s Subscripted
Finishing | lIdentification X Value
T Variable
Position Number
1 4 R{1} 4
2 7 R(2} 7
3 6 R(3) 6
4 1 R(4) 1
5 8 R(5) 8
6 3 R(6) 3
7 5 R{7) 5
8 10 R(8) 10
9 9 R(9) 9
10 2 R(10) 2

Figure 136. List of Race Results Showing Subscripted Variables

Using figure 136, I'll explain some things about one dimensional arrays.

18-3

1. The array variable name in figure 136 is R. Just like simple one-valued variable names which

may have up to 31 characters, there is an almost inexhaustible number of names available to you for

arraysin each program. The same name may be used for an array as is used for a simple variable in

the same program, but you'll learn to tell them apart easily. Remember, an array variable represents

a collection of single valued variables, or numbers, not one number.

2. R(3) is a subscripted variable. In an array, a subscripted variable does represent one number just

like a simple variable. When you use and see a subscripted variable, remember that it only

represents a single number, in spite of its imposing appearance. For instance:

W(17)=2
Z(162)=1
B(7)=362.13

3. In a subscripted variable, R(3) for instance, 3 is the subscript. It tells programmer, user, and the
HP-86/87 that the number represented by R(3) is located in the third position or element of array R.

4. R(3)is pronounced “R sub-3.”

18-4 Sort Those Numbers!

7. A subscript may be a simple variable, a subscripted variable, or even an expression, which is a
combination of constants and variables joined by arithmetic operators, like +, —, *, /, ~. Here are
two subscripted variables using other variables as the subscripts.

H(V)
W(H(V))

Perhaps a further look at that last one would be worthwhile. Look at it this way: Say we have two
arrays, H and W, shown in figure 137.

Array H Array W
H(1) 2 W(1) 21
H(2) 3 W(2) 22
H(3) 4 W(3) 23

Wi(4) 24
W(5) 25

Figure 137. ArraysHand W

Figure 138 shows these arrays in a mini-program. The program initializes only variables H(3) and W(4):

10 H(3)=4 A
20 W(4)=24 B
30 v=3

40 R=H(V)

50 PRINT "R =';R

60 BeW(H(V))

70 PRINT "B =";B

80 END

4
24

Figure 138. Listing and Qutput for Program “"W{H(V))"’
Why don’t you enter this mini-program and confirm that I've shown you the correct output?

Here’s how this small but complex program works. Since V = 3 from statement 30, H(V) = H(3). H(3)

represents the number in the third position or element of array H.

From statement 10, H(3) = 4. So:

Using these relationships in statement 60:

W(H(V)) = W(H(3)) = W(4).

Sort Those Numbers! 18-5

The variable W(4) represents the fourth value of array W. In statement 20, this variable was initialized to
24, This gives:

W(H(V)) = W(H(3)) = W(4) = 24

Make an effort to understand what just happened. Arrays may seem a little cloudy at first, but as you

work with them, they get easier.

Here’s another example of an array variable:

A4+3)

Now do you see why BASIC does not allow the algebraic way of expressing multiplication? In algebra,
A(4 + 3) means “the variable A times the sum of 4 + 3" or “A times 7.” In BASIC, A(4 + 3) is the seventh
value of array A.

Another example:

P(A+B+2*(C)

You'll seldom see or use array variables that look this complicated, but such a variable is possible, and

such a variable represents nothing more than a single number, a value in array P.

it A BASIC Word

i: ABASICWord

The standard way to count positions or elements in an array is to start with zero, not one. This is another
ANSI standard with which Hewlett-Packard complies. For instance, an array B with five positions would
be arranged like this:

Array B
Position | Subscript | Variable
1 0 B(0)
2 1 B{1)
3 2 B(2)
4 3 B(3)
5 4 Bi4)

However, the computer’s BASIC allows you to have arrays start with subscript one, not zero. When you

put an i Pl OB ~. 1 statement before any statement referencing an array variable, the first

18-6 Sort Those Numbers!

position in that array will be associated with a subseript of 1, not 0. For instance, say your program using

array B had, as its first statement:

Your array B would look like this:

Array B
Position | Subscript | Variable
1 1 B(1)
2 2 B(2)
3 3 B(3)
4 4 B(4)
5 5 B(5)

CRR e

e

If LT i 1 is not executed in a program, ki is automatically in force.
The HP-86/87 wakes up in :

numbered zero. The optional

i, which means the first subscript of an array is

1 statement may be used in a program to remind users
that the first element or position of all arrays in the program is numbered zero.

Perhaps you feel as I do, that arrays are easier to work with when the third position, for instance, is

numbered three, not two. All my array programs in this course use, as a low numbered statement:

. may appear only once in a program. Also note that

Note that ¢

cannot be executed from the keyboard.

A BASIC Word

1) or 11 (

positions or elements, it must be dimensioned in the program. That is, a statement in the program must

If a one dimensional array has more than 10 (i

define how many elements the array has. One i I ! statement may dimension one array or more than one

Tk

array. Also, one program may have more than one Li I i statement. Examples:

These statements mean that one dimensional array K has 15 elements, L. has 35, M has 200, B has 30, and

array C2 has 5 elements. Notice that the word i © i1 appears only once in the dimension statement.

Sort Those Numbers! 18-7

Also notice that array C2 was dimensioned to have five elements. Such a dimension statement is not

required, since in the absence of a dimensioning statement, the HP-86/87 would automatically dimension
this array to have 10 or 11 elements.

% statement for your under 10 or 11 element arrays gives two benefits:

However, using a [}

1. Itsaves HP-86/87 memory for other purposes (more data, more statements).

2. Itmakes it easy for one using your listing to learn the name and size of each arrayin your program.

This is especially true if you put all your dimensioning statements near the beginning of your
listing.

]

F: ABASIC Word

Another way to dimension an array is to use |47 i1 but

rounds each value in the array to the nearest integer. This is called integer precision. For instance, take a
look at this program:

which not only dimensions like {i

]

10 OPTION BRSE 1

20 INTEGER T(5)

30 FOR C=1 TO 5§

40 RERD T(C)

50 NEXT C

60 DATR 5.43,6.9,-3.1,-3.718,1017.5
70 END

e T4 17, which
i1 statement item to variable T(1). Since statement 10 dimensions array Ttobe I
the first data item, 5.43, is rounded to the nearest integer, 5, before it is assigned to T(1).

! loop, statement 40 says

[7 statement items are rounded to the nearest integer before being
assigned to the corresponding subscripted variable, as follows:

In a similar way, the remaining [i

Numberin iiriTF | Numberin
Statement Array T
5.43 5
6.9 7

—3.1 -3

—3.718 —4

1017.5 1018

A program may have more than one ! [I statement and more than one 7T « statement. Also, a

program may have both [[T and I HTESER statements.

18-8 Sort Those Numbers!

< dimension statements are shown below:

Some more examples of I

= arrays, including arrays K5 and K6. Notice, in

statement 5, that the word } . 1s not repeated for arrays K5 and K6. They are automatically

dimensioned to be integer arrays. By the way, ! . works just fine for simple variables. Also, a

single 111 i statement can dimension both simple and array variables. The following statements

declare the variables A, B, C, D and E plus the array L to have integer precision.

You might wish to enter and run the following six-statement program to get a feel for integer precision.
Enter decimal numbers, like 25.731 and see the integer results.

Example: “Race” Program

I’ll describe this program and then ask you to become familiar with its flowchart and listing before you

move on.

Program Description. This program assists the timekeeper at the finish line of a ten-man marathon.
As each runner pants across the line, the timekeeper enters the number strapped to the runner’s back.
After the last man staggers by, and his number is entered, the program prints in one column his finishing

position and in the second column his identifying number.

Answer to Program Planning Question 4. How can BASIC and the HP-86/87 help me find answers?

I’ll use a one dimension, ten element array named R to store the identification numbers. The i

statement with its message will be within a F [—#i

O 100p T'll call the finishing position of each

runner P and each runner’s identification number N. The key © statements will look like this:

loop is finished:

Sort Those Numbers! 18-9

Array R

Subscript | Variable | Value

R(1)
R(2)
R(3)
R(4)
R(5)
R(6)
R(7)
R(8)
R(9)
R(10)

NOgOWo =0~

OLOOJ\JU)U'FJ'&UJM-—‘

—_

Before the ;
i T loop with its i

statement will initialize the 10 variables of array R.

Figure 140 shows the flowchart. The listing and output may be found in figures 139 and 141. Become
familiar with the flowchart and listing to understand how the program works.

Arrays an " Loops

In “Race,” you see one of the blg advantdges of arrays. Values can be put into arrays and displayed or

printed from arrays using } I loops. Consider writing this “Race” program using ten snnple

variables instead of an array. You would need ten dlfferent i

10 ! "RACE"

20 OPTION EBRSE 1
30 CRT IS 1,80

40 PRINTER IS 701,80

S0 NORMAL

60 CLEAR

70 DIM R(10)

80 FOR P=1 TO 10

90 DISP

100 DISP "WHAT IS THE IDENTIFICATION NUMBER OF RUNNER FINISHING IM POSITION';P;

110 INPUT N

120 R(P)=N

130 NEXT P

140 PRINT " FINISHING IDENTIFYING"
150 PRINT " POSITION NUMBER"
160 PRINT

1?70 FOR P=1 TO 10

180 PRINT THB (E6);P;TREB (20);R(P)
180 NEXT P

200 END

Figure 139. Listing for "'Race’’

18-10 Sort Those Numbers!

START FINISHING IDENTIFYING
- POSITION NUMBER

| INITIALIZE |

I DIM R (10) |
[
Y

— FORP = 1TO 10]
Y

DISPLAY MESSAGE: ENTER
IDENTIFICATION NUMBER OF
RUNNER FINISHING IN POSITION P

+ Figure 141. Output for “’‘Race’’
| INPUT N —|

Y

ASSIGN N TC THE SUBSCRIPTED
VARIABLE R(P):

R(P) = N
Y

] NEXT P]
¥

PRINT COLUMN HEADINGS:
FINISHING POSITION,
IDENTIFYING NUMBER

v
—| FORP=1TO 10]
¥ R () = Array holding runner's

PRINT IN PROPER COLUMN: identification numbers
FINISHING POSITION AND
IDENTIFYING NUMBER P

L] NE){('T P 1

N = Runner's identification

Figure 140. Flowchart for “‘Race’’

(@]

SWODNOU D WN -
NW—= WD =@ -5

First and second loop counter
Runner's finishing position

Problem: Write the “Wet” Program

Program Description. “Wet” allows the user to ask and have displayed the daily rainfall in Drench,
Oregon for any date in January 1978. The January rainfall data is in figure 135, page 18-2. After giving
the user the rainfall for his chosen date, the program prints all the dates whose rainfall was greater than
the rainfall on the chosen date. If the chosen date happens to be the one that had the greatest rainfall for
the entire month, an appropriate message is printed, since no data would have greater rainfall. Finally,
the user is asked if he wishes to start again using another date, or if he wishes to stop.

Sort Those Numbers! 18-11

Hint. How will your program know if the rainfall on the chosen date is the heaviest rainfall in January?
One way is to use a special variable as an internal indicator, called a flag by computer people. Let’s call
this variable C. Initialize C to zero, and increase it by one every time a date is printed whose rainfall is
greater than the chosen date’s rainfall.

After the chosen date’s rainfall is displayed, have your program check to see if Cis greater than zero. If C
>0, then the program did find at least one date whose rainfall was greater than the chosen date’s rainfall.
If C =0, no date was found with greater rainfall; that is, the chosen date had the greatest rainfall for the

month.

Your Turn. Draw a flowchart and then write and run your program. If you're stuck, check out my
flowchart, page H-60, then try to write “Wet.” Compare your result with mine on page H-61.

Important, When you're satisfied with your program, execute = i " to store your program
in your workspace on your BASIC Training disc. You’ll be improving this program after I tell you how to

sort numbers, and you’ll save yourself grief if you have this first version available.

Sorting

Computers are made to order to handle a drudge job like sorting. Let’s take a simple example. Say you
enter three numbers into the HP-86/87, and ask it to display the three numbers in order of size, largest
first, smallest last. Figure 142 shows the listing of “Sort,” a program that will do the job. To help you
understand how this sorting routine works, I'll give you a blow-by-blow description. You can also follow
this description on the flowchart, figure 143.

10 | SORT

20 OPTION BASE 1

30 CRT IS 1,80

40 NORMAL

S0 CLEAR

B0 DIM N(3) -l
70 FOR:I=if0 3 s o
B0 DISP "ENTER ANY NUMBER .
80 INPUT NCJ) '
100 NEXT J

110 FOR K=1 TO 2

120 FOR L=1 TO 2

130 IF N(LI>N(L+1) THEN 170
140 T=N(L)

150 N(L)=NCL+1)

160 NC(L+1)=T

170 NEXT L

180 NEXT K

190 DISP

200 FOR D=1 TO 3

210 DISP N(D)

220 NEXT D

230 END

EMTER AHNY HUMEEFR.
-5
EMTER HAHY HLUMEER.
7
@
EHTER AHY HUMBER.

7

=J

oo -y

Figure 142. Listing and Output for “‘Sort"’

18-12 Sort Those Numbers!

N {) = Array for storing user
entered numbers.

J = First loop counter.
= Number of numbers to be
sorted.

K = Second loop counter. The
number of times this loop
cycles (2) is one less than
the number of numbers to
be sorted (3).

L =Third loop counter. The
remark for the K loop also
applies here.

T =Temporary storage.

D = Fourth loop counter.

START

Figure 143. Flowchart for “’Sort”

| INITIALIZE
| DIMENSION+ARRAY N(3) |60
— FOR J i 1703 |70
[ENTERNUMBER _ |80-90
] NEXT J |100
— FOHKi1TO2 [110
- FORLi 170 2 [120
{ N> :(L-I— 1)?)I-—130
N
L [T =*N (L)]140‘
| N (L) = N(L+ 1) [150
| N (L +t1) =T [160
] NE;(T L [170
- NEj(T K |180
—= FORDi1T03 1200
) DISPLAY SORTED 210
NUMBER
] NEXT D |220
END 230

|Lines 20-50

Sorting
routine

Sort Those Numbers! 18-13

Blow-by-Blow Description of “Sort”

Array N
Array N is dimensioned, but the subscripted
variables are not initialized. Variable | Value
N{1)
N{2)
; NG3)
Each time through this loop, a value is entered Array N
and assigned to a variable of array N. The array
is now initialized. Variable | Value
N{1) -5
N(2) 0
N{3) 7
Now
K=1
L=1
Two nested loops are started.
Statement 130 asks:
N(1)=>N(1+1)?
N(1)>=> N(2)?
—5>07
IMPORTANT COMMENT

The answer is NO, so the next line is executed. .
The final value for the two nested loops

PO used in this type of sorting routine is one

less than the number of items being sorted.
T=N(1) In this example, three numbers are being
T=-5 sorted, and the two nested loops start with
This is the key, as will be evident as the plot FORK=1T02
Ill'lfOldS. FORL=1TO2

18-14 Sort Those Numbers!

T8 MOl smidiell Array N
Variable | Value
N(1)=N{1+1)
N(1) 0
N(1) =N(2)
N(1)=0 N(2) 0
N{3} 7
Now the second value, 0, can be moved up to first Array N
position, since the variable T is temporarily
saving the value, —5, originally assigned to N(1). Variable | Value
PES MOLeli=T N(1) 0
N{2) -5
N(1+1)=-5
N(2)=—-5 N{3) 7

Now the value saved by T can be put in position 2.

By using the “temporary storage variable” T, two adjacent numbers in the array can be switched.

N(2)>N(2+1)?
N(2) > N(3)?
—5>7?

The answer is NO, so the next line is executed.

Again T is assigned —5 as the first step in

switching —5 and 7,

...........

N(2)=N(2+1)
N(2)=N(@3)
N(2)=7

The second variable of array N is assigned the
value of the third variable.

N2+1)=T
N@B3)=-5

Now —b and 7 are switched.

Since 3 > 2, program execution proceeds to the
next statement.

........

N(1)>N(1+1)?
N(1) > N(2)?
0>17?

Since the answer is NO, the next statement is

executed.

T =N(1)
T=0

Sort Those Numbers!

Array N
Variable | Value
N(1) 0
N{2) 7
N(3) 7
Array N
Variable | Value
N{1) 0
N{2) 7
N{3} —5

18-15

18-16 Sort Those Numbers!

Here we go again. Now we're switching 0 and 7.

N(1)=N(1+1)
N(1)=N(2)
N(1)=7

N(1+1)=T
N(2)=0

We know the HP-86/87 has finished the job. Does
the HP-86/87 know it?

N(2)>N@2+1)?
N(2) > N(3)?
0> —5?

Yes, soon to 170.

L=3

Since 3 > 2, proceed to 180.

K=3

Since3>2,onto 190

Array N
Variable | Value
N(1) 7
N(2) 7
N(3) -5
Array N
Variable | Value
N{1) 7
N(2) 0
N(3) -5

Sort Those Numbers! 18-17

The program displays its good work and ends.

This sorting routine works equally well for putting the smallest number on top and the largest on the
bottom. Just change the conditional in statement 130 from = to = .

There is no special limit on the number of numbers that can be sorted with this scheme.

Often, this sorting routine is called a “bubble sort,” since the largest (or smallest) number “bubbles” to the
top as the program runs.

.- includes the functions of 7 The variable

L HE may include either or both simple numeric variables and array variables used in

the program Array vanables are shown on the variable list as, for instance, E{). The command

i .8, F L would, when executed with il trace the values of all subscripted variables of

array E, and the values of numeric variables B, F and X. To emphasize, if array E had 1000 elements,

executing | i

variables associated with array E. Since

|, executing

"y

program, as well as every simple variable.

Another point: The programmability of adds to their bug
killing power. In “Sort,” whose listing is in figure 142, page 18-11, you might wish to trace all variahles
only through the three key element-swapping statements 140, 150 and 160. A way to do this is to add these

statements:

i.L.. Pressing (RESET) or
but they're not

executing

programmable,

Problems Using
1. Enter “Sort,” figure 142, page 18-11, and print a complete line-by-line trace of the program, including

the name and value of every variable (which, of course, includes every subscripted varlable)

whenever a variable changes value. Your printout should include the output from all i
statements. The desired output for this problem is on page H-65.

2. Again using “Sort,” print the same information as asked for in problem 1 above, except limit the
information to the three element-swapping statements, 140, 150, and 160. Page H-67 shows the
output for this problem.

18-18 Sort Those Numbers!
Problem: Write the Augmented “Wet"” Program

Program Description. This enhanced version of “Wet” includes all the abilities of the original. At the
end of the original version, the user is asked if he wishes to start over again using another date, or if he
wishes to stop. This new version replaces the “stop” option with the option to have the rainfall amounts
sorted by amount, smallest first, and then to have these amounts printed in order, smallest amount first,
largest amount last.

Your Turn. Add to your original “Wet” flowchart those items needed to chart the flow of this new “Wet.”
Then execute 1. % F." to copy your earlier version into memory. Finally, modify it to satisfy the

new description.
Note: Ittakes the HP-86/87 about 20 seconds to sort all 31 rainfall amounts. If you ask your program
to sort these rainfall amounts, no output will occur until this 20 second sorting time has passed.

My flowchart: Page H-69.
My listing: Page H-68.
My output: Pages H-70 through H-72.

Summary of Chapter 18
® Array: Anorganized collection of numbers.

® One dimensional array: A way of handling easily and efficiently a long (or short) list of

numbers, each of which is represented by a single-valued variable called a subscripted variable,

m Example of an array:

Array C5
Subscripted .

Variable Subscript Value
C5(0) 0 3
C5(1) 1 —17.3
C5(2) 2 431
C5(3) 3 0
C5(4) 4 .037
C5(b) 3] —6255.79

® Arrayname: Thename given to the entire list of values. It does not refer to an individual value.,
The array name may be any acceptable variable name (up to 31 characters, letters, numerals, or

underscores).

Examples: C5, A, M6, GTANT, N7V9, RACERS, etc.

Sort Those Numbers! 18-19

® Array subscript: A number giving the position of a particular value in the array’s list of values.

A subscript may be a constant, a simple variable, an expression or another subscripted

variable.

m Subscripted variable. General form:

array name ‘. subscript

The name of something that may have one value or a succession of values in a program, one

value at a time, Its definition and its use in a program are identical to the definition and use of a

simple variable, except a subscripted variable is one of a related array of subscripted variables,
while a simple variable is not.

m Comparison of simple variables and array variables:

Simple Numeric Variable
Terms and Examples

Array Variable Terms
and Examples

Definitions

Array Variable
Ab, D, G7, M, Num

The name of an organized collection of numbers,
where each is represented by a subscripted
variable.

Simple, one-valued, numeric
variable Ab, D, G7, M, Num

Subscripted variable
AB(3), D(37),
G7(D(37)).

M{L + 3 * B),
Num(D(AbL}))

The name of something that may have a single
value or a succession of values in a program, one
value at atime.

Subscript {subscripts
identified by arrows):
A(3), D(37)
t t
G(D(37))
t

M(L + 3 * B)
t

The number part of a subscripted variable, like the 3
in R(3). It gives the array position or element where
the value represented by R(3) is located.

Element or position

A location for a value in an array. A ten element
array would have ten locations, each available for
one value. During the execution of a program, the
values in these positions or elements may change,
but the identifying number and location of each
element remains the same. The element number is
given by the subscript of the subscripted variable.
For instance, the variable H(3) refers to the number
in element 3 of array H.

Value
23, —6.21, 4003

Value
23,—6.21,4003

A number

18-20 Sort Those Numbers!

: A BASIC Word

i: ABASICWord

ey

General forms:

|'u|' [N
P r|(||

line number .

tine number {.

means the first subscript of an array is zero, and the eighth subscript, for

ki

instance, is numbered seven.

1 means the first subscript of an array is numbered one, and the eighth

subscript, for instance, is numbered eight.

4
[»

m The HP-86/87 wakes up (when first turned on) with if i in force. An

£ statement is used in a program only for documentation. If you want your

subscripts’ numbers to correspond to their positions; that is, if you want the flrst subscript of

each of your program’s arrays to be numbered one, you must have an
statement in your program. Its statement number must be lower than the number of any

statement using an array variable or a subscripted variable.

e Arraydimension. The maximum number of values an array may have is called its dimension. An

array’s dimension is equal to the number of elements in the array.

A BASICWord

General form:

fine number i1 111 array name “.dimension . array name ‘.dimension’ . ..

The one or several dimension statements in a program are used to define the dimensions of a
program’s arrays. They must appear earlier in the program than any statement using a

dimensioned array variable or related subscripted variable. The i i statement must

precede any array dimensioning statement. If an arrdy s dimension is not defined in a program, its

dimension automatically becomes 10 (i

Example:

Sort Those Numbers! 18-21

A BASIC Word

(General form:

= array name “.dimension i , simple variable name , array name

ltine number [47!

L.dimension , simple variable name , simple variable name

does. In addition, it defines the listed simple

variables and the listed array variables as having integer precision (see below). When an array

variable is defined as having integer precision, it means all of its subscripted variables have integer

precision.

Simple variables and array variables may be intermixed in any order in an “ statement,

statement.

and either kind of variable may be absent from an i

In a program, any ! . statement or statements must appear earlier than any integer

precision variable. But they must appear after any i LirE statement.

Example:

Sorting

A collection of numbers may be arranged in ascending or descending order of size using the
following key sorting statements. Of course, any line numbers and any variable names may be used,

and thereis no special limit on the number of numbers that may be sorted by this technique.

Statement 520, as shown, puts the smallest of 10 numbers at the top of the list. Changing the -
symbol to * in statement 520 would put the largest number on top. The 10 numbers are held in array

N both before and after sorting.

The upper limit of the two nested loops, 9 in this example, is always one less than the number of

numbers being sorted.

18-22 Sort Those Numbers!

® Tracing values of subscripted variables in a program.

u . variable list may be used as a command or BASIC word to trace not only the
values of simple variables, but the values of all subscripted variables of any array whose
variable name appears in the variable list, followed by a pair of empty parentheses.

Example:
n H torf ot

i..., used as a command or BASIC word, traces the values of all subscripted
variables of all arrays as well as the values of all simple variables in the program.

Review Test for Chapter 18

Answers are on page 18-24.

1. What's wrong with this program?

2, This program sorts numbers according to size. Will the smallest or largest numbers appear at the
top of the list?

3. To cause the program in problem 2 to print the same list of numbers, but with the order reversed,
what program change(s) (is, are) required?

Sort Those Numbers! 18-23

4. This program is supposed to sort seven entered numbers. Why won’t it work?

o

Without using the HP-86/87 (except to check your answer if you wish), what will statement 200 print
when this program is run?

Hint. Write a table for each array showing subscripted variables and values.

18-24 Sort Those Numbers!

Answers to Review Test Questlons for Chapter 18

1. Itneedsa L

I and before i H

I statement located after «i

A good choice would be <+ % [11
2. Largest.
3. Instatement 100, change > to *.

4. Lines 80 and 90 should be:

Notes 18-25

Chapter 18

Fun and Games With Strings

Preview
In chapter 19, you will:

¢ Teach the HP-86/87 how to flip coins and roll dice.
® Learn how to increase your word power.
¢ Enter and run five sample programs (one is only four lines long).
* Write nine(!) programs.
Games have always been a popular application for computers, and often games include an element of

chance. BASIC allows you to deliberately introduce chance into your programs using a BASIC word and

function you've previewed several chapters ago,

Figure 144 shows the listing and two typical outputs for “Randomize.”
formally introduced by this program. After this program, I'll discuss & {1 . But first,
why don’t you enter “Randomize,” figure 144, and run it a few times? Each time yvou run “Randomize,”

your output will be different. Almost certainly, none of your outputs will be the same as the two shown in

figure 144.

Example: “Randomize” Program

10 | RANDOMI ZE
20 RANDOMIZE

30 FOR N=1 TO 5
40 DISP RND

S50 NEXT N

60 END

LBPFITE4EERET
L 319137BE97 73
L 125926830566
LBE9242339354
LT2E7514508591

VRASO2E3RET

147289772
ITB4EBE5EE
283533384
231338291

tﬁ '-l:i ll.\J -t'- -u:l

3
91
a2
37

Figure 144. Listing and Two Typical Outputs for “’"Randomize’’

A Funetion

This function uses no argument. When executed repeatedly, the =i function generates a series of

numbers that, in a practical sense, is completely random. The numbers range from zero to .999999999999.

191

19-2 Fun and Games With Strings

It is possible for the number to be zero, but it will never be exactly one. The sequence of numbers generated
by i
one of the best man-made generators available.

i does not exactly satisfy the strict mathematical definition of “random,” but the HP-86/87 uses

Random Number Seed

The HP-86/87 contains a random number generator that is activated by il This generator uses a

number called a “seed” provided by the HP-86/87 or by the user which determines what sequence of

numbers will be generated. When | i1 2k is not executed, the same seed is always provided by the
HP-86/87 whenever the HP-86/87 is turned on, or when (RESET) is pressed. When

it generates the same sequence of random numbers.

i1 uses the same seed,

Example: “RND” Program

To discover for yourself how unrandom , enter the “RND”
program listed below. Then press (RESET) and run the program. Repeat the same “press (RESET), press

RUN)" sequence several times and compare the printed sets of five numbers.

is when used without ¥

A BASIC Word

To randomize this unrandom result, use

If no number or numeric expression follows ., the HP-86/87 supplies a different seed every

time I ~is executed. This seed is related to the computer’s internal timing system, so as time

changes, so does the seed delivered by the execution of = =. In this way,

virtually guarantees a different sequence of random numbers each time a program containing &1l is

run. If a number or numeric expression follows F

This is often desirable when testing a program containing F

Here are a few examples of

Random Integers Between Any Two Limits

To generate a series of random integers ranging from a small integer S to a larger integer L inclusive, use
this expression:

Example: “Flip” Program

Fun and Games With Strings 19-3

This is a coin toss guessing game. The flowchart and listing are shown in figure 145. Enter and play this

game if you wish. This statement;

is the coin tosser. For |

i values from zero to .499999999999 inclusive, F becomes one. For

values

from .500000000000 through 999999999999 inclusive, F becomes two.

Here’s how INT((L. + 1 — S) * RND + S) turns into INT(2 * RND + 1):

The large integeris 2 L = 2. The small integeris 1 S =1,

SoINT(L +1—8)*RND + S) becomes INT((2+ 1 — 1) * RND + 1) or INT(2 * RND + 1).

[INITIALIZE]

[_PRINT INSTRUCTIONS]

_ '
[WRONG.RIGRT-0]

DISPLAY FLIP I]
GENERATE F RANDOMLY.
TGSS ~10R 2
i

[DISPLAY MESSAGE

ENTER YOUR GUESS, GUESS

1

[INPUT GUESS |

1
4 TOSS GUESS }—Y-~—

]
DISPLAY “WRONG GUESS
ADDTTOWRONG |

< T0ss -

[DISPLAY 1T WAS HEADS

N

[DISPLAY IT WAS TAILS -

— f
[DisPLAY “RIGHT!
)

[ADD 1 TO RIGHT |

DISPLAY NUMBER OF RIGHT
AND WRONG GUESSES
—]

END

10

"FLIP

20 CRT IS 1,80

30 PRINTER 15 701,80
40 NORMAL

50 CLEARR

B0 RANDOMIZE

100
110
120
130
140
150
160
170
180
180
200
210
z20
230
240
250
260
270
z80
290
3o
310
320
330
340
350
360
370
380
350
400

PRINT TRB (23);"COIN TOSS GRME"
PRINT "CAN vOU QUTGUESS R COMPUTER? I WILL REPEATEDLY TOSS A COIN.Y
PRINT "EACH TIME vOU SEE ’FLIP” APPEAR, I HAVE TOSSED IT. IF You

PRINT "THINK IT CAME UF HERDS, TYPE A 1" AMD PRESS (END LINE),™
PRINT “IF ¥DU THINK IT’S TARILS, TYPE A “2‘ AMD PRESS (END LINE)."
PRINT "AFTER EACH GUESS YOUR SCORE WILL BE DISPLRYED, WHEN YOuU*
PRINT “"WISH TO STOP, FFRESS (PRUSE)."
PRINT TAB (23);"HERE WE GO!!"
FOR Line=1 TO 31
FRINT
NEXT Line
Wrong,Right=0
TOSS: DISP
DISP "FLIF!"
DISP
Toss=INT (2%RND +1)
DISP "WHAT*S YOUR GUESSH
INPUT Guess
DISP
IF TosssGuess THEM RIGHT
DISP “WROMG GUESS,'
Wrong=Hrong+i
IF Toss=2 THEN TRILS
DISP "IT WAS HERDS."
GOTO WINNERS
TRAILS: DISP "IT WAS TAHILS."
GOTD WIMNMERS
RIGHT: DISP "RIGHT!®
Right=Right+1
WINNERS: DISP
DISP "YOU'VE WOM";Right;" TIMES."
DISP "I“VE WON" ; Wrang; " TIMES, "
GOTO TOSS
END

Figure 145. Flowchart and Listing for "‘Flip”’

19-4 Fun and Games With Strings

Problem: Write the “Rand 1”’ Program

Write a program to generate random integers from 1 to 13, inclusive. Display five integers on one line each

time the program is run. My version is on page H-73.

Problem: Write the “Rand 2” Program

Modify “Rand 1” to display five random integers on one line from 1 to 100 inclusive. Turn to page H-74 to

see my listing.

Problem: Write the “Rand 3" Program

Change “Rand 2” so that it displays eight random integers on one line between —10 and +20. Page H-75
shows my program.

Problem: Write the “Rand 4’ Program

Write a program to display a set of eight random integers for any range. The range limits are to be entered

by the user. The integers are to be displayed on one line, unless the numbers are too large for eight of them

to fit on one line. Write it for one unfamiliar with the HP-86/87. That is, write yvour i

statements for one who does not know what “enter” means.

See page H-76 for my flowchart and listing. Two different outputs are shown on page H-77.

Problem: Write the “High Roller” Program

Program Description. You and the HP-86/87 take turns rolling two dice. The high roller wins. The
result of each roll is displayed. This display shows the value of each die and the sum. After the computer’s
roll is displayed, the display announces who won, or announces a tie. If no tie has occurred, the running

totals of your wins and the computer’s wins are displayed.

The program operates as an endless loop. At the start, displayed instructions include how to stop the

program.
Your Turn. Write your flowchart, and compare it against mine on page H-79. Maybe yours is better.

Now write your “High Roller” program. When you’re finished, compare your program with mine shown

on page H-78.

String Expressions

A string of characters within quotes is one kind of string expression you’ve used frequently. Examples:

VGin

Fun and Games With Strings 19-5

The last two are strings, not numbers, since they are enclosed in quotation marks. They cannot be used in
calculations. As you know, the only character or symbol that cannot be used in a string is the quotation
mark itself. It is reserved for enclosing and identifying strings. A string of characters within quotes is
often called a quoted or literal string, but it’s more commonly called a string.

String Variables
BASIC has two kinds of variables:

Numeric variables: N, A3, N7V9, AVE(7), Number
String variables: N§, A3$, N7V9$, AVE$, NAME$S

Here’s a string variable in action:

Listing

Note how the assignment statement 10 assigns the “value” = {% to the string variable D3§$.

A string variable name consists of a string of letters, numerals, and underscores followed by a dollar sign.
The rules for naming string variables are exactly the same as those for numerical variable names or
numerical array names, except the name must end with §. The string variable name may be up to 31

characters, not counting the dollar sign.

Strings Can Be Compared

Strings of characters and string variables can be compared in much the same way as constants and

numeric variables. The following program demonstrates how this is done.

Example: “Spell” Program

Limber your fingers and enter this program whose listing appears in figure 146, After you have it running

OK, store it in your workspace by executing the & " command.

You’ll be improving this program later, so it’s wise to put it in a safe place, especially since you’re going to

scratch memory before you use “Spell” again.

19-6 Fun and Games With Strings

10 | "SPELL" AN EXAMPLE

20 CLEAR

30 CRT IS 1,80

40 NORMAL

50 TEST$="INCREDIBLE"

60 DISP "ON YDUR COMMAND, A WORD WILL FLASH ON THE SCREEN. IT WILL APPEAR IN THE
70 DISP "CENTER OF THE TOP ROW FOR A LITTLE OVER 0.1 SEC. WHEN IT DISAPPEFARS,"
80 DISP "YOU WILL BE ASKED TO SPELL IT CORRECTLY."

90 DISP

100 DISP "SHARPEN YOUR EYEBALLS AND GOOD LUCK! PRESS (CONT) WHEN REARDY."

110 DISP

120 PAUSE

130 CLERAR

140 DISP TAB (31);TEST$

150 WAIT 100

160 CLERR

170 DISP "TYPE THE WORD YOU JUST SAW AND PRESS (END LINE)."

180 INPUT ANSWERS

190 DISP

200 IF ANSWER$=TEST$ THEN 320

210 DISP "SORRY, YOURE R LITTLE OFF. IF YOU WOULD LIKE TO TRY AGAIN, PRESS vY,"
220 DISP "THEN (END LINE),"

230 DISP "IF YOU WOULD RATHER SEE THE CORRECT SPELLING, PRESS S, THEN (END LINE)

240 INPUT ANSHERS$

250 IF ANSWER$="5" THEN 2B0
260 CLEAR

270 GOTO 140

280 DISP

290 DISP TESTS

300 DISP

310 GOTO 350

320 DISP "GOOD SHOW!"

330 WAIT 300

340 DISF

350 DISFP "THANKS FOR YOUR EFFORT."
360 END

Figure 146. Listing for “’Spell”

In line 50, which is an assignment statement the string variable TEST$ is assigned the “value”

1 _. This string variable is used first in line 140. Statement 140, together with 150 and 160,
flashes the word i -

- on the screen. Line 180 is an . 1T statement asking for a string

entry. When a series of characters, say I -, is entered in response to line 180’s question

. by statement 180. In line 200,

mark, the string variable A$ is assigned the value I
ANSWERS$ is compared to TESTS, which means iF

they are not equal, the program does not branch to line 320. Instead, the “Sorry” message of lines 210-230

" is compared to 1! LBl i, Since

is displayed.

When i

. If you entered _in response to lines 170 and 180:

1. You would be a terrible speller, and

2. The HP-86/87 would think you had entered two strings, and would give you an error message.

Fun and Games With Strings 19-7

In the absence of quotes, any comma entered in response to a string variable I 71! T statement is taken

as a string boundary. If quotes are used, only a comma between two quoted strings is considered to be a

string boundary. So if you entered * * in response to lines 170 and 180, you would

still be a horrible speller, but the HP-86/87 would accept your entry as one string.

Discover something else about string inputs. Change line 50 to

Now run “Spell” twice. The first time, enter * & without

quotes. How does the HP-86/87 know you intend ©

" with quotes. The second time, enter =

i without quotes to be a string of three characters
instead of a number which could be used in calculations? The answer lies in line 180. If a string variable is

i1 statement, almost any group of characters entered in response to the ' is considered a

usedin an I¥

string, including numerals.

I say “almost any group of characters” because the comma and quotation mark are special cases, and
because there is a restriction on the number of characters that can be entered as one string. I’ll tell you

more about string length later. Now I'll tell you more about the comma and quotation mark.

How would you enter the number 1,000,000 as a single string? This situation is very similar to the Pans

France case discussed above. You would enter it enclosed within quotes, like this: & , ¢
you entered 1,000,000 without quotes, the HP-86/87 would think you had entered three strings, 1 and 000
and 000. Remember, in the absence of quotes, any comma is taken as a string boundary.

Mixed Numeric and String Inputs

1l

As you know, one iiif

.

1T statement can ask for several numerical inputs. In addition, an I HFLi7

statement can ask for several string inputs and also for a group of intermixed numeric and string inputs.

For example:

[

When responding to an I M7 statement that asks for several inputs, be sure to separate entries with
commas and enclose with quotation marks all strings that include commas. Also, enter your inputs in the
right order. In responding to example statement 500 above, you would enter a string, number, string and

number in that order.

Strings Can Be Combined

As demonstrated below, the semicolon can be used to combine strings and string variables into a single
statement.

19-8 Fun and Games With Strings

Example: “Small Program” Program

To illustrate this, here is a more sophisticated relative of the old “Semicolon, Comma” program you used
in chapter 6. Enter the program listed in figure 147. Note the single space in line 10 between the L in
SMALL and the quotation mark.

10 A$="SMALL "

20 B$="PROGRAM"

30 DISP "ENTER YALUES FOR A, B AND C."
40 INPUT A,B,C

50 PRINT "SEMICOLON:"

BO PRINT ",JJ.FA,JJF1JJ,JA,)PJZJ,)JA)’,JBP’,JA,J’,4F.’.’J’\-‘JJJS,)J’/\.J’J’EJ,,)A,)J’?
}JJ’A},JJS”

70 PRINT A$;Bs$;"-10";"15";"20"

BO PRINT "-10";"15";"20"

90 PRINT A;B;C;A;B;C

100 PRINT B;C;RA;B

110 PRINT

120 PRINT "COMMA:"

130 PRINT ”J,.IJIAJ;;J1;)r:AJJJ)ZJ)J)A)JJ,B)JJ)A})JJq)J.lJAJJ’JS,JJ;AJ;,-,SJ,;;A,;,,
?J])JA’JI, "

140 PRINT R$,B$,"-10","15",120"

150 PRINT ”—10“,”15”,“20”

160 PRINT A,B,C,A,B,C

170 PRINT B,C,R,B

180 GOTO 30

190 END

ENTER VALUES FOR A, B AND C.
?

SEMICOLON:

~ ~ ~ ~ = ~ ~
ERE R) }!J’1JJ’} LI |),”3),,1 ’}”4’)” ”)!S}J}.!)JJ}bJJJJ' J!J}?}J’} ”.!}B

EERL:
SMALL PROGRAM-101520
-101520
-10 15 20 -10 13 20
15 20 -10 13

COMMA:
J”’A’))l1Jl,?AJ,’JZ,J,’,\,,P,3!,JJA,J,)q}J!)AFJJ.’Sﬂ,J’A’,J’E}J,,A}_F?J?,J)?A)},JS
SMALL PROGRAM =10
20
-10 15 20
-10 15 20 -10
15 20
15 20 -10 15
ENTER VALUES FOR A, B AND C.
]

Figure 147. Listing of *’Small Program’* and OutputforA=—-10,B=15and C =20

Now run “Small Program’ and confirm the output shown in figure 147. That is, enter values for A, B, and
C of - :

outputs.

i. Then enter a number of other values, both negative and positive, and ohserve the

Here are some truths demonstrated by this program:

1. A semicolon between two string variables or quoted strings in a ¥ ' statement

results in the strings being printed or displayed with no space between them.

Fun and Games With Strings 19-9

When line 70 was executed, a space appeared between ° - and T only because a

space was built into A$ in line 10, No space was built into the string variable B$ in line 20 or the

i 4 fa

----- . i were printed with no

string " -~ 1% " in line 80, so when line 80 was executed, i+

space between them.

Remember: If you want one or more spaces to appear between strings when you use quoted strings

L or B

and/or string variablesina [! statement, include the space(s) in your quoted string

or in the assignment statement that defines your string variable (like line 10).

2. A comma between string variables and/or quoted strings in a I * statement results
in the strings being printed or displayed with_a wide space between them. Most often, such wide
spacing is not desirable, so remember to use the semicolon. See your HP-86/87 operating manual for

details about this wide spacing.

3. Review a bit of chapter 16 by looking at the output of line 90 in detail, when A, B, and C have the
values —10, 15 and 20:

I 1 I L]
When the numeric variable The space following a dis- When the numeric variable

valueis negative, a minus sign played or printed value of a value is positive, a space
appears before the printed or numeric variable is always left appears before the printed or
displayed value. blank. displayed value.

4. A semicolon between two numeric variablesin a - “or [t I %5 statement results in the values

being printed or displayed with no additional space between them beyond the spaces discussed in 3
above.

5. A comma between two numeric variables in a F ' statement results in the values

being printed or displayed with a wide space between them.

Null String

A special kind of string is two quotation marks enclosing nothing, as shown in line 170 below. Note that
the two quotation marks are right next to each other. There is not even a space between them. A null

i7" statement by pressing only (END LINE).

string is entered in response to an |

The following program segment illustrates one use for a null string. In line 230, A$ is tested to see if itis a

null string.

19-10 Fun and Games With Strings

140 DISP "IF YOU WOULD LIKE SOME INSTRUCTIONS, PRESS Y, THEN (END LINE)."
150 DISP "TO SKIFP INSTRUCTIONS, FRESS (END LINE) ONLY."

160 DISP

170 ANSWER$=""

180 INPUT ANSHERS$

180 DISP

200 CLERR

210 DISP

220 DISP

230 IF ANSWER$="" THEN 430

240 DISP "THIS PROGRAM COMPLETELY SIMULATES THE CLASSICAL RIVER CRUOSSING PROBLEM
I HII

250 DISP "THE FOLLOWING FORM:"

If it is, the program branches around the instructions. Presumably someone using this program the
fourth time would not wish to read the instructions again. Friendly programming suggests it should be
easy for a user to bypass the instructions. Pressing only one key, ,1s one easy way.

Dimensioning String Variables
Here are the promised words about the length of strings. If a string variable represents a string over 18
characters long, including spaces, it must be dimensioned in a 11111 statement using square brackets

only. For example:

Some observations:

1. Dimensioning strings to be 18 characters or less is optional but desirable, for these reasons:

a. Toconserve HP-86/87 memory. For each undimensioned string, the HP-86/87 reserves memory
for 18 characters.

b. Toclearly show a user of your listing all the string variables your program uses.

2. A {1111 statement may combine dimensions for strings and arrays. Use commas to separate each

item. For example:

PE R A WIEs OF

3. A [}1H statement must be located in a program before any other reference to the dimensioned
variable(s) occur(s) in that program.

Strings in L

T Fi Statements

After you see quoted strings used in L} 7 Fi statements in the following example, I'll discuss the subject in

more detail.

Example: “Guess,” a Weather Forecasting Program

Program Description. The user enters the name of the day whose weather he wants forecasted. He then

enters two magic numbers, and the HP-86/87 will print two statements:

Fun and Games With Strings 19-11

1. The weather forecast for the chosen day.
2. The percent chance the forecast is correct.

Inspect my flowchart, figure 148 and my listing for “Guess,” figure 149,

START

| INITIALIZE | Lines 20-40
¥
Bimeniston: <|[-. DIM FCST$] s0
string []
variables || DIM GRBGS | s0

DISPLAY MESSAGE: ENTER
NAME OF DAY WHOSE WEATHER| 70
YOU WANT FORECASTED

INPUT DAYS | so
)
DISPLAY MESSAGE: ENTER | g0 .0
FIRST MAGIC NUMBER
[INPUT Fost 1110
DISPLAY MESSAGE: ENTER |4,4.130
SECOND MAGIC NUMBER
L INPUT Pet 140
—= FORI=1T07 160
4 1 <> Fest
YN
Select =,
o | READFORECAST =FCSTs |
[__READ GARBAGE =GRBGs | 200
™ NEXT | | 210
]
— FORJ=1TO7] 220
Y
o J <> Pet 230
N
Select READ CHANCE OF FORECAST 240
chancerforecast BEING CORRECT = PCT$
I8 correct T
[READ GARBAGE=GRBGS | 260
. NEXT J] 270

DISPLAY CHOSEN DAY'S
FORECAST (FCST$) AND CHANCE
IT'S CORRECT ({PCT$})

END

Figure 148. Flowchart for ““Guess’’

19-12 Fun and Games With Strings

10 | GUESS

20 CRT IS 1,80

30 NORMAL

40 CLERR

50 DIM FCST$(79]

60 DIM GRBG$(79)

70 DISP "WHAT DAY’S WEATHER DO YOU WANT FORECASTED (ENTER NAME OF DAYI";

80 INPUT DAY$

90 DISP

100 DISP "WHART IS YOUR FIRST MAGIC FORECASTING NUMBER (CHOOSE 1,2,3,4,5,6 OR 72"

110 INPUT Fecst
120 DISP
130 DISP "WHAT IS YOUR SECOND MAGIC FORECASTING WUMBER (CHOOSE 1,2,3,4,5,8 OR 7)

140 INPUT Pct
150 DISP

160 FOR I=1 TO 7

170 IF I<> Fest THEN 200

180 RERD FCSTS$

190 GOTO 210

200 RERD GRBGS$

210 NEXT I

220 FOR J=1 TO 7

230 IF J<¢> Pct THEN 260

240 READ PCT$

250 GOTO 270

260 READ GRBG$

270 NEXT J

280 DISP

290 DISP DAY$;"’S WERTHER WILL BE:"

300 DISP FCST$;"."

310 DISP "THE CHANCE OF THIS FORECAST BEING CORRECT IS ";PCT$;"%."

320 DATA "TERRIBLE. FREEZING RAIN FOLLOWED BY A SEVERE COLD SNAP"

330 DATA "HEAYY SNOW, ACCUMULATING TO TWO METERS"

340 DATA "BEAUTIFUL. SUNNY, VISIBILITY 200 MILES, HIGH 23 DEGREES C"

350 DATA "STRONGLY INFLUENCED BY HURRICANE ALF. RAINFALL 20 CENTIMETERS, WINDS 1
80 KM/HR"

360 DATA "RAIN, SLEET AND SNOW',"SEVERE THUNDERSTORMS, WINDS GUSTING TO 70 MPH"
370 DATA "EVEN HOTTER. HIGH WILL APPROACH 50 DEGREES C"

380 DHTH II?OIE B UBOIK’HSDII jI| 20“ ’ll 50“"' 1OOII)_II 1OII_

390 END

Figure 149. Listing for “"Guess’’

Program Discussion. Lines 100 through 130 ask the program’s user to select two magic numbers. For

the first magic number, he chooses one number out of seven. The [if17 i statements contain a string for

each of the seven possible choices. If he selects, for instance, three as his first magic number, the program

must move the L { statement pointer through all seven strings, even though only one will be used.
Otherwise, the pointer will not be positioned properly for the second magic number selection. Look at the

first magic number loop starting at line 160 and using loop counter I. If I does not equal the first magic

number, Pct, the program branches to =i Ml statement 200, whose only purpose is to move the I

statement pointer.

Statements

More About Strings in i

figures in your “Wet” program. In addition, i statements may contain strings, as the “Guess”

Fun and Games With Strings 19-13

program shows. Each 1371 statement string must be separated from another data string or numeric
constant by a comma. A data string may be enclosed in quotation marks or it may be left unquoted.
However, remember that quotes must be used if the data string includes a comma.

Quotes around | | statement strings are like parentheses in numerical expressions. Sometimes

they’re necessary and sometimes they're not. But they never hurt. So use them freely to be safe and to
make things clearer for you.

More Truths About |

4 Statements

i T statement. However, when a

1. As you know, strings and numbers may be mixed togetherin a [

1L} statement is executed, the F

being read. That is, when the ¥ 7 statement pointer points to a string, like " Fi¥i' ", the next

! statement executed must use a string variable, like FCSTS. L1kew1se, when the pointer
points to a number which is intended for calculations, like 55 %

i statement executed
must use either a simple numeric variable, like Pct, or a subscripted varlable, like Array(7).

2. Every string or numeric constant in a LiFi T statement must be complete. That is, you may not

continue a string or constant from one I | statement to the next.

Problem: Write an Improved “Spell” Program

Program Description. Execute ! “ to copy your earlier “Spell” program into memory.

Now make these improvements:

1. Modify lines 230 and 250 so the program’s user can see the correct spelling by pressing only

END LINE). Remember, pressing only in response to an | [
string.

i statement enters a null

2. Add a iR

statement in your program should read each word before it is flashed on the screen. Remember, a

LIF T H statement and all other statements may contain no more than 159 characters. That’s two full

H statement or statements that contain 10 spelling words of your choosing. A

lines less one character position.

3. Ifa word is spelled correctly, advance to the next word. If it’s spelled wrong, give the user the option
of trying to spell the same word again or advancing to the next word. If he chooses to continue
before spelling the word correctly, show him the correct spelling of the word he missed before asking
him to flash the next word.

4. Keep track of the number of words flashed. After the user spells the last word correctly or gives up,

tell him the test is over, and give him the option of taking the test over again.

Your Turn. Do your best at adding these changes to the “Spell” program you started earlier. My listing
for this second “Spell” version is on page H-80.

19-14 Fun and Games With Strings

When you’re satisfied with your version, execute = " to record it into your workspace.

In the next problem, you’ll improve “Spell” further. If the computer’s memory somehow gets scrubbed as
you're working on the next problem, you’ll be very happy to have this backup on your disc.
Problem: Write a Further Improved “Spell” Program
Program Description. Starting with the improved “Spell” you just finished, make these changes:
1. Givethe user the option of seeing or skipping the initial instructions.

2. Add scoring. Give 10 points for each of the 10 words spelled correctly, whether on the first try or

later. At the end of the test, express the total score as a percent.

Your Turn. Make a healthy stab at putting these improvements into your “Spell” program. To see my
third version of “Spell,” turn to pages H-81 and H-82.

After you complete this third edition of “Spell,” store it as a backup copy by executing *:

Now get ready for the final enhancement.

Problem: Improve ‘““Spell” Program One More Time

Program Description. Start with the most recent improvement of “Spell” which is in your workspace,

and which may still be in memory, and add these abilities:

1. Modify the scoring. Give 10 points only if the word is spelled correctly on the first try. If it is spelled
correctly on any later try, give five points. Modify your instructions to reflect this scoring change.

2. Increase the time the word stays on the screen by 0.1 second each time the user tries again to spell it

correctly.

Your Turn. Put these final changes into your “Spell” program. My final version of “Spell” is on pages
H-82 and H-83.

Problem. Write the “THROW” Program

Here is a dice game you play with the HP-86/87 which gives you the advantage of an option denied to the
HP-86/87. It works like this:

A game consists of 12 rolls of three dice. You roll first, and you and the HP-86/87 take turns. The scoring

1s as follows:

Each die different: Sum of dice
One pair: 3 times sum of dice

Three of a kind: 18 times sum of dice

Fun and Games With Strings 19-15
Whoever gets the highest score after 12 rolls wins the game.

The option given to you alone comes when you roll a pair. You then have a choice of either:

1. Taking your score and turning the dice over the the HP-86/87, or

2. Refusing your pairs score, keeping the dice, and rolling the odd die in an effort to get three of a kind
with its higher score.

However, every throw of that single die counts as one of your 12 rolls. Since the HP-86/87 never throws a
single die after rolling a pair, but instead always turns the dice over to you, the HP-86/87 might have
several rolls left after you finish your last roll. In that case, you just sit there and watch the HP-86/87 add
to its score while your score stays fixed.

Program Description, The “THROW,” or “To Throw or Not to Throw” program simulates this game.
Let’s say you're the human player. The program offers you the option of reading or skipping instructions.
You are then invited to roll the dice. The three values of the dice are displayed. If they are all different or
three of a kind, your current total socre is also displayed, and the HP-86/87 then rolls. If you throw a pair,
your score is not shown. Instead, you are offered the choice of ending your turn, seeing your current total,
and letting the HP-86/87 throw; or rolling the odd die in a try for three of a kind. If you roll again, the
screen shows the number of spots on each of the three dice. Of course, the count for two of the dice would
not change. If the try is successful, your new total score is displayed, and the HP-86/87 rolls. If it fails, you
are again offered the same two choices. If you keep trying for three of a kind in this way and always fail,
you would use up all of your 12 rolls. In any event, your turn would end with the display of your current
total score or your final score. Then the HP-86/87 rolls, the number of spots on each of its dice is
displayed, followed by the display of its total score. Then it’s your turn once more, unless one of two

situations exist:

1. You have already rolled your 12th roll, in which case the HP-86/87 continues to roll until it
completes its 12th roll, ending the game.

2. The HP-86/87 has just completed its 12th roll, in which case the game is over.

Each score that’s displayed is a cumulative score; that is, the current total score for that player. The end of
the game is indicated by having each score announced by a different message, one that presents the idea
of final score.

The program uses string variables for words or phrases that appear in several program statements.

Hints:
1. Use a separate assignment statement using LI to assign to each die’s variable the result of that

die’s roll. If the human player, after rolling a pair, elects to try for three of a kind, use a separate

statement using "I to generate the new roll of the odd die. Determine which of the three die

variables does not belong to the pair, then assign the new roll count to that variable.

19-16 Fun and Games With Strings

Next, display the result of the most recent roll by executing the statement that displays the value of
the three die variables. Two of these values would not change from the last time the same statement
was executed. If the new roll of the odd die showed the same count as before, all three displayed

values would not change.

2. The phrases I use to announce each cumulative score and the final scores are:

YOURTOTAL SCORE:
YOUR FINAL SCORE:
THE COMPUTER’S TOTAL SCORE:
THE COMPUTER’S FINAL SCORE:

I use five string variables in different combinations for these messages.
3. Tusetwo counters. One counter counts the human’s rolls, the other counts the computer’s rolls.

4. Tusea flag, which is a special variable that acts as a traffic cop directing program flow. The flag’s
value starts as zero and is assigned the value one after the human rolls his 12th roll. If the human’s
12th roll is a pair, he is not supposed to roll again for three of a kind. The flag’s value of one prevents
the human from rolling again.

5. If the HP-86/87 has just rolled and has at least one more roll left, and if the human has already
completed his last roll, the HP-86/87 should immediately roll again. In this case, I use the flag’s
value of one plus the computer’s roll counter to make the next roll an HP-86/87 roll.

Your Turn. The writing of this program can benefit from a flowchart. I suggest you draw one. Play
several imaginary games using your flowchart to see if it works. The flowchart for my program is on page
H-86.

When you're ready to check your program against mine, see my listing on pages H-83 through H-85.

I've recorded my version on your BASIC Training disc in case you'd like to see how my version works. If

yvou would like to run my version, be sure to execute ' " to avoid having your only copy

disappear when you load my version.

To get my version into the computer’s memory, execute .

Summary of Chapter 19

A Funection

When executed repeatedly, i generates a series of pseudo-random numbers. Each number X of
this series is between 0 and 1 (1.00000000000). If ¥ }L! is used in a program without & £

(see below), the same sequence of random numbers is generated every time the program is run just
after

Fun and Games With Strings 19-17

1. The HP-86/87 is switched on, or

9 is pressed.

Random number seed: The computer’s random number generator uses a number called a “seed”

to determine what sequence of numbers will be generated by

z: ABASIC Word

General form:

line number i

Examples:

m When =HMDGMDEE is used without a seed, the HP-86/87 supplies its own seed derived from its

- in a program virtually assures a

internal timing system. Executing ¥ = before

different sequence of random numbers every time the program is run.

‘i is executed before Il in

a program, the same sequence of random numbers is generated every time the program is run.

Random integers between any two integers.

To generate a sequence of random integers from a smaller integer S to a larger integer L inclusive,
use this H 1ML expression:

Examples: To generate random integers

1. From1 to 2 (coin flip), use:

2. From 1 to 6 (die throw), use:

3. From —5to0?5, use:

String. A quoted or literal string is a series of characters, symbols and/or spaces within quotation
marks. It’s more commonly called a string.

19-18 Fun and Games With Strings

String variable name

A variable name followed by a dollar sign. The variable name may be up to 31 characters long, not

including the dollar sign. Just like a numeric variable it may consist of letters and/or numerals.
Examples: C$, M3$%, STRINGS, Name$

A string variable name is assigned the “value” of a quoted string in an assignment statement, just
as a simple numeric variable name or subscripted numeric variable name is assigned a numeric

value.

Comparing strings: Strings and string variables can be compared much as numbers and

numeric variables can be compared.

Strings and I+

When a string is entered in response to an I FFiIT statement, quotation marks must be typed if the

string includes one or more commas. Otherwise, the use of quotes is optional.

" statement can use intermixed string variables, simple numeric variables and/or

subscripted variables. Examples:

When values are entered in response to such IPFiIT statements, the values must be entered in the
order of the variables. For instance, when responding to line 150, a number, a string and a number

must be typed onto the computer’s screen in that order, separated by commas, then is

pressed.
Stringsin] & and FE 1T Statements
Inaili%F or M IMT statement, strings, string variables, numeric variables and constants can be

combined. They should be separated by semicolons to avoid the generally undesirable wide

spacing produced when commas are used as separators.

Example:

T Statements

Numbersin i}l

When a numeric constant, variable, or expression is used in a |

following extra character and/or space(s) are always displayed or printed in addition to the number:

Fun and Games With Strings 19-19

[number]

|

A leading space for positive—l ! A following space

numbers or minus sign for

negative numbers

® Null string

A null string is two quotation marks right next to each other. In this example, D$ is assigned the
value of the null string;

i statement by pressing only one key: (END LINE),

L]
If a string variable is over 18 characters, including spaces, it must be dimensioned in a i
statement using square brackets. One dimension statement can dimension both string variables
and array variables. String variables with 18 or less characters may be dimensioned in a {18
statement. The HP-86/87 assigns a dimension of 18 characters to all string variables not
i1 statement. Use commas to separate items.
-

includes a comma, the string must be enclosed by quotes. If the string does not include a comma, the

string may be enclosed in quotes or it may omit quotes.

When a LiH 7 Fi statement is read, the & 55 1{ statement variable must correspond to the type of data

(string or numeric) being read.

One data string may not be split between two {15 T ¥

Review Test for Chapter 19

This test covers material in earlier chapters as well as in chapter 19. It is on your BASIC Training disc.

o L e

Execute i. # . The program will direct you to the answers.

Take heart! This is the last test in this course! Of course, chapter 20 has a few interesting programs for

you to write,

Cannibals and Missionaries

Chapter 20

£ s
Preview
In chapter 20, you will:
® Learn how,in one statement, you can tell your program many different places it can go.
® Learn how to tell your program to go on a journey and then return.
® Write a flexible arithmetic quiz program in six stages.
® Write, as your final masterpiece, a program which completely simulates the classical river crossing
problem.
I A BASIC Word
Sometimes you reach a “Have you stopped beating your wife? (or husband?)” peint in your program
where a simple YES or NO won’t do. There are times when you'd like your program to take one of three
four or more paths, depending on circumstances. You guessed it—the BASIC word £ i
N accommodate your needs.
Example: “Congratulations” Program
Look at the listing in figure 150, which is a renumbered and slightly modified portion of program
“REVIEW” from your BASIC Training disc. See how statement 50 directs the program to one of five
congratulatory messages depending on the whim of statement 30,
10 | CONGRATULATIONS’R=0
20 R=0Q
30 N=INT (5%RND +1) 5
40 DISP N WELL DONE
SO ON N GOTO 60,B80,100,120, 140 1
B0 DISP "YOU DO GOCD WORK." ¥YOU DO GOOD WORK.
70 GOTD 150 1
80 DISP "CORRECT" YOU DO GOOD WORK.
£ 90 GOTO 150 3
100 DISP "YOU’RE RIGHT." YOU”RE RIGHT.
110 GOTO 150 2
120 DISP "EXCELLENT" CORRECT
130 GOTOD 150
140 DISP "WELL DONE"
150 R=R+1
160 END

Figure 150.

Listing and Typical Qutputs for *’Congratulations”
20-1

20-2 Cannibals and Missionaries

Figure 151 shows the flowchart for this “Congratulations” program. This flowchart includes the fourth
and final flowchart symbol I'll give you, which is the i ...

it symbol:

I R=0 |
+ R = Number of right
SELECT RANDOM NUMBER FROM SRivis
1 TO5: N = INT (5 RND + 1)
| DISPLAY N -
ON N
GOTO
N = 1 N=2 N=4 N=5
* yN=3
DISPLAY DISPLAY DISPLAY DISPLAY DISPLAY
MESSAGE MESSAGE MESSAGE MESSAGE MESSAGE
1 2 3 4 5
¥ Y.) |
| R=R+1 |
Figure 151. Flowchart for "Congratulations’’
This key phrase, Cif4 ... {1, is called the computed {17 (i statement, because the item between il
and 117! can be an expression as well as a simple variable, “Congratulations” could be written with N

in line 50 replaced by the expression for N in line 30. Also, when the expression in an [ild ... ;
statement is evaluated, the result is rounded to the nearest integer. The program then branches to the line

number whose position in the 8 .. [:0T 0} statement list is given by this integer. For instance, when

ITHTOE {141 in statement 30 evaluates to 3, the “Congratulatlons program branches to line 100,

d,oi6E, 178 1465 in line 50.

the third line number in the statement list =

]| T

When the expressionin an 0 .., 21371} statement is rounded to a value under one, an error is produced.
An error is also produced if the rounded value is larger than the number of statements in the list.

Cannibals and Missionaries 20-3
Problem About Rounding

May I+
of Litd . GIT 9

change: delete [!

round funetion of ik ... HiI T

RETURM: A BASIC Word

Often programmers use a particular routine several times in a program. A handy way to direct program

execution to that routine and back again, from several points in the program, is to use

Here's how it works:

——

9

_;.

-

-——

,_
1
1
| P R—— |

Subroutine

Program execution jumps from 170 to 600, then proceeds through the subroutine to 3§

that point, program execution returns to 180, the statement immediately following 1 7&i f2iisiiiE

A statement like 170 is sometimes referred to as a call to a subroutlne The first statement ofa subroutine
(600 in this example) may be any kind of statement, including ¥ (i i

20-4 Cannibals and Missionaries

The subroutine referenced by 170 may contain another reference to a second subroutine. For instance:

When a second subroutine is referenced from within a first subroutine, the two subroutines are said to be

nested. In the example just above, if statement 820, say, referenced a third subroutine, the nesting would
be two deep.

The HP-86/87 allows nesting up to 255 levels deep, although available memory would probably be used up

first. In practical terms, you can nest as many subroutines as you want, just as you can nest as many

i loops as you want.

Example: “Press CONT” Program

Figure 152 shows a portion of program “CH3” from your BASIC Training disc.

120

140
150
160
170
180
190
200
VER.
210
UGH"
220
230
240
250
2680
270
280
ER"
290

310
320
330
340
350
Je0
370
380
390
400
410
420
430
440
450
460
470
480
480

2110
2120
2130
2140
2150
2160

Cannibals and Missionaries 20-5

CLEFAR

DISP TAB (28);"HEWLETT-PACKARD"

DISP TRB (25);"GETTING DOWN TO BASIC"

DISP TAB (23);"CONTINURTION OF CHAPTER 3"

DISP

DISP TRB (30);"REMINDER"

DISP TAB (28);"---=-==n-- "

DISP

DISP "IF YOU PRESS (RUM) INSTEAD OF (CONT), RELAX - THE PROGRAM WILL START O
"

DISP "IF YOU PRESS ANY OTHER KEY, YOU’RE STILL OK! JUST PRESS (CONT), AS THO
DISP "NOTHING HAD HAPFENED,"

DISP

GOSUB 2110

DISP TAB (19);H$

DISP

DISP "DURING THIS LAST PART OF CHAPTER 3, LOOK FOR MY HELP MESSAGES."

DISP "I”VE SPRINKLED THEM THROUGHOUT THE TEXT YOU’LL SEE ON SCREEN AND PRINT
DISP “THEY GIVE PRGE REFERENCES TO THE HELP SECTION LOCATED IN THE SMALLER"
DISP "OF THE TWO BOOKS INCLUDED WITH THIS PAC."

DISP

DISP "YOU ARE MORE SKILLED THAN YOU MAY REALIZE IN THE OPERATION OF YOUR"
DISP "HP-86/87. AS A RESULT, YOU ARE WELL PREPARED TO BEGIN YOUR STUDY OF"
DISP "THE BASIC LANGUAGE."

DISP

DISP "LIKE OTHER LANGUAGES, LEARNING BRASIC MEANS LLERRNING BASIC WORDS"

DISP "AND GRAMMAR AND GAINING SKILL IN THEIR USE."

GOSUB 2110

DISF

DISP "A BASIC STATEMENT IS AN INSTRUCTION FOR THE HP-86.-87 USING BASIC WORDS
DISP

DISP "R BASIC PROGRAM IS A LIST OF BASIC STATEMENTS; THAT IS, A LIST OF"
DISP "INSTRUCTIONS THAT WORK TOGETHER TO PERFORM SOME TASK. HOWEVER FOR"
DISP "THE HP-86/87 TO PERFORM THIS TASK:" @ DISP

DISP TAB (10);"1. THE PROGRAM MUST BE STORED IN THE HP-86.87/5 MEMORY."
DISP TRB (13);"AND"

DISP TAB (10);"2. THE PROGRAM MUST BE RUN."

DISP

GOSUB 2110

DISP

DISP "TO PROCEED, PRESS (CONT)."

PAUSE

CLEAR

RE TURN

END

Figure 162. Portion of Program “CH3"’

The section of “CH3” shown in figure 152 uses a few programming techniques which are not covered in

this course, but which are fully covered in your operating manual.

One programming technique shown in figure 152 which is covered in this course is the use of the

subroutine. Lines 240 and 380 direct program execution to line 2110, the first line of the subroutine that

20-6 Cannibals and Missionaries

prints the message you have come to know and love. The ¥ . in this subroutine holds the display so

you can read it.

Every time this message and [“H1i%E were executed when you ran “CH3,” this subroutine was

i statements.

responsible. If you list “CH3,” you’ll see several

i1 is executed, program execution returns to the line number immediately

following the most recently executed i:! : statement. At any point during the running of a program,

the number of i T 1if1i statements executed cannot exceed the number of {1151 i statements executed

previously. For example, this sequence of execution is OK:

The following is a list of all the -

impossible sequence of execution:

Ei in the program. If the execution of this last

Problems: Write the “MATH” Series of Programs

This series of programs is also called “Arithmetic Quiz 1,” “Arithmetic Quiz 2,” and so on, through
“Arithmetic Quiz 6.” This series of six programs plus one additional program constitutes your final exam.

As promised, no more quizzes!

Program Descriptions. You’ll write this program in six stages, where each new stage builds on the last.
I'll describe the sixth and final version first, then the contribution of each earlier stage to the final
program. I have a listing for the first stage and a program on your BASIC Training disc for the final

stage,

The final version offers the user drills in addition, subtraction, multiplication, division and
exponentiation. The math problems are constructed from randomly selected numbers whose upper and
lower limits are chosen by the user. After every 10 problems, the user’s score is given, and the user may
choose a new type of problem and/or new limits for the random numbers. The final version of “MATH”
also offers a sixth choice besides +, —, *, / and », called pot luck. Pot luck randomly selects one of the five

kinds of math functions for each problem.

Cannibals and Missionaries 20-7

All six versions operate as endless loops.

Here’s a description of each of the six stages:

I

E.'J't

This program drills in addition only. The limits are fixed to be 99 and 2, which means the largest
and smallest possible problems are 99 + 99 and 2 + 2.

After every 10 problems, a percentage score for those 10 problems is displayed. Then another 10
problems are displayed one at a time, and so on. The program operates as an endless loop. At the
beginning, the user is told what the number limits are (99 2), and then instructions are dlsplayed
These instructions say something like: 7 LR T

"f;.-r

limits and instructions are shown only once for each running of the program.

Same as stage one, except subtraction problems are also offered. The user is asked to choose between
addition and subtraction problems. The next 10 problems that are displayed will be of his chosen
type.

After his score on these 10 problems is displayed, he is again invited to choose between addition and
subtraction for the next 10 problems. Subtraction problems use the same fixed 99 and 2 limits as do
addition problems.

Same as stage 2, except the user may elect to accept the program’s limits of 99 and 2, or he may
choose his own limits for the random numbers from which the + and — problems are constructed.
After the score for the last 10 problems is displayed, the current limits are displayed, and the useris
given an opportunity to change them. Whenever the useris asked if he wishes to change his limits, it
is easy for him to determine what his current limits are.

This version adds division problems as a third user choice. To avoid remainders with division
problems, the program uses this scheme: Say A and B are the two random numbers to be used to
contruct the division problem. Q is defined as Q = A * B. Then the division problem is asked like this:
What is Q/A? The correct answer is B.

The program protects against division by zero.

If the user does not change the division limits, the program gives limits for A and B of 15 and 2,
using the definitions for A and B given above. These limits mean the numerator Q = A * B ranges
from 15 * 15 = 225 to 2 * 2 = 4, and the denominator A has limits of 15 and 2. The program’s choice
for addition and subtraction limits remain the same, 99 and 2. After the user chooses the type of
problem, he is asked if he wishes to change the limits for that kind of problem only.

Multiplication and exponentiation are added, so the user may now choose among all five types of
problems. The program’s limits for multiplication are the same as for division, 15 and 2. The user

may choose new limits for * and / problems, but not one set for * and another set for /. The program

20-8 Cannibals and Missionaries

uses two sets of limits for exponentiation problems. For the problem B ~ E =?, the program’s limits
for B are 9 and 2, and the program’s limits for E are 3 and 2.

The program protects against zero raised to an exponent equal to or less than zero; that is, against 0
~ 0 and 0 ~ (negative number).

6. The final problem choice is added: pot luck. When pot luck is chosen, the type of each problem is
chosen randomly from among +, —, *, /, and ~, When the user chooses pot luck, he is then asked
about the limits for + and — problems, for * and / problems, and for ~ problems, but only if that kind
of problem is presented during the next 10 problems, and then only when that kind of problem is
presented for the first time.

Confused? Let me explain it another way. The following table shows the types of problems that
might be asked during a pot luck set of 10 problems. This table also shows when limit questions
would be asked. Note that there are two types of limit questions:

a. Do you want to change limits?

b. Ifyes, what are your new limits?

This table assumes that the user chose pot luck, and that he also chose to change limits.

Problem Number | Type of Problem | Limit Question Asked?
1 + Yes (+, — limits)
2 / Yes (*, / limits)
3 * No
4 — No
5 ~ Yes (™ limits, both pairs)
6 + No
7 * No
8 / No
9 % No
10 - No

Problems 4, 6 and 10 would use the limits chosen for problem 1. Problems 3, 7, 8 and 9 would use the
limits chosen for problem 2. If problem 5 had been another kind of problem, say * instead of ~, the
limits questions would not have been asked at all during these 10 problems.

When the 10th problem is answered, and the score is given, the user then chooses again between +,
—,*,/,7, and pot luck, and the cycle repeats.

Your Turn. If you wish, draw a flowchart for the first stage. Then write your first stage program and
compare it with mine whose listing is on page H-88. Don’t start work on the second stage until you're

satisfied with your first stage program. After completing each stage, store it in your workspace

1% 7") to give you a backup if you need it.

Cannibals and Missionaries 20-9

' to preserve your

" to get my version into memory. Run it and compare its operation

agamst yours.

The road through all six stages may be long, but treating the completion of each stage as a separate goal
makes the entire project less imposing. This illustrates a good technigue to use when faced with writing a
program having a complicated definition. Break the final definition into smaller, more manageable parts,
and finish and test each part before starting the next.

Problem: Write the “CAMIS” or “Cannibals and Missionaries” Program

This program was inspired by and is based on the HP-65 Users’ Library Program No. 02286A by
Mordecai Schwartz, M.D. The following description is a direct quotation from the program
documentation sent to us by Dr. Schwartz.

Program Description. This program completely simulates the classical river crossing problem in the

following form:

Three missionaries and three partially civilized cannibals must cross a river with a boat that can hold no
more than three passengers. At no time may cannibals outnumber missionaries at either bank or on the
boat lest the cannibals regress to an earlier mode of behavior! Further, cannibal(s) left alone on the boat
will run off with it after launching. Missionaries, cannibals and boat are all initially on the left bank.

You have 3 choices:

1. Missionary boards
2. Cannibal boards

3. Boatleaves bank

When choice one or two is made, the program checks to see if the person being loaded actually exists on
the bank where the boat is currently moored. If not, a message is displayed, and the user is invited to try
another choice. When the boat leaves a bank, the program checks to see if any of the problem rules are
broken. If so, an appropriate message is displayed, and the user is invited to start all over again. If the
user gets all three missionaries and all three cannibals on the right bank, the program presents a success
message.

Your Turn. This is a challenging program. A good way to start is to draw a flowchart. Tape several
pieces of paper together to give yourself room. Try to solve the puzzle using your flowchart, and correct
your flowchart if necessary. When you think you’ve got a workable flowchart, you may either take a look
at my flowchart on page H-89, or if you're filled with confidence, you may move directly to the writing of
your program. When you’re finished writing, print a listing, store your program in your workspace to
preserve it, then execute i.Li

: " to copy my version into memory. Finally, compare your
program against mine.

20-10 Cannibals and Missionaries

Summary of Chapter 20

A BASIC Word

General form:

line number U1 numeric variable or expression |

Example:

O A o

When an 34 ... £

! statement is executed, the numeric variable or expression is evaluated to the
nearest integer. If the nearest integer is below one or greater than the number of line numbers in the
list, an error message is given. If the evaluated nearest integer is from one to the number of line
numbers in the list (five in the above example), the program branches to the line number whose

position in the list corresponds to the evaluated nearest integer.

In the above example, if the nearest integer to the value of G/H were 3, the program would branch to
line 840.

i A BASIC Word

General form:

line number 1 first line number of subroutine

last line number of subroutine

Example:

first line of subroutine

I L1 M e—last line of subroutine

% statements referencing other

subroutines. These other subroutines may lie within the first subroutine or outside it.

Cannibals and Missionaries 20-11

When a subroutine itself contains i+ statements, the subroutines are said to be nested.

To avoid an error, the number of & statements whose execution is completed or attempted

must not exceed the number of : statements already executed in the same program.

Chapter 21

Where Do I Go From Here?

Congratulations! You have finished the course.
If you want to see how much you have learned, load and run “CH3” again, just for fun.

You have a lot of powerful BASIC tools in your kit, but you do not have them all. Here are some ideas
about where and how to get additional knowledge and experience.

References

® The HP-86/87 Pocket Guide will give you a feeling for the full power of the computer’'s BASIC.
Especially browse through the lists of commands, BASIC statements, graphics statements, and
BASIC predefined functions.

* The HP-86/87 Operating and BASIC Programming Manual contains documentation on each
statement and command available. It should be your primary reference from now on when you are
£ programming.

Capabilities
Here is a list of some of the topics and capabilities that are present in your HP-86/87. Look them over and
see if any catch your fancy. Each is explained in your operating and programming manual.

® String operations. You can do much with string variables.

_. These give detailed and exact control over where characters

and spaces are printed and dlsplayed Example: using theseinaf 151 loop, you can print:

¢ Defining your own functions with the i* i statement.

P 1“1

® Timers and the i T 1I#E]

¢ statement.

21-1

21-2 Where Do | Go From Here?
® Arrays (two-dimensional).
® Data files.
® Multistatement lines.

¢ Graphics Capabilities. To see some examples of the graphics display in action, load and run
“GRAMPLE” from the demonstration disc. If you need to transfer graphics output to paper, the
low-cost HP 7470 A Plotter is available.

Demonstration Disc

This disc comes with your HP-86/87. It contains an assortment of programs to whet your appetite. Follow
the instructions on the label if you haven’t already.

Software

These applications pacs are available for your HP-86/87 Personal Computer as this manual goes to print:

HP HP PLUS Distributed Software

VisiCalc® PLUS* Peachware™ Accounting Series 87

Graphics Presentations General Ledger

Data Communications Pac Accounts Receivable

General Statistics Accounts Payable

Financial Decisions PeachPay™ Payroll Systemt

Math Inventory Control

AC Circuit Analysis WordStar™i—Word Processing—CP/M®%** (SpellStar™f,
Linear Programming MailMerge™4f)

Waveform Analysis dBase II—Data Base Management—CP/M®#**

Basic Statistics & Data Manipulation MILESTONE ™+t PERT/Critical Path Analysis—CP/M®**
Regression Analysis DATEBOOK II™ Appointment Scheduler—CP/M®%**
Surveying Aardvark—Tax Planning for professionals—CP/M®&*#

Statistical Analysis—Multi Pac
Electronics Engineering—Multi Pac

* VigiCale® is a registered tran;lemark of VisiCorp, Inc.

t Peachware™ and PeachPay™ are trademarks of Peachtree Software, Inc., an MSA company.

I WordStar™, SpellStar™, and MailMerge™ are trademarks of MicroPro International Corporation
** CP/M™is a registered trademark of Digital Research, Inc,

Tt MILESTONE™ and DATEBOOK II™ are trademarks of Organic Software, Ine.

Where Do | Go From Here? 21-3

The Series 80 Users’ Library offers you the HP Series 80 Software Catalog. The first section of the catalog
is devoted to application packages and programs that provide total software solutions. The second section
in the catalog contains the names and descriptions of programs contributed by Series 80 Users’ Library
members and by Hewlett-Packard. Included in this section are programs from the world of third party
CP/M software, available from the software author or through your HP Dealer.

Low-cost solutions are available for a variety of needs. Your specific problem may already have been
solved! Why reinvent the wheel?

Hardware

If you want to expand the power and capabilities of your HP-86/87 Personal Computer, you can select
various accessories from the list in appendix A of your operating and BASIC programming manual. The
input/output (I/0) ROM, for example, opens the door for you to enter a vast new dimension in
programming and computer control applications.

If you would like to use your HP-86/87 as an intelligent data communications terminal, you can install
the HP 82950A Modem (U.S.A. only). Then you have access to the various time-sharing and data base
services that are available.

Customer Support

Appendix B in your HP-86/87 Operating and BASIC Programming Manual lists the various support and
training options available to you from Hewlett-Packard Company. Two big helps for many of you are the
Basic Exchange newsletter and the Series 80 Users’ Library (mentioned above).

A

Index

Bold page numbers refer to summary pages.

A/Gkey, 1-9
“A + 2” program, contained within “CH7” program
Abridged Dictionary of BASIC Language, 12-10
(absolute function), 14-9, 14-18
Addition key, 2-4,2-17
Algebra, 5
Array,18-1,18-18
Dimension, 18-6, 18-20
Name, 18-3, 18-18

B

Subscript, 18-1, 18-3, 18-19
Variable, 18-1,18-3, 18-19
Assignment statement, 7-1, 7-13, 10-10, 10-12
Multiple assignments, 16-6, 16-9
String assignments, 19-5
Augmented “Wet” program, 18-18
FETLE11-3,11-11
Autobt 3-3
“Average” program, 17-7

“B + X" program, 7-7
Backspacekey, 1-5,1-17
BASIC, see individual item; for instance, for BASIC
statement, see Statement
~011-1,11-10
Beep” program, 11-4
“Big Number” program, 14-9
“Big?"” program, 17-9
“Big Step” program, 14-11
“Biggest and Smallest” program, 17-9

“‘Binary Brain’ McCrunch” program, 6-3
“Black Hole Fever” program, contained within
“TEST18” program

Blank lines produced by programs, 6-4
“Boredom” program, 14-8

Brackets, 2-6,2-17,19-10, 19-19

Branching, 11-2, 15-5, 15-8

Bubble sort, 18-17

Bugs, see Program, Bug chasing

C
“Calculate” program, 6-2 How to execute, 3-4, 3-11
Calculations Versus statements, 4-3, 4-7

From keyboard, 2-4
In programs, 6-1
Calculator mode, 1-2, 1-16, 8-10, 8-20
“CAMIS” program, 20-9
Capslock key, 1-3,1-17
! (catalog), 10-4, 10-11
Lata og of disc contents, 10-5
“Center” program, 17-7
Challenger voyage, 8-24
-char key, 1-14, 1-17
2 ,14117911920
(Jlear line key, 1-4,1-11,1-17
Clear memory
Beiure entering new program, 311

Coleridge, Samuel 'l‘aylur, 1-17

Comma used in DISP and PRINT statements
With numbers, 6-5, 6-7, 19-9
With strings, 199, 19-18

Command

D

“Common Log” program, 15-5
Comparing numbers and strings,
expressions
Conditional expressions
Using numbers, 12-1, 12-19
Using strings, 19-5, 19-18
“Congratulations’” program, 20-1
Cont(continue) key, 3-9, 8-10, 8-21
“Count” program, 13-1
“Count to 100" program, 14-6
“Count to TenA” program, 14-2
“Count to TenB” program, 14-4
“Count to TenC” program, 14-5
Counting routine, 13-1, 13-12
“CRAPS"” program, 12-14
CRT intensity, see operating manual

see Conditional

éui‘sor, 1-2, 1-16
Cursor moving keys, 1-7,1-17

Using numbers, 17-7,17-12

Using strings, 19-12, 19-9
Default mode, 9-9

Printer, 9-9

(
Used for arrays, 18-6, 18-20

1-1

Used for strings, 19-10, 19-19
Dimensioning arrays and strings, see [
Dise, 3-2

Capacity, 10-5

Catalog, 10-4

How to record on new disc (initialization), 10-7

Inserting into drive, 1-1, 3-2, 3-10
Protecting recorded material, 3-11, 10-6
Removing from drive, 3-11

E

Securing programs on, 10-6
Disc drive, 3-2, 3-10
Addressing, 3-2, 3-10
display), 4-2, 4-6
To produce blank line, 6-4, 6-6
Spaces produced by [| &
statements, 17-3, 17-11
Used with commas and semicolons, 6-5
Division key, 2-5, 2-17

“Easy Z” program, 17-6

Editing, 1-5.1-17

i, 4-2, 4-6

End hne key
Avoid when using HP-86/87 as
typewriter, 1-10, 1-17
For keyboard calculations, 2-4, 2-17
Uses for, 3-11

Enter, 2-4, 2-17

Error message
See also HP-86/76 Operating and BASIC

F

Programming Manual
(:enera] meamng,l 10,2-17,7-12

4 , 1-10
“Every Ten’llme% program, 13-11
Exponentiation key, 2-4, 2-17

File specifier, 10-3, 10-11

Flag, 18-11

“Flip” program, 19-3

Flowchart, 9-2, 9-15,9-19, 12-4, 12-14, 12-22
Flowchart symbols, 9-2, 124

G

#,14-1,14-16, 15-5, 15-8

Arrays, 18-9

Branching, 15-5, 15-7, 15-8

Nesting, 16-1, 16-6, 16-8
Function, 8-17, 8-22

HUTE 1141, 11-10
Lme numbers, 11-2
_Labels, 1 -10

{,20-3,20-10

H

! ! (grads), 15-3, 15-7
“Grandson of Roots” program, 17-2

“Guess” program, 19-10

“Hard Z” program, 17-5

High Roller program, 19-4

12-10,12-21
,12-13,12-22

Indentauon of %tatements 15-5
“[nﬂatlon program, 9-4

Input lﬂnp, 8-10, 8-19
Input statement, 8-5, 8-19
Error message, 8-6

L

How to input mixed number, 8-9
How to position question mark, 8-15
How to recover from wrong inputs, 8-11
Multiple inputs, 8-13
Using strings, 19-4, 19-18
Warning message, 8-8
Insert mode, 1-13, 1-16, 1-17
I/R (msert/replace} key, 1-13,1-17
) (mteger function), 8-17, 8-22
i R, 18-7,18-21
Intensity adJustment of screen, see operating manual
“Iron Jaw’” Rockheadington, 5-6
“It's Christmas” program, 12-11

La vels, 11-2,11-8,11-10

: +,7-2,10-10, 10 12

Letters capltal and small, 1-3, 1-17

“Less Than Five” program, 12-3

i1 (log to base ten function), 15-1, 15-7
Line, see Statement

-line key, 1-11,1-17

Lme leng‘th screen and printer, 1-15, 1-17
L1=T,56,816,8-21

List key, 3-9, 3- 12

L1stmg tormat 6-6

...... ;,10-2,10-11

Mass storage unit spemﬁer (mbus) 10-2,10-11
Math keys, 24, 2-17

“MATH?" series of six programs, 20-6

Memory, 4-23

Mixed number, 8-9, 8-19

“Mix-up” program, 16-3

“Mix-up Unmixed” program, 16-5

N

“‘Mole Mitt’ Morrison” program, 9-13
“MONEY” program, contained within “CH

14-7
Msus (mass storage unit
specifier), 10-2, 10-11

Multiple assignment statement, 16-6, 16-9

Multiplication key, 2-4, 2-17
“Multiplication Test” program,

16-5

=L}

5” program,

Name for stored program, 5-9
‘Name-Game” program, 4-3
Negative numbers, 2-15, 2-18
Nests o

5
FRR i

5 T loops, 16-1, 16-8

o

theses, 2-13,2-18

M

Null Strmg, 19-9,19-19

. 3162 18911 9-20

Number of digits displayed or printed, 8-3, 8-9, 8-23

Number pad, 1-3

‘ODDEVE” program, contained within “TEST16”
program

L i, 20-1,20-10

On-off switch, 1-1

“100 Odd Sums” program, 13-10

“One-Hundred” program, 13-3

Order of calculation, 2-6, 2-18
Output device code, 9-7,9-19

1,185, 18-
¥ 18-5, 18-

20
20

i ‘Pa1l—Face Trudgebottom program, 10-8
Parentheses in calculations, 2-6, 2-17
P_arentheses keys, 2-6

Pause key, 8-10, 8-20
i (print list), 8-16, 8-21
P]st/hst(prmthst/hst} key, 4-4, 4-7
“Press CONT program, 20-4
FRIMNT, 4-2,4-6
To produce blank line, 6-4, 6-6
Spaces produced by, 17-2, 17-11

Q

Prmter address, 2-2,2-17, 99
....2221799

Program

Bug chasing, 14-2, 14-19, 18-17, 18-22
How to halt from keyboard, 8-10, 8-20
Name used for storing on disc, 5-9

Planning questions, 9-1, 9-18

Testing, 13-3, 13-12

Program mode, 1-2, 1-186, 8-10, 8-20

Protect data, 10-6

ith commas and semicolons, 6-1, 6-7
i (PRINT ALL), 2-2,2-17

Quotationsin |, statements, 4-2

R

“Race program, 18-8

#ili (radians), 15-3, 15-7
Radians, 15-2, 15-7

Raising to a power, 2-4

“Rand 1” program, 19-4

“Rand 2” program, 19-4

“Rand 3” program, 19-4

“Rand 4" program, 19-4

Random integers between two chosen limits, 19-3, 19-17
Random number seed, 19-2, 19-17
LFLfE, 182, 19-17
“Randomize” program, 19-1

Us_ing numbers, 17-8, 17-11

Using strings, 19-12, 19-19
r i (remark), 9-12, 9-20
i ‘| (renumber), 9-7, 9-19, 13-2
Replace mode, 1-13, 1-17
“Reset key, 5-3, 5-8

i ,179,17-12
“Rlch program, 14-11

“Rime of the Ancient Mariner,”
! (random), 19-1, 19-16
“RND” program, 19-2

“Roots” program, 15-4

#LIH, b1, 5-8

Run key, J 8,3-11,5-2

1-3

1-18

S

“SAVINGS” program, 81,811, 9-1 “Spaced Out Numbers” program, 17-4
“Seienc iz” program, 12-10 Spaces

: i,5-4,5-8 In program names, 5-9
Scratching memory, 4-6 In statements, 4
Screen intensity adjustment, see operating manual Produced by

“SECRET” program, 11-9 statements, 17-

: - Special function keys, see Typing aids
Securing a program, 8-4, 10-6 “Spell” program, 19-5

Security “bpell brogram improvements, 19-13

Code, 8-5, 10-6
Type, 8-5, 10-6

Sports Quiz” program, 12-8
(square root function), 15-1, 15-7

Seed for random number generator, 19-2, 19-17 “Squares” program, 14-8
Semicolon Statement, 3-9, 4-6
To suppress LI L5 and Length, 6-6, 6-7
execution, 14-7, 14-17 . Numbers available, 5-9

Used with numbers in ! Fand F
statements, 6-1, 6-6, 19- 9 19-18 To execute, 4-3, 4-7
Used with strings in and | Versus commands, 4-3, 4-7
statements, 19-7, 19-18 Step key, 14-13, 14-18
“Semicolon, Comma” program, 6-5 12-5,12-20
“Seven Come Eleven” program, 6-2 ,5-9
gl ift key, 1-3, 1-16 String, 194, 19-17
i (sine function), 15-2, 15-7 Null strmg,qu 19-19

To change, 3-12

“Sme program, 15-4 i i statement, 19-10, 19-19
“Size” program, 12-7 String Varlable 19-5,19-18
“Small Program” program, 19-8 Subscnpt(array) 18- ’3 18-19
“Social Security, Anyone?” program, 12-5 Subtraction key, 2-4, 2-17
“Son of Roots” program, 16-5 “Sum Odd 100” program, 13-8
“Sort” program, 18-11 “Sum 1 Thru 25” program, 13-3
Sorting, 18-11, 18-21 “Sweepstakes” program, 12-18
T
i HiEi (tabulate function), 17-1,17-11 i (trace variable)
“Tab, Grandnephew of Roots” program, 17-3 Used with array variables, 18-17, 18-22
“Tab" program, 17-3 Used with simple numeric variables, 14-16, 14-18
Table of variable values vs. loop numbers, 13-7 TR/NRM key, 14-13, 14-19
“Temperature Conversion” program, 12-12 Trouble killers, 4-5, 5-8
Testing programs, 13-3,13-12 “23 Skidoo" program, 7-12
“THROW* program, 19-14 Typing aids, 5-2, 5-8
1 = HR On special function keys, 5-2
Used with array variables, 18-17, 18-22 How to access, 5-3
Used with simple numeric variables, 14-12, 14-18
U
8-5, 8-20, 10-6
v
Variable Variable name, 7-4, 7-13
Array, 18-1,18-18 Variable value vs. loop number table, 13-7
Determining variable values, 8-11, 8-20 anume]abel 5 b 10-2,10-11
Simple numeric, 7-3, 7-13 S L
String, 19-5, 19-18
W

11,11-1,11-9
Warnmg message, 7-10, 7-14 “Wet"” program, 18-10
(error numbers) 1-2 “W(H(V))” program, 18-4

see also operatmg manual Work file, 10-8

Y

“Yawn” program, 16-1

A cidiaro

Personal Computer Division
1010 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

Part Number
82832-90001 Printed in U.S.A. 5/83

