HEWLETT-PACKARD

Mass Storage ROM Manual

HP-83/85

v (bﬁ HEWLETT

PACKARD

HP-83/85
Mass Storage ROM Manual

November 1980

00085-90447

Printed in U.S.A. © Hewlett-Packard Company 1980

-
Contents

Section 1: Getting Startedttt 6
LT TP o1 o o 1]
Installation of the Mass Storage ROM ..liiiurivr vt iirenerersnensessrenenenes 5
Installation of the HP-IB Interface and DiSC Drivevvvrvriennr e inrnreneesnenenens 6
The HP-IB Select Codevuie il rin it terinenneeeetoneieneninrensasnensassonnnn b6

The Device Address SWItChoulvrvure et esieinrier i teenerenereansasnsnnones 6

DisC DFIVE NUMDEIS ..ttt ettt te e iet s ittt eiensieeeensnsnersnssnenonss 7
SYStOM SUMMIAIY 1t vttttttrenttenetensreeaenenonoronenensnensonsosesnensosseenenensas 7
Memory Requirements of the Mass Storage ROMvviivtervrvnineneninereensncnsonseanss 9
SYNtAX GUIABIINGS 1\ v vttt tutetenenneinrneenennenessoeeenernernsneensensoeeoneensnnenesnees 9
Section 2: Accessing Your Mass StorageSystemcoovvvvnrinnnn. 1"
The Mass Storage Unit Specifiorolevereeneennernreonneenreeeneenerseereoseeanesenneos 1"
Volume Labelsoueeitii i e ittt e et e i e e 12
Specifying Parameters Using EXpressionsouuuvuvrir e e enronrersensoinearssensesnes 14
Initializing 8 Mass STOrage DiSCvu il eiurivrerrureerereroneieneesoeesonrornessesereesnes 14
Establishing a Default Mass Storage Mediumvvvrvnivrinrrnnrnrrnernenresrsorsensnns 16
Section 3: Accessing Files i 19
File SPOCITIOrS vttt es it ntinientneshernenoserossononernensonsosoonennsneenssnsensenenns 19
ThE File Dir@CIOrY o v v vt vttt tin ettt souennnennsesneesnesnneessessseenseoonesanseennes 20
Pl T DO vt titttittineenneennennnehoreonesneeenesensennsenneeeneeneessessaneeanseannes 21
Section 4: Storing and Retrieving Programscccovvee 23
StOriNG @ PrOGraM L iu ittt ittttratnhornrnenenenenensneenioresteninenessorenssrsensonses 23
Loading @ Program from Mass Storage ..l ...vvuvrivniveenrereereoronrvsronrersnersnsneeneens 26
ChainINg Programsuuvrininii il eetruetineerurneneneneneonenioseeeononessesensnnnes 26
Storing and Retrieving Binary Programs |00vvu. e e ey 28
Translating Tape-Based Programs to DisctBased Programsovvvreiineerneerneesnenss 28
Section 5: Storing and Retrieving Data..........coooiiiiiii 31
FiloReCOrdSvivviriieiniinernrenihonronernernennonss N 31
St0rage ROGUIrBMBNTS ... o.iuie et et er et enrereeeaseresnonenenenesesssesnsasneses 33
Creating Data Filesuuvuineirienieeoeeneoneneereeronsensesensessonsseensensssesneaneas 34
Opening @DataFilec..ouiriir ettt ettt ea e ettnieerirerarnenes 36
Closing @aDataFileovvriiiniin it iieesiteitrteinrneetoneeerssrenesnensennsnnsns 36
SOl ACCESS L. u vttt ittt ettt e e e 38

£ T LT T o T 4T 36
Roading Files Seriallyvvueeherreneeetnereereiueereseeeeneosesseansnessesnnenes 37
RANAOM ACCESS .+ .t uivv ettt ittiir et el enenenenreeoeesenesssenesenonenesseesesssessesseess 39

L aTe (oo T o 0 o 39
Reading Files Randomlyouvuuilorrintenieninneneireenseeeneeeereoesonnensoneonsans 40
Storing and RetrieVing ArTAYS .. uuvetirulerererenreereneenessonsensssoerossonsonsensesennsss 41
Updating Data Filesvuvvnervreeneedieenterneinsineeeieeeneenneenneeanesonveesseranes 44
Section 6: Storing and Retrieving Graphicescoiviiiiiiiinin., 47
Storing a Graphics Displayl. veeviiiiiiiniennn., e e 47
Retrieving @ Graphics DisSplayvuieulvetorirteseerseeenrenrnrensenontonesoesusenesusonss 49
Section 7: Other File Manipulatiadnsoocoiiiiiiii i 63
Determining Data Types—The T [FUNCHONvveiiririirinrniierintenrenerronnesnensenss 63
CopYING FIlOS o ut it iiitiit i ena et eenseanssnessneeonesereoeroosnroseesosesenesenas 654
RENaMING FilBS .. uuuiitivnrinneren e eneroneenensuessseosseoeneoeneraneoaseeesosannsones 58
PUrging Filesouvini ittt ittt eireiie s aansreaenoeeratretenraninnens 56
Packing Fil®s .o .vvviueiensininiinnienefoneemnosneronoeonsoonsonesosessonneeneenaesensrenns 67
FilO SOCUNITY 4 v it titteteannvsrasoasfonoosnsesoonassnetosesnneeesssensssssennsesensnnns 67
SECUNNG FIlOS o\t viuttitiintrin e deennenuetonessneeanseensoneseenernasensnsennonones 67
Removing File Securityol iiiiiiiieiittosensieesseonasssocnnons 69
DiSCWIite ProtOCtionuvvvruuuerrnadotoeernnaeosnoaeosoessoseorsesoeannsosssannsnsenss 60
Section 8: Data Verification and Error Processing 63
Verification of Datavveuuiiriier e iineennoensieneeonsoansseesoeesoonooenaasonssanes 63
Error ProCessingo..uetiivnunneeennlorernnrneoornnssessnnesssmeasseossonssssonnnnesssns 63
ROM-ISSUEA EITOrs ..vvvrvvvrvvnenstorsnnronessnnsnnss et e e e ae e reerraess 63
INterface MOAUIB EFTOrS .. vvvuvvunveforenersnoennosnesneesnssoesssnessassorsseraosonsss 64

2

Section 1

Getting Started

Introduction

The HP-83/85 Mass Storage ROM allows you to interface your HP-83 or HP-85 computer with the HP 9895
and HP 82900-Series Flexible Disc Drives. By adding over 30 BASIC statements and commands, the
ROM enables you to access your mass storage system for program and data storage and retrieval, This
manual explains the proper use of each of these additional capabilities generated by the ROM.

Coverage in this manual assumes you are familiar with the operation and programming of your HP-83 or
HP-85 and that you have your computer’s owner’s manual available for reference. Sample programs in
this manual assume that you have some knowledge of the statements, commands, and functions
discussed in the owner’s manual.

If your computer includes its own internal tape unit (the HP-85), then you are probably familiar with some
of the material discussed here. You may find portions of this manual overlap coverage in the section of
your owner’s manual that deals with the tape unit and that you can skim through the material you
already know. However, you should keep in mind that the presence of the ROM changes the way in which
you access your internal tape unit. These changes are discussed in section 3 of this manual.

Installation of the Mass Storage ROM

The ROM must be properly installed in one of the six slots in the HP 82936A ROM Drawer. The ROM
Drawer is then plugged into one of the module ports on your HP-83/85. Please refer to the HP 82936A
ROM Drawer Instruction Sheet or to the portion of your owner’s manual dealing with the ROM Drawer
for complete instructions. You should never have more than one Mass Storage ROM installed in the ROM
Drawer.

Installation of the HP-IB Interface and Disc Drive

Your mass storage device must be connected to your HP-83/85 by the HP 82937A HP-IB interface. Refer
to the instructions with your interface and mass storage device for com_plete installation instructions.

The HP-IB Select Code

Each interface attached to yoﬁr HP-83/85 must be identified by its own unique interface select code. The
interface select code allows you to address an individual interface to which a particular device is attached.

6 Section 1: Getting Started

The select code on the HP-IB interface has bes
are preset to the other numbers. If you have

computer, you must make sure there is no dupl

n factory preset to 7. The serial, BCD, and GPIO interfaces
more than one HP-IB interface connected to your personal
ication of select codes among the attached interfaces. Refer

to the HP-IB Peripheral Installation Instructions or to the Hewlett-Packard 82937A HP-IB Installation

and Theory of Operation Manual, if necessary

Samples in this manual assume an interface
storage device is attached.

Device Address Switch

for directions on changing the interface select code.

select code 7 for the HP-IB interface to which your mass

Since each HP-IB interface can accept up to
interface must have a unique device address. "
storage device. The device address is set usit
Each master unit has a factory preset device
each device on a particular interface must ha
device address of a unit before configuring it t¢
changing a unit’s device address. (Refer to the

)

eight mass storage master units, each master unit on the
'his device address is then used to access a particular mass
ng the device address switch located on each master unit.
ddress (refer to the operator’s manual for yoﬁr unit). Since
a different device address, it may be necessary to reset the
the computer. The following table lists switch positions for
operator’s inanual for your unit for further instructions.)

Switch Value
1 2 3
on on on 0
on on off 1
on off on 2
on aff off 3
off an on 4
off on off 5
off aoff on 6
off aoff off 7

The examples in this manual assume you hay
unit with two drives. The device address for

e an HP 82901M Flexible Disc Drive, which is a “master”
this unit is preset to 0, and the examples in this manual

assume the switch has remained set to this number.

If your system contains an add-on unit attac

address as the master unit.

hed to a master unit, the add-on unit has the same device

N

Section 1: Getting Started 7

' Disc Drive Numbers

The disc drive numbers identify individual drives at a particular device address. These drives include
both the master unit and the add-on, if present. A maximum of four drives can be connected at any one
address (one dual master unit and one dual add-on unit). Disc drive numbers range from 0 through 3.

The HP 82900-Series Flexible Disc Drives have the following preset drive numbers. The drive numbers
appear on the front panel of each unit.

HP 82902M Flexible Disc Drive (single master) DRIVE 0
HP 829028 Flexible Disc Drive (single add-on) DRIVE 2
HP 82901M Flexible Disc Drive (dual master) DRIVE 0, DRIVE 1

HP 829018 Flexible Disc Drive (dual add-on) DRIVE 2, DRIVE 3

. The HP 9895A Flexible Disc Drives have the following preset drive numbers.
HP 9895A Option 010 (single master) DRIVE 0O
HP 9895A Option 011 (single add-on) DRIVE 2
HP 9895A (dual master) DRIVE 0, DRIVE 1
HP 9895A Option 012 (dual add-on) DRIVE 2, DRIVE 3

For information about drive numbers of other Hewlett-Packard mass storage devices, refer to the

instructions for those devices.

System Summary

. Figure 1 on page 8 summarizes the configurations of a mass storage system. Keep in mind that any one
HP-IB interface may have up to eight master units attached, and that more than one interface may be

connected to your computer.

8 Section 1: Getting Started

HP-IB interface module —_—
(up tojthree).
Identified by Select
Code (3 through 10).

\
Connector

cable

—_

Single Single
add-on master y

Disc drive interconnect cable

Dual Dual add-on
master unit
unit .

e

)

Figure 1. System summary.

Section 1: Getting Started 9

Memory Requirements of the Mass Storage ROM

All ROMs utilize a certain amount of computer memory that was previously available working space. The
Mass Storage ROM consumes 150 bytes of memory. You may find that a large program written on your
HP-83/85 without the ROM in place may be too large to be entered into memory when one or more ROMs
areinstalled. If & v vy 13 & MEM {IUF occurs upon attempting to load a large program, you may
add a 16K memory module or remove the ROM before entering the program from the keyboard or internal
tape drive, if present.

Syntax Guidelines

The following conventions are used in the Mass Storage ROM manual for syntax descriptions of ‘
statements and commands.

DOT MATEI® Items shown in dot matrix are typed in exactly as shown, except that lower case
letters may be substituted for upper case letters.

italics Items shown in itali¢s are numeric constants, numeric variables, numeric
expressions and string expressions that must be included in the statement.

[] Brackets are used to enclose optional items.

stacked

items ‘When items are placed one above the other, one and only one must be chosen.

P11 1) e

. Section 2

Accessing Your Mass Storage System

o1

Your mass storage system will greatly expand the capabilities of your HP-83/85. Among the operations
available to you are:

¢ Storing programs for future use.

® (Creating and accessing data files tailored to your particular computing needs.
® Storing and retrieving graphics displays.

¢.. Copying files from one mass storage medium to another.

® Running programs whose memory needs exceed available space in your personal computer by
storing individual program segments in mass storage and recalling them into computer memory
one at a time.

Section 2 covers how to access any particular drive on any mass storage unit in your system. Even if you

‘ are familiar with other mass storage systems, you should review this information to familiarize yourself
with the syntax of HP-83/85 Mass Storage ROM statements. Instructions on how to access particular
files on a disc will be covered in section 3. Sections 4 through 6 discuss accessing stored programs, data
files, and graphics displays. A number of other file manipulations and techniques for error processing are
covered in sections 7 and 8.

Mass Storage Unit Specifier

In order to store and retrieve information with your mass storage system, you must specify the exact
location of the device on which the information is stored. The mass storage unit specifier, or msus, is a
character string that combines an interface select codé, address of the master unit, and drive number to
specify the location of a particular file. Accessing the file itself will be covered in section 3.

The msus string has the following form:

"1 device type [interface select code device address drive number] "

‘ ' All msus character strings begin with a colon.

The device type identifies the type of mass storage device being accessed, either disc or tape. The symbol
s 11 specifies disc and : T specifies the internal tape drive, if present.

1

12 Section 2: Accessing Your Mass Storage

All of the optional parameters in the msus (i

System

nterface select code, device address, drive number) must be

included when specifying a flexible disc drive unit. The optional parameters are omitted when specifyihg

the internal tape unit on the HP-85.

The interface select code identifies the HP-IB

interface to which the mass storage unit ms attached. The

interface select code is factory preset to 7, but may be reset to an integer 3 through 10. An interface select

code greater than 10is interpreted as 10.

The device address, an integer from 0 through

the mass storage unit.

The drive number, an integer from 0 through

to access.

The msus of the dual disc drive units shown in

Mo TURRE b iy

7, matches the number set on the device address switch on
3, specifies the drive on the master or add-on unit you wish

figure 1, page 8, are listed below.

i

disc disc disc disc
select code 7 select code 7 select code 7 select code 7
device address 0 device address 0 device address 0 device address 0
"~ Drive0 Drive 1 Drive 2 Drive 3
The following msus specifies the HP-85 internal tape unit.

1

Volume Labels

When specifying an internal tape unit,
the interface select code, device
address, and drive number are not
included.

Volume labels offer you a convenient way to specify a particular mass storage medium (disc). You cannot

assign a volume label to a tape cartridge.

A volume label is a name up to six charac

initialized, or by using a L' LIME

1% stat

ers in length that you assign to a disc wheh the disc ié
ement. The volume label is stored on the disc and remains

tHe disc’s name until a new volume label is asgigned to the disc.

Like the msus, the volume label is a string an

should not use in volume labels are: . (perio
characters are truncated to six characters. O
string designating that volume label alway

characters.

d must be enclosed in quotes. The only characters that you
), 1 (colon), and " (quotes). Volume labels longer than six
ce a volume label has been assigned to a disc, the character
s must include a period within the quotes preceding the

Section 2: Accessing Your Mass Storage System 13

The form of a volume label is:

DO HEERAEY o o ‘ - “{1” may be any character except a
el b ' o period, colon, or quotation mark. Note
that the volume label character string
is preceded by a period.

The syntax of the LI} LI[E 1% statement is:

"oy 1
LICHL LI, s msus

N i
. old volume label " 1% "new volume label

Note that the new volume label is not preceded by a period. The period must be included only iafter the
volume label has been assigned. The statement may be executed within a program or from the keyboard.

When a volume label is used to access the medium on which information is stored, the system searches the
discs currently in the system until the disc with that volume label is found. If the search fails to find the
specified volume label, the Mass Storage ROM returns F ¢ 1 1 &% 1 UL LIME, Because of this
search operation, it takes more time to aiccess a file using a volume label than by using the msus. If the
same volume label has been assigned to more than one disc in the system, the disc with the lowest msus is
accessed.

-Examples:

Assigns the volume label
" THE TUIEE " to the disc located at
msus 3 IV ERY,

gt
i

ZE MELUME yprans pa

Renames the dise formerly labeled

iR
‘ HOTIRTUERT to ', T,

The examples in the tjema/inder of this manual assumé the following volume label éssignments. Itis also
assumed that disc " . TIF T LI " is always located at msus ¥ & 1176 " andthatdise " . IR T 1" is

always located at msus * 4 [17 4]

s

WOLUME el

14 Section 2: Accessing Your Mass Storage System

Specifying Parameters Using Expressions

You can specify any parameter using expressions. When a parameter is a string, you can specify that
parameter using string expressions. When a parameter is a number, you can specify that parameter using
numeric expressions. In most cases, if the parameter is an integer, a non-integer value supplied by a
numeric expression is rounded to the nearest integer. However, attempts to use an expression evaluating
L flsL s,

"
n

to a non-integer as part of a msus will generate - 1 1" v

Here are some examples of how string expressions can be used to create volume labels and msus values.
Refer to your computer owner’s manual for additional information about string expressions.

Assigns the volume label
v TR

[LI 1 " to the disc at msus
e T] M, Note that the period in

the new name is omitted in the
LICHA LR T % statement.

These statements accomplish the
same task as statements 50 and 60,
above.

Initializing a Mass Storage Disc

Each flexible disc that you use in your systeT must be initialized at least once. Initializing establishes a
¢ disc, and clears and tests the disc. The M I T AL T

not initialize a tape cartridge with this statement.

volume label, sets up a file directory for th
command accomplished these things. You can

Optional parameters in the statement can be used to:

e Rename a disc (change the volume label).
o Specify the amount of space allocated to|the disc directory.
e Specify how the physical records on the disc are to be numbered.

The initialization process takes about two mlﬁlutes. Any information stored on the disg is erased by the

ain whether or not a disc has been previously initialized,
1" (ENDLINE). The message [vy 156

,The I T 7TIHL I#F command is programmable.

THITIMLTEE command. If you are unce
insert the disc into DRIVE 0 and type i}
indicates that the disc has not been initialized

u
u

R

The form of the [T I I ZFE command is:

"rmsus "

TR T TRl Ty n
THITIELTEE (" new volume labal '[, . old volume labe

s [, directory size

[s interleave factorl]]]

Inthe [MITI#L1EE command each liste
parameters listed before it. For instance, the
and a msus or old volume label.

d optional parameter must be preceded by all the optional
directory size must be preceded by both a new volume label

Section 2: Accessing Your Mass Storage System 15

The new volume label is the new name assigned to the flexible disc being initialized (refer to page 12 for

details on volume labels). If the new volume label is omitted, it defaults to blanks.

The msus or old volume label is the existing label or msus of the disc being initialized. If this parameter is
omitted, the default disc specified by the |5 &
msus '3 TY,

STORAGE T statement is used. You cannot specify

The directory size specifies the number of records to be allocated on the disc for the file directory. Each
record holds directory information for eight files. The default value is 14 records (or 14 X 8 =112 files).

The interleave factor specifies how physical records on the disc are to be numbered. Any integer from 1
through 16 may be specified for the HP 82900-Series Flexible Disc Drives, cauqing sequential records on
the disc to be numbered consecutively, by every other record, every third record, etc. The default value for
the interleave factor is 5.

The ability to renumber records on a disc by specifying an interleave factor allows you to control the
efficiency of your disc drives and to minimize the time required to access mass storage files.

The interleave factor affects how many revolutions of the disc are necessary to transfer information tp
and from mass storage. Because it takes a finite amount of time to perform accessing operations, and
because the disc is spinning rapidly, it is possible that a full revolution might be required to access

successive records on the disc. By placing a physical separation between records, the appropriate

interleave factor can minimize the number of “wasted’ revolutions.

The performance of your mass storage system during a particular application can be improved by
adapting the interleave factor to the structure of your data. Since there is no eaéy way to compute the best
interleave factor for a particular data configuration, the simplist way to determine the most efficient
interleave factor is by “trial and error.” '

One method of testing interleave factors involves copying your program and data from a “master” disc to
a “test” disc that has been initialized to a different interleave factor. Then, time the execution of the
program, using the computer’s internal timer. You may initialize the “test” disc repeatedly using a
different interleave factor each time, I:0)[""" the same data onto the disc (rememBer, the data was lost
when the disc was 'reinitialized), and re-execute the program to compare execution times.

Below are several examples of the proper form of the [M I T I Fil.

R RS T

L THITIAL;

[W R e B
- . F

ﬁ"““mHIUEluj

16 Section 2: Accessing Your Mass Storage 9

ystem

Establishing a Default Mass Storage Medium

A default mass storage medium (disc) is establ

ished by the M &% &TORMEE 1 statement, which

has the form:
MESS STORAEE 15 - Yolumelabel
»msus

Once a default device is set up, the system autg
is not specified. When no default device has &
lowest address number. If no device is present,

internal tape unit ("' & T "), if present.

Examples:

MESE STOREGEE [% " DRIVER!

FIFSE BT R FIEE e iR

matically uses that device when the volume label or msus
een established, the system defaults to the disc with the
or if the disc drive is turned off, the system defaults to an

The default is set to theimedium with
volumelabel " . [1f [LIE G,
The default is set tomsus * o [EN] ¥,

Notes

17

Section 3

Accessing Files

Data and programs are stored on a mass storage medium, such as disc or tape, in files. By assigning each

file a name, you can access previously stored information by using the appropriate BASIC statement to
call up that file.

If your computer has an internal tape unit, you may already have some experience in storing and
retrieving files. However, the Mass Storage ROM requires that a different form of file name be used for
storage on both disc and tape. Attemptsf’to store information on your internal tape drive using file name
conventions you learned in the section otf your computer owner’s manual dealing with tapes could result
in the information instead being recordedl onto a default mass storage medium.

File Specifiers

The location of a file in your mass storage.system is described by a file specifier. The file specifier consists
of two parts: a one- to ten- (six for tape) character filename, and a volume label or msus. The volume label
or msus identifies the particular disc' drive (or tape) on which the file is located. The file name
distinguishes any one file from others stored on the same disc (or tape).

The proper form of a file specifier is:

s+ volume label

“file name [' mSUS

]ll

File specifiers are always enclosed in quotes. Note that the volume label or msus is shown as being
optional. This is because the system automatically uses the default device established by the
configuration of the system, or specified by a % %

mo STORMAGE 15 statement, when the optional
parameter is omitted. Consequently, the volume label or msus must be included if the file is located
elsewhere than the default mass storage medium.

Examples:

The file named QUAKE is on.the

medium having volume label
TR TR,

The file named QUAKE is on the
device havingmsus " 1 [1¥ FE Y,

The file named QUAKE is on the
HP-85 internal tape unit.

19

20 Section 3: Accessing Files

Here are several examples of file specifiers used

the default device you establish remains in effect

with the default device established first. Remember that
until you change it again or reset the computer.

Establishes a mass storage
default medium.

Creates a data file named
PRESSURES on the disc having msus

HP-85 tape unit is the default device.
The program BIKE is stored on tape.

The only characters that should not be used in the file name portion of a file specifier are . (period),

4 (colon) and "(quotes). The period is reserved as
the quotes are used to delimit strings. Null file r

the volume label prefix, the colon is the msus prefix, and
ames are not allowed; however, blanks are allowed. File

names longer than 10 characters (6 for tape) willbe truncated to 10 characters (6 for tape).

The File Directory

Each mass storage medium (a disc or tape) automatically maintains a catalog, or file directory, of the files

stored on it. The [I T command outputs the contents of the file directory to the computer display.

The proper form of the [/ T command is:

3] 3]
AT hplme label T

If you have previously initialized a discas " . I

by typingin CHT M. DI TUEE" (END LINE).

+ [LJEE1") you can now obtain a file directory of that disc

Once you have stored programs and created da
look similar to the one shown below.

a files on a mass storage medium, the file directory will

Section 3: Accessing Files 21

‘The file directory contains the following information:

Fuoipts: This is the name assigned'to the file as part of the file specifier.

Tijpee There are five types of files: [T F, (115 (program), EF 51 (binary program), H1I1..1.,
and k¥4 (extended).

The number listed is the number of bytes per file record.

This is the number of records in the file.

If your computer contains an internal tape unit, typingin CHT YT will output the tape
%directory. The tape directory contains all the information in a disc directory, plus one additional column,
FIL I, which lists the file number of each file. (Refer to your HP-85 owner’s manual for more details on
'file numbers.)

?You may terminate a catalog listing at any time by pressing any key.

%File Types

As mentioned in the discussion of file directories, five types of files may be used with a mass storage
,system program, data, extended, blnary program, and null. Each file type is created and retrieved by

ldlfferent procedures, summarized below. Each file type is discussed at greater length elsewhere in this
gmanual.

File Type Descrlptlon

P10 (program) These files contain programs and are created with & II [- and retrieved
into computer memory using .11l Ii. Program files are covered in section 4.

THRT Data files are created using [[I ¥ T and F I I M T # and retrieved with
11 4, Data files are covered in section 5.

okl (extended) Extended files are used to store graphics displays. [T (1 E is the only
statement in the Mass Storage ROM that creates extended files. The

"1 | extended files are covered in section 6.

kB G P (binary program) These files are binary programs and are created using TR E T M and
retrleved using L.CIFTIE T 14, Binary program files are covered in section 4.

ML Null fllbs are empty files created when individual files are purged.They are
remov¢d from the directory with ;2. Null files are covered in $ection 7.

Section 4

Storing and Retrieving Programs

Information in this section covers how to store and retrieve programs using a mass storage system. Use of
chaining to expand the capability of the computer in running large programs is also covered.
Storing a Program

The T L command is used to store the program currently in computer memory on a mass storage
medium (tape or disc). =T Uiff attacheé a specified name to the program, creates a program file with that
name, and-then stores the program in the program file using the computer’s unique language. The stored
program remains in computer memory until scratched, or until another program is loaded.

% T is not programmable. The command may be typed in, or you may use the typing aid (STORE).

The proper form of the & 1 L[| command is:

STORE “file specifier '

The proper form for file specifiers is covered in section 3.

Examples:

Names the program in computer
memory QUAKE, and stores the
program in a program file located on
the mass storage medium with volume
label " . il LB G,

Remember that you can use either a volume label or msus in a file specifier.

Has the same effect as the previous
exampleif ", [l L is

o EEE e,

You may omit the volume label or msus portion of the file specifier if the program is to be stored onto the

default mass storage medium.

Assigns the default mass storage
device. (Assume that the volume label
was previously assigned.) .

23

24 Section 4: Storing and Retrieving Programs

If you do not have much experience with mass
later in this section, retrieving) a program. The¢

storage systems, you might want to practice storing (and
following program converts speeds input in one of four

units to any of the other four units. The four unitg are:

If you intend to store this program, you must firs
you have not yet initialized a disc, do so nowin I

Now, obtain a file directory of the disc by typing

feet per second
miles per hour
kilometers per hour
meters per second

t make sure you have a disc which has been initialized. If
rive 0 of your unit, following instructions on page 14.

Note that the msus is optional here,
since DRIVE 0is the default device.

LT (ENDLINE).

Type in the program as shown.

To store th]e program, type (or use the typing aid

Section 4: Storing and Retrieving Programs 25

The red pilot light on Drive 0 will be on during the storing process. When the light goes off, the program

The directory shows that SPEEDS has been stored in a program file three records in length. Each record
contains 256 bytes. ’
% T (1 can be used to store a program in computer memory over a program that was stored previously.
For instance, after storing SPEEDS, you may edit the program in computer memory, and then re-execute:

The new, edited version will be stored, replacing the first version. Because of this “overlay” capability,
you must be careful in storing a new program not to accidentally assign to it the name of another program
file, thereby overwriting a previously stored program that you still need.

Loading a Program From Mass Storage

Once a program has been stored on a mass storage medium, a copy can be retrieved into computer

formis:

LORT “file specifier !

The file specifier must correspond to a program in mass storage. Attempting to 1.[1F]l a nonexistent
programresultsin & v o BT w FLLE MAME.

When 1.1]! is executed, any program or data currently in computer memory is scratched before the new
program is loaded. Variables that were assigned in calculator (keyboard) mode are also scratched.

If you stored the program SPEEDS, you can now retrieve it. But first, you may want to scratch the
contents of computer memory just to prove to yourself that |01 [i really works. Execute =0 F 7T and
then L. [& T to confirm that the programis no longer in computer memory. '

Now, execute:

T BE T

26

The red pilot light on Drive 0 will light up wh

F

If you used a defined string expression such
scratched when the program was loaded.

Chaining Programs

The [IHF 11 statement allows you to load a

program. When (i I I is executed in a progra.

be preserved between two programs by

mass storage.

e The newly-loaded program is executed au

Section 4: Storing and Retrieving Programs

le the program is being loaded. When the light goes off,

uter memory.

as [*# to load the program, the string definition was

stored program into computer memory from a running

m:

The current BASIC program and any datha in computer memory are scratched. Specified data may

is executed.

The program specified in the L: 11 | I statement is immediately loaded into computer memory from

omatically.

| is programmable. The proper form for the statement is:

LHE I “file specifier ™

The [} statement is used to preserve variabl

definitions between programs. All variables not included

hained program is loaded.

Refer to the discussion of [} in your computér owner’s manual for additional information.

chained program must agree in the number and type of

variable. Particular care must be taken in preserving arrays that the option bases of the two programs

agree.

An important function of chaining is that it
memory by separating the program into twg

earnings for a company from quarterly earn

enables you to execute a program too large for computer
or more parts, While the two programs that follow are

ings over a ten year period from 1970 through 1979. The

EARNINGS program then chains to a program that draws a bar graph of the yearly earnings.

Section 4. Storing and Retrieving Programs

First, enter and store the program to draw the bar graph.

Preserves specified variables.

Establishes scaling factor,
draws axes.

Labels X-axis.

s Labels Y-axis.

LI

\ Draws bar graph.

Computes yearly earnings

Loads BARGRAPH.

28 Section 4: Storing and Retrieving Program

T

If you’d like to run the set of programs more than once, be certain to store EARNINGS now since it will be

scratched when statement 90 is executed.

Now, execute EARNINGS. You will be asked to

enter quarterly earnings for years 1970 to 1979. Enter any

values you like, but keep in mind that the Y-axis for the bar graph runs from $0 to $100,000.

When you push (END LINE) after the last data e
is executed, and the bar graph will be drawn on
list the current program in memory if you’d like

ntry, you will hear a beep as statement 10 in BARGRAPH
the CRT. When program execution is completed, you may

Storing and Retrieving Binary Programs

Some of the programs in the application pacs alInbinary programs. They function like a ROM, except that

they are loaded from mass storage. The stat
LD TR T The statement has the form:

ent that accomplishes loading of binary programs is

LOFDETH “file specifier

LT T H loads a binary program without dltering existing data or programs in computer memory.

Only one binary program can be in memory at a

If a binary routine is to be added to a BASIC pr
add the binary program using . 0iF1THE T H, If
when the main program is loaded.

In order to edit a program that uses a binary 1

memory.

Binary programs are stored using the statement

time.

ogram, you must first .. (1" [the main program and then
ou retrieve the binary program first, it will be scratched

outine, the binary program must be present in computer

T

+ | I, which has the form:

T

"file specifier "

Translating Tape-Based Progra

ms to Disc-Based Programs

Any programs written without the Mass Storage ROM in place that access the HP-85 internal tape unit

are specific to the internal tape unit (tape-based

) and cannot, as written, utilize a disc drive system. When

the Mass Storage ROM is installed, those progjams will continue to execute as they did before, regardless

of the nature of the default mass storage mediu

For instance, suppose you have a program st
ROM installed. The program reads a data file,
and then prints results of the calculations onto
Storage ROM in place, the program will contin
the default mass storage medium is a disc.

.

red on tape that was written without the Mass Storage

he new file. When this program is executed with the Mass
ue to read, create, and write tape-based data files, even if

erforms a number of calculations, creates a new data file, °

Section 4: Storing and Retrieving Programs 29

Programs written without the Mass Storage ROM installed must be translated before they can utilize a
disc system. After a program loaded from the tape system is translated, the program is compatible with
the requirements of the Mass Storage ROM.

A tape-based program is translated by loading the program into computer memory and then executing
the TEMHZLATE command, which has the form:

THAMSLFTE

A beep signifies that the translation is completed.

If the tape-based program described previously was translated and then executed, the program would
read the appropriate data file from the default mass storage device, perform the computations, and store
the results in a data file created on the default mass storage device. If the data file being read had been

stored initially on tape, it would be necessary to ;1" it onto the default mass storage device before

running the program.

The translated program can be stored onto a disc simply by executing = T [| with an appropriate file
specifier.

1 0 e e 1 o

LT 11 g

:
=

Section 5

Storing and Retrieving Data

1 1T 1m0

The discussion of file types in section 3 pointed out that mass storage enables you to create and use five
different types of files, one of which is the data file. This section covers the operations necessary to store,
retrieve, and update data using mass storage. The five operations discussed in this section, all of which
are essential in storing and retrieving data, are:

® (Creating data files.

¢ Opening a previously created data file.
e Storing data.

¢ Retrieving data.

® (losing the data file.

There are two methods for accessing daita files: serial access and random access. Serial access stores data
sequentially, and is useful when the complete data list is to be stored and retrieved as a unit. Random
access allows you to access portions of the data. Both types of files are created, opened, and closed in the
same way. However, data is stored and retrieved somewhat differently, so storing and retrieving will be

discussed separately for serial and random access.

Files created in mass storage consist of one or more records. The size of the records may vary to
accommodate the storage requirements of the data. Before covering how to create data files of different
sizes, we will first discuss file structure and storage requirements.

File Records

When a data file is created in mass storage, the size of the file is set by specifying the number of records in
the file and the length of the records. A record is the smallest addressable location on a mass storage
medium such as a disc or tape. Record length is specified in bytes, and all records in a partlcular file are
the same length.

Two types of records are available: physical and logical. The two types of records make it possible to
match the structure of data to the file in which it is stored, thus using storage space most efficiently.

31

1
32 Section 5: Storing and Retrieving Data ‘
|
|

Physical Records — Physical records are always 256 bytes in length and are set up automatically when
a program file or data file is created. All files begin at a new physical record. The 256 byte physical record .
is the smallest addressable storage unit unless
established.

different size addressable unit, called a logical record, is

Logical records — Logical records are specifipd for a file when an addressable unit of length other than
256 bytes is desired. The file will still begin at the start of a physical record; within the file, however, the .
dividers between physical records are ignored and a logical record may straddle two or more physical
records. When a data file is created without spetifying logical records, the automatically-created physical
records become logical records.

The following diagrams illustrate two files consisting of logical records. The first file contains five
records, each 100 bytes long. Note that the file ptilizes two physical records and that there are 12 bytes of
unusable space, since any new file must begin at a new physical record. The divider between the two
physical records is ignored.

LOGICAL RECORDS

PHYSICAL RECORDS

The next diagram illustrates a file consisting of two 500-byte logical records. The divisions between
physical records within the logical records are jgnored; however, 24 bytes of space are rendered unusable,
since any new file must start at a new physical record.

LOGICAL RECORDS

e m— | ——

PHYSICAL RECORDS

' - Storage Requirements

Section 5. Storing and Retrieving Data

33

File and record sizes should be specifigd with the space requirements of the data in mind. The following
chart describes the amount of space necessary to store numeric and string data.

! Type

Numbers

Strings

‘ Single variable

Array variable

8 bytes per number

8 byteg X the
dimensgioned number of
elements

1 byte per character + 3 bytes
per string + 3 bytes each time the
string crosses into a new logical

record.
Not available.

You can use these space requirements to set up files to match your data. For instance, suppose you would
like to create a file that will store the last and first names, social security number, and salary of a dozen

employees. You would like each employee’s information in a separate record.

Item Type of data bytes
last name 12-character string 3+12= 15
first name 10-character string 3+10= 13
social security # | 11-character string 3+11= 14
salary numeric _8
50

A file can then be created consisting of 12, 50-byte records. When logical records are created, any

12 Records

A

3 Records

o ——

otherwise wasted space (in this case, 168 bytes) is also allocated into logical records, if possible. The 168
bytes form an additional 3 records addéd to the file automatically, with 18 unusable bytes.

[OUEPEEPPP

34 Section 5: Storing and Retrieving Data

Creating Data Files ‘
The i+ 7 statement allocates space on a mass storage medium for the data file. The statement has
the form:

LREFATE "file specifier" , number of records [, record length]

The number of records specifies how many records the file will contain, and must be an integer from 1
through 32,767. The recond length is the number of bytes in each record, and must be an integer from 4
through 32,767. The default value for the record length is 256 bytes, the size of a physical record. The total
number of bytes, obtained by multiplying the nurpber of records by the record length, must not exceed the
storage capacity of the mass storage medium.

The following statement creates a data file named EMPLOYEES for storing the identification and salary

information for the 12 employees, as discussed above.

Creates a data file with 12 logical
records of 50 bytes each. (Actually, 15
records will be set up, as discussed in
Logical Records, page 32.)

Since the information for each employee is stored in its own record, it can be accessed and updated

separately from the data for other employees. If you create this fileon " . [[LIlZ£1" and then execute

:#T, the file will be listed.

If it was preferable to always store and retrjeve the information for all employees at once, a file
containing one record could be set up.

Creates a data file of one 600-byte
record.

Section 5: Storing and Retrieving Data 35

Opening a Data File

Once a data file has been created, it must be opened before it can be accessed to store data. Opening a data
file assigns to it a buffer through which data flows from the computer to the mass storage medium, and
from the mass storage medium to the computer. (See figure 2.) The 55 | il 4 statement accomplishes
this. The statement is executable in both program and keyboard modes.

it buffer number 11} ''file specifier "

The file specifier must correspond to a previously created data file. The buffer number is a number that
rounds to an integer from 1 to 10. Once a buffer has been assigned to a file, that buffer remains assigned
to the file until the same buffer number is assigned to a different file, or until the file is closed.

256-BYTE
COMPUTER - — - | FLEXIBLE DISC

BUFFER - OR TAPE

Figure 2. Flow of data through a buffer.

Buffers — A buffer is a 256-byte location in computer memory that is allocated whenever a file is opened.
The purpose of the buffer is to reduce wear of the mass storage medium by accumulating data being
transferred between the computer and a mass storage medium. The accumulated data is transferred to its
final destination whenever one of the following conditions is met.

o Thebuffer is full.

¢ The buffer is reassigned to a different file.

o FHLIEE, 5T or M is executed.

® Program execution is interrupted (unless program execution is halted i)y a disc error).
e Thefileis closed,

¢ Another logical record in a random file is accessed.

* AFEIMT i statement is executed from the keyboard.

The EMPLOYEES file could be opened by executing:

|

36 Section 5: Storing and Retrieving Data

Closing a Data File

statement accomplishes this, and can be executefl in program or keyboard mode.

LG buffer number T K

The buffer number must agree with the buffe

instance, to close EMPLOYEES previously ope

number assigned to the file when it was opened. For
d in statement 40, above, execute:

When a buffer is closed, any data in it is transfenred to the final destination (the computer or mass storage

medium). If a program error causes a halt while
in the buffer will be printed to the file. The file r¢
program execution is continued.

If a disc error causes a halt during program ex
unless the file is closed from the keyboard. Wh

storage.

Serial Access

data is in the buffer enroute to mass storage, all the data
mains open and thus does not need to be reopened before

ecution, data in a buffer enroute to mass storage is lost
en the file is closed, the data will be transferred to mass

Serial access is used when a quantity of data is o be stored and retrieved sequentially and updated as one

unit. The entire file itself becomes the smallest
being accessed consists of more than one logi

without regard to record divisions.

Serial Printing

Data is stored into a file serially using the serial

addressable unit of storage. This is true even if the file

cal record. In serial access data is stored and retrieved

FRIMT # statement, which has the form:

FRIMHT # buffer number ; print # list

The buffer number must have been previously agsigned to a data file. The print # list itemizes the data you

wish to store, and may include numbers, nume:
the print # list are separated by commas. Data it
file printer.

Pointers — When a file is opened, the file point

ic variables, string variables, and array names. Items in
ems are placed into the file according to the position ofthe

er is place at the beginning of the file, and any data items

gerially printed to or read from the file will access the beginning of the file. The pointer moves through the

file sequentially. When an entire print # list }

as been recorded, the pointer remains at the end of the

recorded data, and an end-of-file marker indicgtes the position of the last recorded data. Execution of a

subsequent M} [11T # statement records the new print # list at the end of recorded data and moves the

end of file marker to the end of the newly recor
through the file until the file is closed or reassig;

ded data. The pointer will continue to move sequentially
sk i statement.

Section 5: Storing and Retrieving Data 37

The movement of the file pointer and end-of-file marker influence the way in which serial files may be
updated. If, after entering a long list of data items serially, the pointer is returned to the beginning of the
file using an %

Lk i statement, a new serial F' [I 7T # statement will record new data items over
the old ones. Because an end-of-file marker is placed at the end of the new data items, the entire old data
list is lost.

The following sample program uses serial access to store check register data for the PDQ Music
Company. The company opens a new:file each day, and records the company to which a check has been
written as string {3 and the amount of the check as numeric variable |,

Creates file of 4, 256-byte records.
Opens file.

Prints company name and amount of
check to the file serially.

Closes file.

When the program is run, it prompts for company name and amount of the check until " [[k E
TOIFAY " is input in response to the tompany name prompt. If file capacity is exceeded before program
execution ends, E v vy VI o lime BE o RECORT announces an attempt to print at the
end of the file.

Note: When a string printed to a file serially crosses from one record to another, an additional three
bytes are needed for the string "‘header,” which identifies the portion of the string contained in the
new record.

Reading Files Serially

Data that has been stored onto a mass storage medium must be retrieved, or read, back into computer
memory before it can be used. Reading data from a file transfers a copy of the data through a:buffer into
the computer.

38 Section 5: Storing and Retrieving Data

When data is retrieved serially, the entire file

bontents is accessed sequentially, ignoring any record

divisions. Data stored both serially and randomly can be retrieved serially. Serial reading is

accomplished by the serial {11} # statement,

which has the form:

T

buffer number ; read# list

The buffer number must match the number
statement. The read list need not exactly match

being read must agree in type (string versus num

agree in precision (FF fil., THTEGER, SHOE

read variable as long as the read precision is less
precision of the stored number, the number is re
example, ajprinted w05 T number will be convierted to the B TE L

however, if you attempt to read the same i} L
will actually be read with 3 11 T precisien.

In reading serial files, the pointer moves through

METR I
he print # list used to store the data. However, data items

previously assigned to the file with an fii::
t
eric) with the contents of the file. Numeric data need not
'II). The number will be converted to the precision of the
than the print precision. If the read precision exceeds the
ad to the same precision with which it was stored. For
- [

''T precision number with L. precision, the number

precision specified in a read list;
ii

the file sequentially, much like with serial printing. The

pointer is moved to the beginning of the file whenever the file is opened, orif an 5% [Gk 4 statement

for that file is re-executed. Since a serial = [H T
recorded data, you must move the pointer to the

If you used the program on page 37 to create a

statement leaves the file pointer at the end of the last
eginning of the file before reading stored data.

data file for a check register, you can use the following

program to read the file, print its contents, and sym the day’s check payments.

In the above program, the file pointer moves thr

executed repeatedly. If statement 40 were omitte

Opens data file.
Reads company name.

Reads amount of check.

Closes the data file.

ough the data file as each REMT i statementis

d, the i1 # statement in line 50 would eventually

encounter an end-of-file marker, generating an érror.

Section 5: Storing and Retrieving Data 39

Random Access

When you wish to print to, read from, or update a portion of a data file, random access enables you to do
so. Therandom F LT # and BEFMII 4 statements are designed to access individual records of a
data file. Remember that a record is the smallest addressable unit of mass storage and can be as small as
four bytes.

Random Printing

The random F§ [T 4 statement has the form:

FEIHT # buffer number , recordnumber| 4 print # list)

The buffer number must match the buffer assigned to the file by an 155 [1%} # statement. The record
number must be less than or equal to the total number of logical records in the file. The print # list
contains all the items to be printed to the record, separated by commas.

The random [JMT # statement operates somewhat differently from the serial F [[T
statement:

® Because random printing accesses a specified record, the record number must be part of the

statement.

® When arandom FF 7T # statement is executed, the file pointer is moved automatically to the
beginning of the specified record. Thus, all items printed to a particular record must appear in one
random [[MT i statement.

¢ Inrandom printing, the contents of the file buffer is transferred to its destination each time another
record is accessed.

® Record divisions are not ignored in random access operations. Attempts to print to a file when the
file pointer is at the end of the specified record results in an error.

® The file pointer may be moved to the beginning of a random record by executing a random
FEIHT # statement without a print # list. For example:

Moves the pointer to the beginning of
record 3 of file DATA.

In random access, the print # list must not exceed the storage capacity of the logical record. i v i1 5
g REEAMDOM OUF, or Evror V2 3 RECORID indicates that the print # list has exceeded the
capacity of the record.

40 Section 5: Storing and Retrieving Data

The following program creates a file for storing and retrieving a check register using random access.
Each of the 20 records contains the name of the company to which the check is written and the amount of
the check. The string " =< Y and the numeric variable £l are stored into otherwise empty records.
The program prints (or displays) the contents of each record as the checks are entered.

Creates a 20-record file.

Prints (displays) check data.
Prints % and 1 to record #1.

Prints to all unused records.

Closes file.

The program uses a [1F [2T loop to increment the record number. Note that, unlike the serial access
version of this program, this program does not actually store "1 FOEE TONMY " to mark the end
of the data. Random access would allow you to attempt to retrieve data beyond that entry, since you may
move the file pointer to thebeginning of any existing random record.

Reading Files Randomly

Random access reading is accomplished with the random read statement, which has the form:

FE M 4 buffer number , record number | rgad # list]

The differences between the random read statement and serial read statement are analogous to the

differences between the two types of = [[T i statements: ‘|

e The statement must include the record number you wish to access.
e The ﬁile pointer automatically moves to thebeginning of the specified logical record.

e Logical record divisions are not: ignored| An attempt to read past the end of a logical recoid

e The file pointer can be moved to the begirnning of the record by executing the statement without a
read # list.

generates [¢ rioy Vi

Section 5: Storing and Retrieving Data 41

As with serial reading, the read list must agree in data type (numeric versus string) with the stored data;
however, number precision need not agree. (Refer to page 37, Reading Files Serially, for further
information.)

The following program allows you to correct ahy of the entries to the check register DEC5CHECKS and to
add additional checks. The program asks whether there are any changes and then prompts for the record
number in which the correction is to be made. To make additions, merely specify a previously unused
record and replaceits current contents, " ¥ < " and ¥, with the new data.

After accessing the file randomly for updating, the program then uses serial access to access the entire
register, sum the checks, and print the contents.

Opens data file.

Enters record to be updated.
Reads contents of record.

Enters corrections.
Prints corrections to data file,

Moves pointer to beginning of file.

Reads file serially.

Sums check amounts.

Closes data file.

Note that statement 130 is necessary to move the pointer to the beginning of the file. Otherwise, the serial
read would start at the last position of the pointer, the end of record I in statement 110.

Storing and Retrieving Arrays | :

Entire arrays can be stored and retrigved using an array addressing format with the serial or random
PRINT # and READ # statements. The proper array addressing formats for one-dimensional and two-
dimensional arrays are as follows:

one-dimensional array array name 1.

two-dimensional array array name |, ,

42 Section 5: Storing and Retrieving Data

Examples:

In the case of two-dimensional arrays, the arra
dimensionality, with the second subscript varyin

AQLD)—» A(L2) —» A3 — Al

Reads one-dimensional array B
serially.

Stores two-dimensional array F into
record 4 of specified file.

y elements are retrieved item by item without regard to

|z more rapidly, i.e., by rows.

Array elements of this 3 X 4 array are
retrieved by rows.

14) j

CA(2,1)——> A2 —» A(23) —» A2

9
D

QA(3,1)—-—> A(3,2) —» A(3,3) —» A(3

Since array elements are stored on mass storage

4

linearly, they may be retrieved with or without an array

format. In the case of a two-dimensional array, ainy combination of A(I,J) dimensions may be used that

accesses the desired number of elements. For insf
be retrieved by the following statements. (ARRAY

If the array specified in the [F [} 4 stateme:

elements allowed by the FF 11 # array will be

L

ance, a 3 X 4 array stored in a file named ARRAY might
[has been assigned buffer #1.)

i
REFT

Ly BOO
t has fewer elements than the stored array, only those
trieved.

The following program stores temperature data
temperature readings along each leg of its flig
10,000, 15,000, and 20,000 feet. Data for each 1
inspected and updated, if necessary.

thered by an instrumented aircraft. The plane takes six
. The four legs cover the same route at altitudes 5000,
g is entered into a separate record, so that it can be

Sets default mass storage device.
Creates data file.

Opens file.

Prints T(1) through T(6) to record
I

Closes file.

Section 5: Storing and Retrieving Data 43

Analysis of the data involves averaging temperatures over height at each of the four locations and
computing the vertical temperature differences between points. Data handling is facilitated in this
situation by reading in the four 1 X 6 arrays as one 4 X 6 array.

Opens data file.

Readsin data as 4 X 6 array.

Computes average location
temperature.

Computes gradients (differences).

Closes data file,

The TEMPS file is read serially in statement 40. The effect is to perform the following rearrangement of
the data.

Data as printed to file

Recordl T(1) T@ T@) T4 TG T6)
Record2 T(1) T@ T@B) T@4) TG T6)
Record3 T(1) T(@2 T(B) T@ TG) T6)
Recordd T(1) T2 T@) T@ TG TE6)

Data as read from file

legl T@A1) T2 T3 TA4) TA,5 TaQ,6)
legZ. T(21) T2 T3 T4 T5) T(2,6)

legd T(M41) oo T(4,6)

44 Section 6: Storing and Retrieving Data

Updating Data Files

When data is stored on a mass storage mediu

, it must be read into computer memory before it can be

updated. Since a record is the smallest addressgble unit in mass storage, one practical way to change the

contents of a data file is to read in the contents of an entire record, and later reinsert the updated record

into the file. The sample program on page 00

rontained an example of making corrections on a check

register. The following program illustrates adding to, deleting from, and changing the contents of a

40-record file.

A small community college maintains a file,

college offers 40 courses, numbered sequentially

named COURSES, of its course registration data. The

Subject Course Numbers Record Numbers
English 101 through 110 1 through 10
History 201 through 210 11 through 20
Math 301 through 310 21 through 30

Science 401 through 410 31 through 40

Each record is set up as follows. Course enrollm

Course Course #students stude
name number #1

Each term before registration, the file is initiali

ant is limited to five students.

student |.D. numbers

/—#\

nt student student student student
#2 #3 #4 #5

zed by entering in course names and numbers, and setting

enrollment data to 0. The following program pn\ocesses student registration forms. The program prompts

for the student I.D. number and then conducts the appropriate file operations for adding and dropping

courses. The program assumes a previously

TR TUEE

initialized file named COURSES located on medium

Enters student I.D. number.

Enters operation—add, drop, or done.

Enters class number (101-110, 201-210,
etc.)

Computes record # from course
number.,

Opens data file.

Reads in contents of appropriate
record.

Section 5: Storing and Retrieving Data 45

Tests for student already being
enrolled.
Tests for opening in the class.

Statement is executed when class is
full.

Enrolls student..

Updates enrollment number.

Prints updated vecord to file.

If student is dropping the course,
this loop searches to see whether
sheis actually enrolled.
Statement 290 executed if student
wasn’t enrolled.

Updates enrollment.

This loop removés student’s I.D, :
number from the class list.

Closes data file.

Data files should be designed so that information requiring frequent updating can be readily accessed
and altered. In the previous program, statement 110 directly converts the course number into a record
number, enabling the program to access a course’s record without searching through the entire file, If the
organization of the data didn’t lend itself to direct computation of record number, it would have been
hecessary to search for the appropriate ¢ourse. In such cases, it is more efficient to store a master list of
courses in one file and maintain a separate file for student enrollment. The master list could then include
a pointer for each course, indicating in which record the student enrollment can be found.

Section 6

Storing and Retrieving Graphics

The Mass Storage ROM allows you to store the contents of the computer’s graphics display onto a disc
and to retrieve the display without re-executing the display-generating program. The operation of
loading the stored display into the computer’s graphics display leaves alpha mode and any program
currently in computer memory intact. (Refer to the graphics section of your HP-83/85 owner’s manual for
a discussion of alphanumeric and graphics mode.)

The statements covered in this section create and access extended files, and are the only Mass Storage
ROM statements to do so. Unlike data files, extended files are not opened and closed. An attempt to

assign a buffer to an extended file generates I v rinr i ¢ FILE TYRE

Storing a Graphics Display

The contents of the computer’s graphics display can be stored onto a disc by executing the =T DIF
statement. i T} may be executed from the keyboard or within a program. The statement
automatically creates an appropriately-sized extended file; you cannot use a i
create an extended file.

1T statement to

The proper form of the I % T (1 [statement is:

G TORE “file specifier '

The statement stores a copy of the computer’s graphics display into the file. Computer memory is
unaffected, and the stored graphics display remains in the computer’s graphics display until execution of

Extended files are useful for storing the scaled and labeled X- and Y-axes of a graph for later use in
plotting data. The following program generates a graphics display which will be retrieved for use later in
this section. The program creates the X- and Y-axes for a graph of gold prices from J anuary, 1979, to

January, 1982, After the program is keyed in and executed, the graphics display it generates will be stored
into an extended file named GOLD.

47

48 Section 6: Storing and Retrieving Graphics

Now, run the program to generate the X- and Y-gxes for the gold prices plot:

Before you can execute | -, you must ¥

eturn the computer to alpha mode. This is easily done by

pressing any alphanumeric or display control

ey. Once you are in alpha mode, execute:

Stores contents of the computer’s
graphics display into an extended file
named GOLD.

Section 6: Storing and Retrieving Graphics 49

The contents of the graphics display has now been copied into the file name& GOLD located on the disc

with volume label " . [if [LIE LI ", We could have chosen to store the display as part of the program.
Inserting the Ui % T {1 [statement after line 130 accomplishes this,
As in program storing, the contents of an extended file can be altered by executing & T} [with the

same file specifier and a different computer graphics display.

Retrieving a Graphics Display

Once a graphics display has been stored with a Ui & T 1 i [statement, it can be retrieved by executing a
Lil. L1 1) statement, either from the keyboard or within a program. The proper form of .. [I is:
GLOIMI “file specifier

The file specifier must be the name of a previously-GSTOREd extended file.

Execution of [:l.l1M T} places a copy of the graphics display contained in the extended file into the
computer’s graphics display. The contents of the computer’s graphics display at the time 5[[1f 1 is
executed will be scratched as the stored display is retrieved. As il (15111 is executed, the computer

automatically switches to graphics mode, and you can see the stored display appear on the CRT.

The following program graphs approximate gold prices at the beginning of each month from January,
1979, to September, 1980, using the axes stored in the GOLD extended file. Since data is not available for
the entire X-axis time span, the program tests for a price of $0.00 to signal the end of the data list.

Loads axes into graphics mode.
Lifts pen before plotting first point.

Test for 0.00 price
Plots price.

50 Section 6: Storing and Retrieving Graphics

When the program is executed, the CRT switches to graphics mode at line 30. The axes is retrieved, and ‘
then the prices are plotted onto the graph. When the data has been plotted, the display will look like this:

You may store the graph onto mass storage by executing a iz TLIFE statement with either the
wEOL T, TR B Y file specifier, to replace|the empty axes, or with another file name. Once the graph
has been stored, it can be updated as new datajup to January, 1982, becomes available by GLOADing the
graph and plotting additional points.

Notes

61

11000 o

1 i

Section 7
. Other File Manipulations

R L e T

101 B R

The Mass Storage ROM enables you to perform a variety of file manipulations in addition to the ones
already covered. Section 7 covers the following additional file operations:

® Determining the type data of the néxt item in a data file.
® Copying files from one mass storage medium to another.
¢ Renaming files.

¢ Purging files.

® Packing files for more efficient use of mass storage space.

® Securing files.

‘ Determining Data‘TypesaThe TYP Function

The 1"’ function allows you to determine the type of data of the next item in a data file. The function
also allows you to determine whether the file pointer is at the end of the record or at the end of the file. The
function has the form:

T {buffer number)

The buffer number must correspond to the buffer assigned to the file being accessed. The functlon returns
an integer from 1 to 10 according to the following table.

Typ# Value Data Type

Number

Full String
End-of-File
End-of-Record
Start of String
Middle of String
End of String

QWO WN=

‘ In using the T "'[* function, the pointer c{an be moved through the file in much the same way as it is moved
in serial and random printing and readibg. One difference is that record divisions are not ignored when
the pointer is moved with serial statements.

63

54 Section 7: Other File Manipulations

We will use the 7' function to access data|items file named AGES, which is organized into logical ‘
records as shown below:

record 1 record 2 record & record 4 record 5 record 6

Bill 30 Phyllis 31 Hank Don 35 Plu | sorminus10

Now, the following statements are executed from the keyboard:

Opens AGES file.
Moves pointer to beginning of record 1.

Moves pointer past first item in record
1.

Lk Moves pointer past 2nd item in record
1.

1, myE Moves pointer past first item in record
3.

ol Ay b, A Moves pointer past first two items in
record 4.

/

y Moves pointer to beginning of record 5.

) Moves pointer to beginning of record 6.

Copying Files

Any filein mass storage not secured against cppying can be copied to another mass storage medium. The
({1 statement accomplishes this and adds/the name of the copied file to the destination medium’s file

directory.

COEY source file specifier* 111 'destjnation file specifier "

Section 7: Other File Manipulations 55

The source file specifier corresponds to a file present on a mass storage medium. The destination file
specifier may include the same or a différent name. You cannot copy a file secured against copying (typel
security). If you attempt to do so, no error is generated, but the secured file will not be copied to the
destination medium.

Examples:

Copies the filenamed SPEEDS on the
disc with volume label " ., Jif T Lif g
onto the disc having volume label
TR,
Copies the file named QUAKE on disc
" DETVEE" onto an HP-85 tape
cartridge, naming the new file on the
tape EARTH.

L.t1F'f can also be used to copy all the flﬂes on a mass storage medium to another medium. The COPYing
process does not affect the original contents of the destination medium. The source medium’s contents are
simply added on.

SR """, source volume /abe/" T "' . destination volume label
",

i source msus' "'« destination msus "

Both source and destination volume labels must have been previously assigned with a L/l LIME T %
statement.

One use of I [1" is transferring the contents of several partially filled discs or tapes onto one medium. If
duplicate names are encountered duringicopying, Ervor B35 g TR FFIME is generated, and the
[:{1F" operation terminates. All files copied up to the termination remain intact.

Files secured against copying (type 1 security) are not copied when the entire contents of one disc are
copied to another disc. The secured file isi‘simply ignored, and no error is generated.

If there is not enough space on the destmatlon medium to hold all the files being copied, the copy
operation terminates and = 1 1o v

o8 Wl L. results when the available space is exhausted.
Copying also terminates when the directory space on the destination storage medium is exhausted,
generating v vor 134 ¢ FIL

%4, Files copied before generation of the error remain intact.

58 Section 7: Other File Manipulations

The security type is an integer from 0 through 3

and represents various levels of security according to the

followingitable:
Security type File is se¢ured against:
Fi(programfilesonly) | L I&T, L & [, and editing.
1 (program files only) LImT, PLIST, editing and duplication (5 T C1HR 1),

= (program, data, or extended)

. (program, data, or extended) | T (ab

L,

lank appears where the name should be).

You may secure a file with more than one secus

rity type by executing more than one SECURE statement

for the same file. However, you may not secure 4 file for both types 0 and 1 security at the same time.

The security types have the following effects:

Type i — Type i is used for program fil

1. 1% Ting, and editing. The file n
loaded. However, attempts to list

s only. The program is protected against |.] % Ting,
me still appears in the directory and the program can be
the program generate an error.

Type | — Type 1 incorporates all the features of type i1 but adds protection against duplication of the

program. Any attempt to store th

Type i — Type i prevents a program or data

to the file generates [v o1 Bk s
duplicated into another file.

Type i — Type 7 security removes the file

however, can still access the file.

Regardless of the type(s) of file security specifie

b program in another file will generate an error.

file from being overwritten. Any attempt to store or print

METTE FEOTEDT. However, the file contents can be

name from the directory. Anyone knowing the name,

1, a file can always be purged.

Section 7: Other File Manipulations 57

Now, two files from the end of the directory will be purged.

SLTRTUELY B

Packing Files

-

The 1}l statement fills in |11l file gaps created when files are purged without a i purge code.

F 1. cannot be used with files on an internal tape unit.

* . volume label "'

PRLRD W sus

]

Example:

TETHL
ELIE R

File Security

File security is used to prevent program files from being listed, duplicated and overwritten, and to prevent
data files from being copied or changed. You may also remove a file name from the directory listing
without creating a 1111 file; the file can still be accessed by anyone who knows its name.

Securing Files

- . LI E is programmable, and can
also be executed from the keyboard. None of thelevels of file security prevent a file from being purged.

sELIRE “file specifier " , security code , security type

The file specifier must refer to a file already existing in mass storage. The security code may be either a
quoted string or a string expression that becomes associated with the file for security levels & and 1.
Only the first two characters of the security code string are actually used. If the string has only one

character, the second character is a blank.

56 Section7: Other File Manipulations

Renaming Files

Any file, regardless of its type, can be given a new name using the I 47111 statement:

R EHFE "old file specifier ™ T11 ‘'new file name

The old file specifier must correspond to a previously specified file. When the statement is executed, the
name of the file as listed in the file directory is changed. The file itself is untouched. However, it must now

be addressed using the new name.

Examples:

ko
FEE R ME s R TR T Rk L

Purging Files

The 15 E statement prevents further access

space that was occupied by a purged file becomes a LI1..|.. file and is available for future use.

i %:{} el B TR N T RTH T Renames AGES on Drive 0 to

BIRTHDATE.
Renames tape file SORT to SHELL.

to a file by remdving the file name from the directory. The

FUEEE “file specifier ' [4 purge code]

The file specifier must correspond to an existing file of any type—program, data, extended, or binary

program. The purge code may be any number; h

When a file is purged without a purge code, thj[m

substituted for the type of file in the Type col

owever, any purge code other than zero is ignored.

file name is remdved from the file directory, and [4L11.1.. is
n of the directory. The 41111 file is available for future

use, and will be used when you store or create ahother file that fits into the available space.

When a purge code of £ is included, the spec

ified file and all files after it on the storage medium are

purged. The directory does not create I|1!l.. L. files; the directory will contain a listing for only those files
up to (and not including) the file specified in the L1113 statement.

The following catalog shows the results of purg:

L l"'i Bl o TR T gL

A R

L

b 1

ng a file without a purge code.

Section 7: Other File Manipulations 59

Examples:

b TR g PHOLTETY, Establishes file security type .

: P L1Y is the security code.

FEUERL, DETUELDY SORNTETORE Establishes file security type . The
security codeis ignored. (The file can

be unsecured with any security code.)

Type = security has the following effect on the file directory:

R Secures SPEEDS with type ' security.

The name SPEEDS is removed from
e the file directory.

Removing File Security

The LiMH&ELIEE statement cancels a previously specified file security. The statement is not

programmable.

LS ECLIREE "file specifier "' , security code , security type

In removing a particular type of security, the security type (0 through 3) must correspond to the security
- statement. The security code must

type you wish to eliminate, previously specified with a kL
match the code established by the i
may be used for types i and .

w11 statements for types i and i security. Any two characters

Examples:

Lo

CRHRE VRN CRRTOEL RO B Removes previously established type
: it security. The security code matches
the =1 statement.
S THR TLE L O Restores the file name SPEEDS to the
| file directory. The security code need
not match the % {11} | statement.

RS B W) A 8 L 4

60 Section 7. Other File Manipulations

Disc Write Protection

You can prevent any write operation onto a flexible disc by covering the write-protect slot with a write-

protect tab (provided with the discs) as shown in the illustration below.

Write-Protect Slo{ Write-Protect Tab
\

\

i |

Not Write Protected Write Protected

The procedure for write-protecting other dis bs may not be the same as the above. Refer to the
documentétion for your system for write protection information.

The writeiprotect procedure prevents you from writing any information onto the disc. The disc can,
however, be read normally. To write on a protected disc, you must reverse the write-protect procedure.

Tape carti‘idges used with the HP-85 internal tape unit may be write-protected by sliding the RECORD .
slide tab ﬂo the left before inserting the cartridge into the HP-85. Write-protection is removed by sliding
the tab to the right.

Notes

61

Section 8

Data Verification and Error Processing

Verification of Data

The CHETE FE M statement can be used to verify that data printed to a data file located on a disc has
been properly recorded onto the disc. When Ml REFI is activated, an immediate read # is
performed on any data printed to a specified file. If the two lists do not match, indicating failure of the
storage medium (disc) itself, the ROM will return £ v v 127 ¢ EEMAD UFY (read verify).

CHECE T

" [t cannot be used for data files located on an internal tape unit.

HECE REATD # buffer number

The buffer number specified must match the buffer assigned to the data file.

n Lk REFI errors are rare. If you should ever encounter one, you may wish to compare your

"R IHT ¥ statement again, since the failure which generated the error may have been momentary. If
you obtain another [HE U F EEF] error, it is likely that the disc has failed.

CHECE BERT s turned off by the [HE U REMD [IFF statement:

CHECE READ OFF 4 buffer number

Examples:
G Verifies all data printed to buffer #1.
I #1 Turns off U HE L FEFTat
buffer #1.

Error Processing

Several statements are available for determining whether an error in a running program has been

generated by a ROM or by an interface.

ROM-Issued Errors

When you receive any error message, you may use the ERROM function to determine whether the error

was issued by one of the ROMs.

kR returns the number of the ROM that issued the error. If the error was issued by the computer
rather than by a ROM, the function returns iii. The Mass Storage ROM number is 208.

63

64 Section 8: Data Verification and Error Prog

R FE can be used with an [t R R

displays a message when a Mass Storage ROM

ressing

statement to direct program flow. The program below

€rror occurs.

Refer to your computer owner’s manual for moxe information regarding error processing.

Interface Module Errors

When an illegal operation elicits an error fr

interface at which the error originated with the

interface.

bm an 1nterface, you can determine the select code of the
" returns the select code of the

" can be used to direct program flow

above } Refer to your computer owner’s manu

after an error has occurred. (See example under [F F 01,
for more information regarding error processing.

Notes

66

SR) A

=

11

| 0000

=

M

Section 9

Tape Commands

e e s T 11001111 g o S T

e

The following commands are applicable only to HP-85 tape cartridge operation.

CTREE

This function conditions the magnetic tape cartridge by running it forward to the end of the tape and then
back to the beginning of the tape. Programs.and data on the tape are not affected by the [T
operation.

ERASETFHFE

This function is similartothe M I T T FL. [ZFE command. EFFEETFIE sets up a directory on the tape
cartridge. All previous information on the tape is destroyed.

FEMIM

. This simply rewinds the magnetic tape cartridge to the beginning of the tape.

67

70 Syntax Summary

v o |« volume label "
- " msus "

1 1
T O ‘,’,o{u”;ifeel]

F g LT buffer number ' print# list

PR W % buffer number , record number |
FLIREE “file specifier ' [, purge code]

[B 1 D buffer number 3 readit list

R 1 buffer number record number [, res
REEMFAME "old file specifier TI1 "newfi
SECLIRE “file specifier ', "security code !
= TORE “file specifier |

111 “file specifier
TRAMSLATE
Y [buffer number |

LI

"y msus" .
WLILLIPE volume label " L

print# list)

bd# list]
'e name "'

4 security type

CLIRE Mfile specifier ', Vsecurity code "', security type

= 'volume lapel "

Page 16

Page 57

Page 36
Page 39
Page 56
Page 38
Page 40
Page 56
Page 57
Page 23
Page 28
Page 29
Page 53

Page 59

Page 13

=

e

e e

o O O

Syntax Summary

M-

Syntax Guidelines

DOT MATETD Y Items shown in dot matrix must be typed as shown; however, you can use lower case

letters if you wish.
[] Items enclosed in brackets are optional parameters.
parameter Items in italics are optional parameters.
is:;:;l;ed When items are placed one above the other, one must be chosen.

= GiH A buffer number 1 file specifier

B

Vil buffer number T %

' wvolume label !
" rmsus"]

LHTI
LHE T M Yfile specifier
CoHECE BEEADLOFF] 4 buffer number

LOFY Usource file specifier ! 111 "destination file specifier "

"' . destination volume label "'
"' » destination msus "

" . source volume label " ™
" v source msus "

Cl ey

"file specifier " , # of records [, recordlength]

GG “file specifier "

""file specifier "'

1oy 1
IMITIAL LZE ["volumelabel" [, . 7S

/i [« directory size[, interleave factor]]]]
LMY Yfile specifier

LOFTIE T file specifier

69

Page 35

Page 36

Page 20

Page 26

Page 63

Page 54

Page 55

Page 34
Page 63
Page 64
Page 49

Page47

Page 14

Page 25

Page28

Notes

n

T RO V11

‘ Appendix A

Maintenance, Service and Warranty

0 O

1 e aommt a

1 1111 O v

Maintenance

The Mass Storage ROM does not require maintenance. However, there are several areas of caution that
you should be aware of, They are:

WARNING: Do not place fingers, tools, or other foreign objects into the plug-in ports. Such actions
may result in minor electrical shock hazard and interference with some pacemaker devices. Damage to

plug-in port contacts and the computer’s internal circuitry may also result.

CAUTION: Always switch off the computer and any peripherals involved when inserting or removing
modules. Use only plug-in modules designed by Hewlett-Packard specifically for the HP-83/85. Failure
to do so could damage the module, the computer, or the peripherals.

designed for another port. Attempting to force it may damage the computer or the module. Remove the
module carefully and reinsert it.

', CAUTION: If a module or ROM drawer jams when inserted into a port, it may be upside down or

CAUTION: Handle the plug-in ROMs very carefully while they are out of the ROM drawer. Do not
insert any objects in the contact holes on the ROM. Always keep the protective cap in place over the
ROM contacts while the ROM is not plugged into the ROM drawer. Failure to observe these cautions
may result in damage to the ROM or ROM drawer.

For instructions on how to insert and remove the ROM and ROM drawer, please refer to the ROM Drawer
Instruction Sheet or the HP-83/85 owner’s manual, appendix B.

Service

If at any time you suspect that the ROM drawer or Mass Storage ROM may be malfunctioning, do the
following:

' 1. Turn the computer and all peripherals OFF. Disconnect all peripherals and remove the ROM drawer
from the computer ports. Turn the computer back ON. If the computer does not respond or displays

Error 23 ¢ SELEF TEST, the computer requires service.

73

74 Appendix A: Maintenance, Service and Warranty

2. T;Lurn the computer OFF. Install the R(
port. Turn the computer back ON.

o If Fpvroyr 115

properly, turn the computer OFF an
you determine if particular slots in 1

malfunctioning.

o If the cursor does not appear, the sy

% causing the improper operation, repe

both with the Mass Storage ROM in
removed from the ROM drawer.

3. Refer to How to Obtain Repair Servic

mlalfunctioning device.

Warr#nty Information

The co@plete warranty statement is inclu
Additignal copies may be obtained from an
office where you purchased your system.

If you hjave questions concerning the warran
the HP sales and service office where you pury

In the MS

In Eurbpe:

Other bountries:

" Corvallis, OF

Mo B

Corvallis Di
1000N.E. Ci

Hewlett-Pacﬁard

Tel. (503) 758

DM drawer, with the Mass Storage ROM installed, into any .

is displayed, indicating that the ROM is not operating
d try the ROM in another ROM drawer slot. This will help
he ROM drawer are malfunctioning, or if the ROM itself is

ystem is not operating properly. To help determine what is

at step 2 with the ROM drawer installed in a different port,
stalled in the ROM drawer and with the Mass Storage ROM

e for information on how to obtain repair service for the

ded in the information packet shipped with your ROM.
i authorized HP-83/85 dealer, or the HP sales and service

y, and you are unable to contact the authorized HP-83/85 or
thased your computer, please contact:

ision Customer Support
cle Blvd.

1 97330

1010

Toll Free Number: (800) 547-3400 (except

in Oregon,

Hawaii and Alaska).

Hewlett-Pacj-ard S.A.

7, rue du Boi
P.O. Box

du-lan

CH-1217 Meyrrin 2

Geneva
Switzerland

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.

Palo Alto, C}ifornia 94304 .

U.S.A.
Tel. (415) 857

1501

Appendix A: Maintenance, Service and Warranty 75

How to Obtain Repair Service

Not all Hewlett-Packard facilities offer service for the HP-83/85 and its peripherals. For information on
service in your area, contact your nearest authorized HP dealer or the nearest Hewlett-Packard sales and
service office.

If your system malfunctions and repair is required, you can help assure efficient servicing by having the
following items with your unit(s) at the time of service:

1. A description of the configuration of the computer, exactly as it was at the time of malfunction,
including any plug-in modules, tape cartridges or other accessories.

2. A brief description of the malfunction symptoms for service personnel.

3. Printouts or any other materials that illustrate the problem area.

4. A copy of the sales slip or other proof of purchase to establish the warranty coverage period.
Computer and peripheral design and circuitry are proprietary to Hewlett-Packard and service manuals
are not available to customers.

Serial Number

Each computer and peripheral carries an individual serial number. It is recommended that you keep a
separate record of this number. Should your unit be stolen or lost, the serial number is often necessary for
tracing and recovery, as well as any insurance claims. Hewlett-Packard does not maintain records of

individual owner’s names and unit serial numbers.

General Shipping Instructions

Should you ever need to ship any portion of your computer system, be sure it is packed in a protective
package (use the original case), to avoid in-transit damage. Hewlett-Packard suggests that the customer
always insure shipments.

If you happen to be outside of the country where you bought your computer or peripheral, contact the
nearest authorized HP-83/85 dealer or the local Hewlett-Packard office. All customs and duties are your

responsibility.

RO

A

A

I

(T

I

=

Index

(== T T ST = T =

(T T T = T T T TSR =T et T

A
Address Switch, Device, 8
Arrays, 41-43

Retrieving, 41-42

Storing, 41-42
w1 Gk Statement, 35-36
Assigning Buffers to Files, 35

B
BARGRAPH Program, 28
Binary Programs, 28
BPGM File Type,21
Buffers, 35-36
Bytes, 21, 33
Entry in File Directory, 21
Needed to Store Data, 33

C

Cancelling File Security, 59
-F7T Command, 20
Catalog of Files, 20-21
MM T Command, 26
Chammg Programs, 26-28
CHECE FEEMI Statement, 63
Closing Data Files, 36
Codes, 5-6, 56, 57

Purge, 56

Security, 87

Select, 5-6
{2111 Statement, 26
Conditioning Tape Cartridges, 67
L1 Command, 54-55
Copying Files, 54-55
Copying Media, 55
COURSES Program, 44-45
CEEMTE Statement, 34
Creating Data Files, 34
LT HME Command, 67

D

Data File Type, 21
Data Files, 31-45

Creating, 34

Closing, 36

Opening, 35

Reading From, 37-38, 40-41

Size of, 31-33

Updating, 44-45

Writing To, 36-37, 39-40
Data Type Protection, 53-54
Data Verification, 63
Default Mass Storage Medium, 16
Deleting Files, 56
Device Address Switch, 6
Device Type, 11
Directory of Files, 20-21
Disc-Based Programs, 28-29
Disc Copying, 55

77

Disc Drive Numbers, 7

Disc Error During Data Transfer, 36
Disc Initializing, 14-15

Disc Write Protection, 60

Display Retrieval, Graphics, 49-50
Display Storage, Graphics, 47-49
Drawer, ROM, Installation, 5

Drive Numbers, 7

IR

e

E
EARNINGS Program, 26-27
Efficiency of Disc, 18
End-of-file Marker, 36
{I*E- Command, 67
-1l Function, 63
Error Messages, 80-81
Error Processing, 63-64
Errors, 63-64

Interface Module, 64

ROM, 63
[£ B B %0 Function, 64

Expressions, Used to Specify Parameters, 14

Extended File Type, 21, 47
F

Factor, Interleave, 14-15

File Buffers, 35-36

File Directory, 20-21

File Names, 19-20

File Pointers, 36-40

File Records, 31-32

File Security, 57-60

File Specifier, 19

File Types, 21

Files
Binary Program, 21, 28
Data, 21, 31-45
Extended, 21, 47-50
NULL, 21, 56
Program, 21, 23-29

G

Gl D1 1) Statement, 49

GOLD Programs, 47, 49

Graphics Displays
Retrieving, 49-50
Storing, 47-49

ST E Statement, 47

H

HP-IB Interface Module, 5-6

I
ITHETIM Command, 14-15
Initializing a Disc, 14-15
Installation, 5-6
Disc Drive, 5
Mass Storage ROM, 5
ROM Drawer, 5

78 Inhdex

Interface Select Code, 5-6
Interleave Factor, 15

L

Interfac% Module Errors, 64

Labels, Volume, 12-13

Length of Files, 20-21, 31-33

LU T Statement, 28

(I = 1 I/ Statement, 28

Loadmg Binary Programs, 28
Loading/Programs From Mass Storage, 25-26
Logical Records, 31-32

M

Mamtenance, 73

PR s T ok ik 1 % Statement, 16
Mass Storage Unit Spemfler, 11-12
Memory Requirements of ROM, 9

Msus, 11-12

N

\
Names of Files, 19-20

1.1 Riles, 21, 56, 87

Creating, 56

Removﬁng, 57

NULL File Type, 21

Numbenj\g of Disc Physical Records, 15

Numbers, Disc Drive, 7

o

G B R
Opening Data Files, 35

P

FHCE Statement, 87
Packing the Disc, 87
Physical Records, 31-32
Pointers, 36-37, 38, 39, 40
Preserving Variables During Chaining, 26
Ff 1 M T4 Statements, 37, 39
Rando rn, 39
Serial, 3
Printing ko Data Files, 36, 39
Randomly, 39
Serially, 36
Processing Errors, 63-64
Program|Chaining, 26-28
Program|Loading, 25-26
Program Retrieval, 25-26
Program|Storing, 23-25
Program Translation, 28-29
Protecting the Disc Against Writing, 60
FLIF G | Statement, 56
Purge Code, 56
Purging Files, 58-57
Purging and File Security, 58

R

Random Access, 39-41
Printing, 39-40
Reading, 40-41

F: B 1 Statements, 88, 40
Random, 40
Serial, 38

Reading Data Files, 37-38, 40-41
Random, 40-41
Serial, 37-38

Records, 31-34
LengtA 33,34

Logical, 31-32

Physical, 31-32
Recs Entry in File Directory, 21
BB H P Statement, 56
Renaming Files, 36
Removing File Security, 59
Removing NULL Files, 87
BB R ML Statement, 56
Renaming Files, 56
Repair Service, 75
Retrieving Binary Programs, 28
Retrieving Data

Randomly, 40-41

Serially, 37-38
Retrieving Programs, 25-26
FE T M Tape Command, 87
ROM-Issued Errors, 63-64

S

IR E Statement, 87
Secunty, 57-60

Against Copying, 55

Code, 87, 59

Removing, 59

Types of Security, 58
Select Code of Interface, 5-6
Serial Access, 36-38

Printing, 36-37

Reading, 37-38
Serial Number of Devices, 78
Service, 73-74
Shipping, 78
Specifier, File, 19-20
SPEEDS Program, 24
String Headers, 37
Storage Requirements of Data, 33
Command, 23
2B 1 | Statement, 28
Stonng Arrays, 41-43
Storing Binary Programs, 28
Storing Data, 36-37, 39-40
Storing Graphics, 47-49
Storing Programs, 23-258
Syntax Guidelines of Manual, 9
Syntax Summary, 69-70

T

Tape-Based Programs, 28-29
Tape Cartridge Conditioning, 67
Tape Commands, 67

Tape Copying, 55

Tape Write Protection, 60
Transferring Files, 584-55
TRAMSLATE Command, 29
Translating Programs, 28

T4 F Function, 53

Type of Data, 53-54

Types of Files, 21

U

Unit Conversion Program, 24
LIHSECLIRE Statement, 59
Updating Data Files, 44-45

\%

Verification of Data, 63
LTI U 1% Statement, 13
Volume Labels, 12-13

w

Warranty, 74
Write-Protecting Discs and Tapes, 60
Writing to Data Files, 36, 39
Randomly, 39
Serially, 36

Index

79

r, for the HP-83.

pr Messages

The H]E’-83/85 Mass Storage ROM makes available a number of additional error messages. Errors 60

h 75 are available on th&HP:85 with or without the Mass Storage ROM. All of these errors are new,

Error Number

Error Condition

RN S R

for LLE
por Ll

oy LLE

G R TR T T

R MR

EMETY FILE
EMD OF TAPE

FILE CLOmED

RFMIE OuF

B g T

=T L

Lot CRRD
L0F
M. RO

The mass storage medium is write-protected.
HP-83: Not used.
HP-85: Attempting to store more than 42 files on a tape.

HP-83: Not used.
HP-85: Cartridge is out when attempting a tape
operation.

Duplicate file name.
Attempting to access an empty program file.

HP-83: Not used.

HP-85: Tape run-off or tape is full.

Attempting to i FITHE- R T HT ¥ to a closed file. (A
warning is issued for attempting to close a closed file.)
Name does not exist, or name not in quotes.

File type mismatch:

e Attempting to treat program file as data file, or vice
versa.

e Attempting to treat binary program as BASIC program
or vice versa.

e Attempting to treat data as binary program, or vice
versa.

Atfempting to access beyond existing number of bytes in
logical record, using random file access.

System cannot read mass storage medium.
End-of-file.
Record:

| @ Attempting to access a record that doesn't exist.

o Attempting to [F 4/ T 1T 4 at the end of file.
o Lostinrecord—close file to release the buffer.

HP-83: Not used.
HP-85: Bad tape cartridge, or tape not initialized.

HP-83: Attempting to use non-existent tape drive.
HP-85: Tape is stalled.

HP-83: Not used.
HP-85: Not an HP-85 file; cannot read.

The | /0 card failed self test and requires service.
An invalid 1/0 operation has been attempted.
The Mass Storage ROM failed self-test.

80

The command or statement is valid for disc only.

s FILES The file directory on the storage medium is full.

g LI U The specified volume label wasn’t found.

NG R N R The specified mass storage unit specifier is invalid.
s EEMADOLEY A read verify error was encountered.

s LI L The command cannot be executed because the mass
storage medium is full.

L TV LI The storage medium is damaged.

The storage medium is not initialized, the drive latch is
open, or the drive number specified is not present.
Lal o TIMEQUT The interface select code or device address specified is
not present, or system hardware has failed.

L () Jreatrait

1000 N.E. Circle Blvd., Corvallis, OR 97330

00085-90447 Printed in U.S.A.

