HEWLETT-PACKARD

Assembler ROM Manual

HP-83/85

CHEMIGALS

AL

(D) P
HP-83/85
ASSEMBLER ROM
AND
HP-82928A SYSTEM MONITOR
NANUAL

00085-90444 Rev. B
November 1981

Printed in U.S.A. © Hewlett-Packard Company 1980

CONTENTS

ooooooooooooooooooooooooooo

The HP-82928A System Monitor. v v v v v v v v v v e w .
Scope of this Manual. v v v v i s e e e e e e

The Computer's Operating System. v v v v v v v v v v o v v .
The Assembler ROM. & v v v e e e e e e e e e e e
The System Monitor i e e e e e e e e e e e

Syntax Guidelines

SECTION 1: GETTING STARTED. . . . & v v v v v v e e e e e e e e e s

ROM Installation.

ooooooooooooooooooooooooooo

Tape Cartridge or Disc Installationand Use
System Monitor Installation v v v v v v ..

Assembler Errors.

SECTION 2: ASSEMBLER COMMANDS, STATEMENTS, AND FUNCTIONS.

Assembler Commands

SECTION 3: CPU STRUCTURE AND OPERATION. . .« v v v v v v v v v v v o v v s

ARP and DRP . . .
CPU Register Bank

ooooooooooooooooooooooooooo

ooooooooooooooooooooooooooo

Hardware-Dedicated Registers v v v v v v . .

Register Boundaries. ¢ v v it e e e e e e e e e

Multi-Byte Operations. « . v v v v v v v v v v e e e e e

Single-Byte Operations « v v i v v e e e e e e e

Two-Operand Operations « .« v v v v v v v v v v e e

Number Representation i i e e e e e e e e ..

Addresses. . .

Numeric Quantities & & v v v i e e e e e e e e e e e e e

Status Indicators

ii

ix
ix
xi
Xi
xi
xii
xii
xii

3-10
3-10
3-11
3-12

SECTION 4: ASSEMBLER INSTRUCTIONS . . . & & « v ¢ v v v v v v e e e e a s
Entering Instructions and Pseudo-Instructions

Line Numbering & © © ¢ i v i e e e e e e e e e e e e e e
Labels . . & v v i i s e
Opcodes and Pseudo-Opcodes v v ¢« v v v v v v e e e e
Operands or Addresses. . . ¢« v ¢ v v v v v b 4 4 b e e e e e e e e

001114172 o

Syntax and Symbols Used & v & v v e e e e e e e e e e
Load/Store Instructions ¢« v & v v v 0 v i e e e e e e e e e e
Addressing Modes. & &« © Lttt e e e e e e e e e e e e e e e

Register Mode. ¢ ¢« . . v oo

ooooooo

Register Immediate. ¢ . v v v v i i e e e e e .

Register Direct & & & & v i i e e e e e e e e e e e e

Register Indirect & &« « v i v i e e e e e e e e
Literal Mode . . . « &« v v v v i e e e e e e e e e e e e e e e e e

Stack InStructions. . v v v v v b e e e ke e e e e e e e e e e e e

Stack Addressing v ¢ v v vttt e e e e e e e e e e e e e
Stack Direct. ¢ o L L o e e e e e e e e e e e e e e e

Instructions for an Increasing Stack« .+ . ..

Instructions for a Decreasing Stack

Arithmetic and Logical Instructions

Shift Instructions. ¢ ¢ ¢ v v v 0 e e e e e e e e e e e e
Register Increment and Decrement Instructions

Complement Instructions ¢« v v ¢ v ¢ v v v v o 0 e e e e

Test Instruction. . . v v v v v vt e e e e e e e e e e e e e e e e e

Register Clear Instruction. « « « ¢ v v v 4 v v 0 o o o o o &

Subroutine Jump Instruction

4-1
4-1

4-2
4-2

4-3
4-4
4-4
4-6
4-7
4-7

4-8

4-8
4-10
4-11
4-11
4-12
4-13
4-13
4-14
4-15
4-16
4-18
4-18
4-19
4-20
4-22
4-25
4-31
4-33
4-35
4-35
4-36

Conditional Jump Instruction.« . v v v v v v v v ..
ARP and DRP Load Instructions v & v v v v v v v e o e e e e e
Other Instructions. & v v v v v v e e e e e e e e e e e e e

Assembly of CPU Instructions. e e e e e e e e e e
Handling of ARP and DRP During Assembly.

Using R#

Pseudo-Instructions v v v i it e e e e e e e e e e e e e
Pseudo-Instructions for Assembly Control
Pseudo-Instructions for Data Definition.

SECTION 5: HP-83/85 SYSTEM ARCHITECTURE AND OPERATION
System Memory . . & & ¢ttt e e e e e e e e e e e e e e e e e e e

Programs in Memory.« . . . i i e e e e e e e e e e e e e e e
Allocation & ot v i i e e e e e e e e e e e e e e e e
De-Allocated Program &« v & v ¢ v v v v e e e e e e e e e e

Allocated

Program. & v . L e e e e e e e e e e e e e e e e

Software-Dedicated CPU Registers
HP-83/85 Operation. e e et e e e e e e e e e e e e e

Tokens .

Overall System Flow. © v ¢ ¢ i v v v v e v e e e e e e e

Executive
CSTAT

SVCWRD

LoOp & v v i e .

..............................
..............................
..............................
..............................

Interpreter LOOp . . &« & v & v v v it e e e e e e e e e e e e e

Parsing . .
Attributes.

iv

4-37
4-39
4-41
4-46
4-46
4-47
4-48
4-48
4-49
4-52
4-56

5-1
5-3

5-4
5-5

5-7

5-8

5-8
5-10
5-11
5-13
5-14
5-14
5-14
5-15
5-15
5-17
5-19
5-20
5-20
5-20

Secondary Attributes . . . ¢ ¢« . L L 0t 0 e e e e e e e e e e 5-21

Secondary Attributes for Functions. « . . o o+ .. 5-21
Secondary Attributes for Operators. e e e e e e 5-22
Runtimeo v v v Ve e e e e e e e e e e e e 5-22
Decompiling ¢ v v v v v v v e e e e e e e e e e e e e e e 5-24
Variable Storage. . . . &« & &« i 4 it e e e et e e e e e e e e e e 5-28
Legend 00w et e e e e e e e e e e e e 5-29
Simple Variable Storage. Ve e e e e e e e e e e e e 5-30
Local Variables . . . & v v v v ¢ v v 0 it e e e e e e e e e e 5-30
Remote Variables. v « ¢ v v v 0 i e e e e e e e e e 5-30

Array Variable Storage ¢ ¢« v ¢ vt bt it e e e e e e e e 5-31
Local Variables C e e e e e e e e e e e e e 5-31
Remote Variables. e e e e e e e e e e 5~-31
String Variable Storage. e e e e e e e e e e e 5-32
Local Variables . . & & v v v 4 4 v v 6 v o b e e e e e e e e e 5-32
Remote Variables. ¢ ¢ v v v v v v o v 0 b0 e e . 5-32
Function Storage. . . . & « ¢« v v 4 0t ottt e e e e e e e e e e e e 5-32
Numeric Functions. G h e e e e e e e e e e e e e e e e 5-33
String Functions . . v & v v 0 0 0 b e e e e e e e e e e e e e e e 5-34
Formats on the R12 Stack.+ « v v v v v v v v v v v v o v W 5-34
Variables on the R12 Stack« + ¢« v v v v v v v v 0. 5-34
Numeric Formats on the R12 Stack « . . v v v ¢ v v ¢ v o 5-35
SECTION 6: WRITING BINARY AND ROM PROGRAMS. . v v v v & v v v o o o o v o 6-1
Program Structure . . . & « ¢ v v v v 4 v b e e e e e e e e e e e e e s 6-2
Program Control Block. e e e e e e e e e e 6-5
System Table . . & v ¢« v v v i e e e e e e e e e e e e e e e e e 6-5
Parse Routine Table. v ¢ v v v v v v v v v v b h e e e 6-6
Runtime Routine Table. v v v v v v v 0 v o v v o o v v v 6-7
ASCII Table. . v ¢ v v v i v et e et o st s o e e e e e e e 6-8
Error Message Table. . . v v ¢ v v v v v v v v v v e e e e e e e 6-8
Initialization Table « « « ¢ ¢ v ¢ o v o v v v v v v e e 6-9
Runtime Routines+ .. e e e e e e e e e e 6-9
External Label Table . . . ¢ & v v ¢ ¢ v v v v v v s e e e e e e e 6-10
Ending the Program « « & ¢ v v v 0 v et e e e e e e e e e 6-11

System Hooks.
Language Hooks . .
General Hooks. . .

Error Messages . .

ooooooooooooooooooooooooo

Using System Error Messages & v v v v v v v v o v
ROM-Defined Error Messages. . . « v ¢« v v v v o o v o o o o o o
Binary Program Error Messages e e e e e e e e e
Binary Program and ROM Addressing « v v v v v v v v v v . .
External ROM Addressing. « v ¢ v v v v v v 4 v e e e e e
Binary Program Addressing. 00 00 e 0 e e .

Reserving RAM

RAM Reserved by a ROM. « & & v ¢« v v ¢ v vt e e e e
RAM Reserved by a Binary Program « ¢« v v v v ¢ ¢« « . .

Accessing the Program Control Block ¢ ¢« v v o « v . .

Assembling.

ooooooooooooooooooooooooo

Using a Binary or ROM Program« & « v v v v v v v o v o e o o o

Binary Program . .
ROM Program. . . .

SECTION 7: HP-83/85 SYSTEM ROUTINES + v v v v v v v v v v v v o

The Global File . . .
Legend
Global File. . . .

System Operation and Routines ¢ ¢ .« ¢ v v v v o v o

System Routine Format. . . . ¢« . & « ¢ ¢ v ¢ i v vt e e e e e e e

Parsing and Parse Routines « ¢ ¢ v ¢ 4 v v v v e ..

Parse Routine Registers v & ¢ v v v 4 v v o o v 0 e e e

Parsing Flow. .

Parsing in Binary Programs and ROMs

Parse Routine Examples. « v v ¢ v v ¢ v v v e o e e e e

Parse Routines.

Runtime and Runtime Routines « v & v v & ¢ v & & ¢ o o o o »

Runtime Conventions & & ¢ ¢ v o v 4 4o ¢ o o« o o o o o o

Runtime Routines

ooooooooooooooooooooooooo

vi

6-11
6-11
6-12
6-13
6-14
6-14
6-15
6-16
6-17
6-17
6-18
6-19
6-19
6-20
6-21
6-22
6-23
6-23
6-23

7-1
7-2

7-11
7-11
7-13
7-13
7-13
7-20
7-20
7-22
7-44
7-44
7-44

General-Purpose Utility Routines « ¢« v ¢ ¢« v ¢ ¢ ¢« v . 7-89

CRT Control and Routines v v ¢« v v v v v o v v o v o o 0 o 7-108

CRT Control e e et e e e e e e e e e e e e e e 7-108

CRT Addressing. . . . & v v v ¢ 4 v v v v e e e e e e e e e e e 7-110

CRT Routines. . v v v v v v et e e e e e e o e e e e e e e e e 7-113

Tape Control Routines. . . . & . ¢ v v v v v v v e v v v e e e e e 7-141
Decompiling. . . . v v v ¢t i i e e e e e e e e e e e e e e e e e e 7-146
SECTION 8: SAMPLE BINARY PROGRAMS . . . & & & v v v v e v e e e e v e v 8-1
Fahrenheit to Celsius & v v v ¢ ¢ 4 0 v v i b et e e e e e e 8-1
Soft Keys as Typing Aids. e e e e e e e e e e 8-2
String Underline. . . « . & ¢ & v i it e e e e e e e e e e e e e e e 8-7
Graphics Cursor+ . . e e e e e e e e e e e e e 8-9
Rectangular/Polar Conversions « v v & v 4 v 4 o o o o o o o & 8-15
Rectangular/Polar Conversions (ROM) e e e e e e e e 8-19
SECTION 9: THE HP-82928A SYSTEM MONITOR « « « v ¢ v v v « 9-1
Setting and Clearing Breakpoints. + ¢ ¢ ¢« v v ¢ v ¢ o v o . 9-1
Operations at a Breakpoint. . . . & ¢ v ¢ ¢ v v ¢ v 4 e e e e e e e e 9-6
APPENDIX A: GLOSSARY OF TERMS . & & v v v ¢ ¢ o v v e o v o e o o v o s A-1
APPENDIX B: SYSTEM HARDWARE DIAGRAM ¢« ¢« ¢« v v v 0 v v o o v o & B-1
APPENDIX C: ASSEMBLER INSTRUCTION SET e e e e e e e e e e C-1
APPENDIX D: ASSEMBLER INSTRUCTION CODING. . . . ¢ ¢ & v v v v v v o o & & D-1
APPENDIX E: ASCII TABLE . . & & & v v vt e e e e e o s e o e o s o e o e E-1
APPENDIX F: TABLE OF TOKENS AND ATTRIBUTES. . . « v v v ¢ v ¢ 4 o v o o F-1
APPENDIX G: ERROR MESSAGES. « « v ¢« v v v v e v v e e v e e e e G-1
APPENDIX H: PROGRAMMING HINTS AND ADDENDA ¢« v v ¢« v ¢« v v o o & H-1
INDEX . . o . e I-1

vii

NOTES

viii

INTRODUCTION

This manual outlines the commands, statements, instructions and use of both the
HP-83/85 Assembler ROM and the HP-82928A System Monitor. The manual is not
tutorial in nature and it assumes that you already have at least some knowledge
of programming in assembly language. If you are not already familiar with the
HP-83 or HP-85 Personal Computer, you should read the owner's manual before
proceeding.

The HP-83/85 contains both read-only memory (ROM) and read-write or random-
access memory (RAM). The RAM contains the user's BASIC language programs and
data, and can also contain a binary (machine language) program. The ROM con-
tains the machine language program which recognizes and executes the statements
provided by the BASIC language. Thus, the operating system ROM in the HP-83/85
provides such statements as PRINT, DISP, and INPUT.

When external peripheral devices are added, their wider range of capabilities
requires more extensive BASIC language statements to fully use these capabil-
ities. Additional plug-in modules, called add-on ROMs, merely enrich the BASIC
language by increasing the number of statements and functions that can be recog-
nized and executed. Similarly, a binary program within the computer also
extends the BASIC language.

THE ASSEMBLER ROM

Using the Assembler ROM, you can write assembly-language binary programs for
residence and execution within the computer or for creation of a plug-in EPROM
for the computer. A binary program can:

Extend the BASIC language:

--Provide new BASIC statements and system functions.
--Take over and redefine existing BASIC statements and functions.
--Expand I/0 control.

ix

Introduction

Give increased execution speed:

--Yield faster results.
--Speed up I/0 processes.

Redefine the system:

--Take over system "hooks," giving access to the HP-83/85 operating system.
--Implement languages other than BASIC.
--Redefine the use and operation of I/0.

A ROM program is written in virtually the same manner as a binary program--the
main difference is in how the program is used after assembly--and in this manual
both are often termed simply "binary programs."

When connected to an HP-83/85 Personal Computer, the Assembler ROM permits you
to enter and edit source code for binary programs right on the computer's CRT
screen. Automatic line numbering and cursor movement are active, and the source
code can be stored on a mass storage device such as a tape cartridge or disc,
listed, and edited in much the same way a BASIC program is stored, listed, and
edited. As source statements are entered, they are automatically checked for
syntax errors and duplicate labels.

At assembly time, the resulting object code (machine language) is stored on a
mass storage device such as a tape or disc. This object code can also be loaded
automatically or on command into the HP-83/85, and it is then ready to run.

To aid in programming, a tape cartridge and a disc are provided with the Assem-
bler ROM. Each of these contains a global file of HP-83/85 system labels and
their memory addresses for use during assembly. The tape and disc also contain
useful sample programs to help illustrate how binary programs are created.

The Assembler ROM gives you the ability to "tailor" statements for your own
applications, to speed up program execution, to perform sophisticated graphics.
But with all the power and system accessibility provided by the Assembler ROM,

Introduction

it is also possible to defeat the computer's internal safeguards and even
seriously damage the HP-83 or HP-85. For this reason, you should understand
assembly language programming before attempting to use the Assembler ROM.

THE HP-82928A SYSTEM MONITOR

The System Monitor is an optional plug-in module that is designed for use only
in conjunction with the Assembler ROM. The System Monitor is not required, but
it makes the debugging and modification of binary programs much easier.

With the System Monitor module attached, you can set breakpoints that interrupt
the execution of a program. After program execution has been interrupted, you
can examine or change the contents of memory, you can execute one instruction
at a time (single-step), or you can trace the operation of a machine language
program, printing the status of the CPU after each instruction.

SCOPE OF THIS MANUAL

This manual contains information about three separate products:
--The HP-83/85 Personal Computer and its operating system.
--The Assembler ROM.

--The HP-82928A System Monitor.

The manual has been written to help you most effectively use these three prod-

ucts together. If you are looking for information in a specific area, however,
you may want to refer to the manual sections as outlined below:

THE COMPUTER’S OPERATING SYSTEM

Manual Section Topic

3 CPU Structure and Operation
5 System Architecture and Operation
7 HP-83/85 System Routines

Appendix A Glossary of Terms

Appendix B Hardware Diagram

Appendix E ASCII Table

Appendix F Tables of Tokens and Attributes

Xi

Introduction

THE ASSEMBLER ROM

Manual Section Topic
Introduction
1 Getting Started
2 Assembler Commands and Statements
4 HP-83/85 Assembler Instructions
6 Writing Binary and ROM Programs
8 Sample Binary Programs
Appendix C Assembler Instructions
Appendix D Decoding Assembler Instructions
Appendix G Error Messages

THE SYSTEM MONITOR

Manual Section Topic
1 Getting Started
9 The HP-82928A System Monitor

SYNTAX GUIDELINES

The syntax used in this manual for illustrating commands, statements, and
instructions is shown here:

L.DB Instructions shown in capital letters, but not underlined, must be
entered exactly as shown (in either upper-case or lower-case letters).

DR Items shown underlined are expressions or names that must be specified
in the instruction, statement, or command.

[1] Items shown between brackets are optional. If several items are
stacked between brackets, any one or none of the items may be
specified.

Three dots (ellipsis) following a set of brackets indicate that the
jtems between the brackets may be repeated.

xii

Introduction

A11 values for registers and addresses in this manual are octal values. Other
values (numbers, quantities, etc.) are given in decimal base unless otherwise
noted.

xiii

NOTES

Xiv

SecTioN 1

GETTING STARTED

When shipped from the factory, the HP-83/85 Assembler ROM package comprises the
following items:

--HP-83/85 Assembler ROM, part number 00085-15007.

--HP-85 Assembler Global File tape.

--HP-83 Assembler Global File disc.

--HP-83/85 Assembler ROM Manual, part number 00085-90444.

--HP-83/85 Assembler ROM Pocket Guide, part number 00085-90445.

To use the Assembler ROM, you will need at least the following:
--HP 82936A ROM Drawer

AND

--HP-83 Personal Computer with Flexible Disc Drive

OR

-~-HP-85 Personal Computer with or without Disc Drive attached.

In addition, to help you write and de-bug binary programs with the Assembler
ROM, you may also wish to obtain the HP-82928A System Monitor.

This manual gives installation and operation instructions for the HP-83/85
Assembler ROM and its global file, and also for the HP-82928A System Monitor.

ROM INSTALLATION

Install the HP-83/85 Assembler ROM in one of the six slots in an HP 82936A ROM
Drawer. The ROM drawer can then be plugged into one of the four module ports
in the rear of the computer. If you are unfamiliar with the procedure for in-
stalling a ROM and a ROM drawer, refer to the owner's manual for your computer,
or to the HP 82936A ROM Drawer Instruction Sheet for the proper procedure.

TAPE CARTRIDGE OR DISC INSTALLATION AND USE

To install the tape cartridge containing the global file and the example binary
programs into the HP-85 computer, follow the instructions in the HP-85 Owner's
Manual.

1-1

Getting Started

To install the disc containing the global file and sample binary programs, fol-
low the instructions in the owner's manual for the Flexible Disc Drive.

As part of the process of assembling a binary program, the object code is stored
on a mass storage device such as a tape or disc. If, as will probably be most
convenient, you wish to use the global file tape cartridge for this purpose,
make sure that the tab on the cartridge is set to RECORD.

Here is a 1list of the files available on the global file tape and disc. Files
with names ending in "S" are source code files. Files with names ending in "B"
are binary program object code files. (The file GLOBAL is an ASCII data file
containing the assembled global file.)

FTOCS
Example program: Fahrenheit to Celsius.
FTOCB
GCURS
Example program: Implements a graphics cursor.
GCURB
SOFTKS
Example program: Special function keys as typing aids.
SOFTKB
UDL$S
Example program: Underlines a string.
UDL$B
RECPLS
Example program: Rectangular/polar conversions.
RECPLB
ROMPRS } Example program: Rectangular/polar conversions.
ROMPRB (Written for a ROM.)
GLO1S
Global file in source code. (Two parts.)
GLO2S
GLOBAL Global file.

1-2

Getting Started

SYSTEM MONITOR INSTALLATION

The HP-82928A System Monitor is installed in one of the four module I/0 ports of
the HP-83 or HP-85. To install the System Monitor, follow the instructions in
the owner's manual for your computer.

The System Monitor is not required for use of the Assembler ROM.

ASSEMBLER ERRORS

The Assembler ROM and the System Monitor contain some error messages of their
own. A complete list of these error messages and their causes may be found in
appendix G of this manual.

Because of the ability of binary programs to take over internal HP-83/85
routines and to defeat safeguards within the computer, it is possible to phys-
ically damage the computer without halting execution or even generating an
error. For example, a flawed binary program could hold the print head element
on and burn it out, or it could run the magnetic tape in an HP-85 tape cartridge
off the end of the spool. For this reason, you should be extremely careful as
you write and run binary programs, particularly if your programs take over any
of the internal printer or tape routines.

CAUTION
If during the running of a binary program the print head
appears to be "locked up" or an HP-85 tape cartridge begins
to unspool, shut off the computer's power switch immediately.

1-3

NOTES

1-4

SECTION 2

ASSEMBLER COMMANDS, STATEMENTS, AND FUNCTIONS

When the Assembler ROM is attached to the HP-83 or HP-85, it provides:
--Assembler commands

--Assembler statements and functions

--Assembly language elements

The commands and the statements and functions provided by the Assembler ROM are
added to the functions, statements and commands that are already part of the com-
puter's instruction set. They are executed exactly as the rest of the computer's
instruction set, and have been created to help the programmer control and use the
assembler.

Assembly language elements are used as the actual instructions in writing binary
programs. The format and use of these elements are discussed in section 4 of
this manual, and a complete Tist of them may be found in that section and in
appendix C.

ASSEMBLER COMMANDS

A command is non-programmable, and can be executed only from the keyboard (i.e.,
in calculator mode). The assembler commands permit the user to transfer between
assembler and BASIC system modes, to assemble, store and load binary program
source code, and to find labels within the source code in memory.

Assembler commands may be entered as normal calculator mode statements, alone on
a line and terminated by [END LINE]. In addition, in assembler mode, the com-
puter's special function keys and certain other keys will generate the assembler
commands as follows:

2-1

Assembler Commands, Statements, and Functions

Key Assembler Command

[LOAD] ALOAD

[RUN] ASSEMBLE

[STORE] ASTORE

[K1] BASIC

[K2] FLABEL

[K3] FREFS
ALOAD Assembler Command
Load Source Code
Format: ALOAD "file name"

Description: Legal only in assembler mode. Loads source code that was previ-
ously stored with the ASTORE command into the computer's memory
from the file specified on the currently-selected mass-storage
device. The file must be of the type known as "extended" (****),

In assembler mode, the [LOAD] key is a typing aid for the word
ALOAD.

Example: ALOAD "OXY"

NOTE
The "extended" type of file, denoted by **** on
the directory of a mass storage device, does not
necessarily mean that the file contains source
code. In fact, other HP-83/85 firmware and soft-
ware may generate extended type files.

2-2

ASSEMBLE

Assembler Commands, Statements, and Functions

Assembler Command

Assemble Source Code

Format:

Description:

ASSEMBLE "file name" [, numeric value]

Legal only in assembler mode. Assembles source code currently in
the computer's memory and stores it in the file specified by file
name on the currently selected mass storage device (e.g., tape or
disc). The assembled source code is stored as either a binary
program or, if the file has been declared a ROM or global file, as
a series of strings in a data file.

If at assembly numeric value is evaluated as zero, the binary

program currently in the computer's memory is scratched, and the
object code of the newly-assembled binary program is loaded from
the mass storage device into memory. Default numeric value is
evaluated as zero.

If at assembly numeric value is other than zero, any binary program

currently in memory remains inviolate, and the object code of the
newly-assembled binary program is stored only on the current mass
storage device.

In assembler mode, the [RUN] key is a typing aid for the word
ASSEMBLE.

CAUTION
If a program contains an error or if programs are
linked at assembly, this command can destroy the
source code; if the source code is to be saved on
a mass storage device such as a disc or tape car-
tridge, it should be stored there before typing
ASSEMBLE.

Assembler Commands, Statements, and Functions

Examples:

ASSEMBLER

ASSEMBLE "CENT" Assembles source code into object code, stores
object code as a file named CENT on the tape cartridge or disc,
and performs a LOADBIN "CENT" to load the object code.

ASSEMBLE "OXY", 3 Assembles source code into object code and

stores object code as a file named OXY on the tape cartridge or
disc.

Assembler Command

Switch to Assembler Mode

Description:

Legal only when the computer is in normal system mode, this com-
mand scratches memory and puts the computer into assembler mode.

In assembler mode, most normal BASIC statements will still operate,
but only as calculator mode statements--they are not programmable.
Source code for a binary program can then be typed in with line
numbers, just as a BASIC program is typed in while in normal sys-
tem mode (but with only one instruction per line). Unlike its
operation in normal system mode, the computer is somewhat sensitive
to character spacing while in assembler mode. Auto line numbering,
screen editing, listing, etc., are all functional. The [CONT],
[STEP], and [INIT] keys are inoperative in assembler mode; in this
mode the [RUN] key acts as a typing aid for the word ASSEMBLE.

Displays the word Ready when executed.

2-4

ASTORE

Assembler Commands, Statements, and Functions

Assembler Command

Store Source Code

Format:

Example:

BASIC

ASTORE "file name"

Legal only in assembler mode. Stores the source code currently in
the computer's memory into the specified file on the currently-
selected mass storage device (e.g., tape or disc). File is of the

type known as "extended," shown in the directory as ****,

In assembler mode, the [STORE] key is a typing aid for the word
ASTORE.

ASTORE "OXY"

Assembler Command

Switch to BASIC Mode.

Format:

Description:

BASIC

Legal only when in assembler mode, this command scratches memory
and puts the HP-83/85 back into normal BASIC mode.

Displays the word Ready when executed.

In assembler mode, special function key [K1] acts as a typing aid
for the word BASIC.

2-5

Assembler Commands, Statements, and Functions

FLABEL
Find Label

Format:

Description:

Examples:

FREFS

Assembler Command

FLABEL "label™

Legal only in assembler mode. This command searches through the
source code in memory for the label specified. For each occur-
rence of the label (as a label at the beginning of a line) the

line is listed. After an FLABEL command has been executed, pressing
the [LIST] key causes the source code to be listed, beginning with
the last Tine where the label occurs.

In assembler mode, special function key [K2] may be used as a
typing aid for the word FLABEL.

FLABEL "SIN"

FLABEL "PARSIT"

Assembler Command

Find References to Labels

Format:

Description:

Examples:

FREFS "label"

Legal only in assembler mode. Searches through the source code
in memory for all occurrences, whether at the beginning of a line
or not, of the specified label. Otherwise operates the same as

FLABEL, including the operation of the [LIST] key.

In assembler mode, special function key [K3] acts as a typing aid
for the word FREFS.

FREFS "SIN"

FREFS "CENT"

2-6

Assembler Commands, Statements, and Functions

TREM Assembler Command
Toggle Remarks

Format: TREM

Description: Legal only in assembler mode. Toggles an internal flag to suppress
end-of-Tine comments and prevent them from appearing on the com-
puter's CRT when source code is listed. Default condition is that
end-of-line comments are not shown on the CRT. Because end-of-
line comments can wrap around on the CRT, this command can make
the CRT display of source code more easily readable.

ASSEMBLER STATEMENTS AND FUNCTIONS

Statements and functions are programmable BASIC language elements. The statements
and functions provided by the Assembler ROM are simply additions to the BASIC
language of the HP-83/85 computer. As with all BASIC statements and functions,
they may be used either in calculator mode or as part of a BASIC program when the
HP-83/85 is in normal BASIC system mode. When the computer is in assembler mode,
of course, all BASIC statements and functions may be executed only from the key-
board (i.e., as calculator mode statements).

DEC Assembler-Provided BASIC Function
Octal to Decimal

Format: DEC (octal numeric value)

Description: Returns the decimal equivalent of the specified octal value.

Example: DEC (377) Returns 255, the decimal equivalent of 3778.

2-7

Assembler Commands, Statements, and Functions

MEM

Memory Dump
Format:

Description:

Examples:

Assembler-Provided BASIC Statement

MEM address [:ROM #] [.# of bytes] [=#.#, ...]

Dumps the contents of computer RAM or ROM memory to the current
CRT IS device beginning with the octal address. Continues dumping
for the specified octal [,# of bytes]. At power-on, default

of bytes is 1008; otherwise, default is the last # of bytes
specified.

The [:ROM #], if included, is a decimal value that selects the
plug-in ROM from which memory is dumped. At power-on, default
value for ROM # is 0; otherwise, default is the last ROM #
specified.

The output is in two forms: The first shows the octal representa-
tion of the bytes in memory; the second shows the ASCII represen-
tation of the bytes.

If =#,# is included in the statement, memory is not dumped, but
instead the contents of memory locations beginning at address are
changed to the octal values specified after the = sign. The mem-
ory locations must be in RAM (32K-64K). The contents of one
succeeding memory location are changed for each value specified
after the = sign. The # of bytes, if included in the statement,
is disregarded in this case.

MEM 103300 Dumps contents of 1008 bytes of memory to the CRT IS
device, beginning with memory location 103300.

MEM 103300, 20 Dumps contents of 208 bytes of memory to the CRT
IS device, beginning with memory location 103300.

MEMD

Memory Dump

Format:

Description:

Example:

Assembler Commands, Statements, and Functions

MEM 60200: 40,200 Dumps contents of 200 bytes of Assembler ROM
(ROM # 40) to CRT IS device, beginning with memory location 60200.

MEM 105000 = 0,0,0,15 Loads memory locations 105000, 105001, and

105002 with zeros, and loads location 105003 with 158.

Assembler-Provided BASIC Statement

MEMD address [: rom#] [,# of bytes] [=#,#,...]

Same as MEM statement, except it reads the contents of two bytes of
memory beginning with address and uses those contents as the actual
address at which to begin the dump.

MEMD 101233 Dumps contents of 100 bytes of memory to current CRT
IS device beginning with Tocation pointed to by value in bytes
101233 and 101234. (Since address 101233 is the address of BINTAB,
this statement actually dumps the first 100 bytes of a binary pro-
gram, if one is resident.)

2-9

Assembler Commands, Statements, and Functions

REL Assembler-Provided BASIC Statement
Relative Address

Format: REL (octal address)

Description: Returns the absolute address of a relative address. Takes the
relative octal address and adds to it the address (called BINTAB)
of the beginning of the binary program to yield the octal absolute
address. May be used alone or with MEM. May also be used
with command BKP if HP-82928A System Monitor is attached.

Examples: REL (0) Returns address of the beginning of the binary program
(i.e., the contents of BINTAB).

MEM REL (123), 100 Dumps contents of 1008 bytes of memory to the
CRT IS device, beginning with the 123rd byte of the binary program.

BKP REL (675) Sets break point at byte 675 after the beginning of
the binary program. (BKP is available only with the HP-82928A
System Monitor attached.)

SCRATCHBIN Assembler-Provided BASIC Statement
Scratch Binary Program

Format: SCRATCHBIN

Description: Scratches the current binary program from computer memory, without
affecting anything else. Nothing can follow SCRATCHBIN on a line
except [END LINE].

Assembler Commands, Statements, and Functions

OCT Assembler-Provided BASIC Statement
Decimal to Octal

Format: OCT (decimal numeric value)

Description: Returns the octal equivalent of the specified decimal value.

Example: OCT (45) Returns 55, the octal equivalent of 45,0

NOTES

SECTION 3

CPU STRUCTURE AND OPERATION

This section explains the structure, addressing modes and operation of the cen-
tral processing unit (CPU) in the HP-83/85.

The HP-83/85 CPU consists of a 64]0-byte register bank, a pair of address
pointers called the address register pointer (ARP) and the data register pointer
(DRP), an arithmetic and Togic unit (ALU) and a shifter, and a set of status
indicators.

Register Bank E

ARP

DRP D LSB
Status
L —_— Indicators

CENTRAL PROCESSING UNIT

3-1

CPU Structure and Operation

ARP AND DRP

The address register pointer (ARP) and the data register pointer (DRP) are inde-
pendent six-bit CPU Tocations. Both the ARP and the DRP can be used to address
any of the bytes in the CPU register bank.

The CPU register addressed by the ARP 1is called the address register, or AR. The
register addressed by the DRP is called the data register, or DR.

CPU REGISTER BANK

The heart of the CPU is the register bank of 64 8-bit bytes of random-access
memory. These bytes form registers which are grouped into two-byte (16-bit) sec-
tions and eight-byte (64-bit) sections. The diagram on the following page shows
the organization of the CPU registers, which are numbered from 0 to 778, and
specified by Rp - R77.

Some of the registers in the CPU register bank are dedicated by hardware to
specific tasks.

HARDWARE-DEDICATED REGISTERS

The first 404 registers of the CPU (R - R37) are divided into two-byte (16-bit)
sections. Of these, many of the bytes are reserved by hardware for use as
special-purpose registers. These hardware-dedicated registers are:

Register Bank Pointer. Register 0 is a pointer to the remainder of the CPU
register bank. Register 1 is inaccessible except through register 0.

Index Scratch. Registers 2 and 3 are scratch registers used for indexed address-

ing (X). Their contents are destroyed by execution of instructions using indexed
addressing.

Program Counter. Registers 4 and 5 contain the program counter (PC).

CPU Structure and Operation

CPU Pointer

0

1

2 X
3 X
4 PC
5

6

7

______PC
Subroutine RTN SP
Subroutine RTN SP

-«—— Boundary

23 Usually used for
24 addresses.

30 2-Byte
Section

DRP —_— 34

ARP —_— 46

Usually used for
floating point
| numbers.

63 8-Byte
64 Section

CPU REGISTER BANK

3-3

CPU Structure and Operation

Return Stack Pointer. Registers 6 and 7 contain the pointer for the subroutine
return stack. (The space allocated for this stack in the computer's system mem-
ory comprises addresses 101300 through 101777, although sometimes these addresses
may be used for other purposes.)

In addition to the special-purpose registers described above, certain other CPU
registers are commonly used for specific purposes by internal HP-83/85 routines.
(For example, registers R40 and R50 are used by internal mathematics routines for
addition, subtraction, etc.)

REGISTER BOUNDARIES

The CPU registers are separated by boundaries, shown as heavy lines in the illus-
tration of the register bank above. In the first 32 bytes, there is a boundary
every two bytes. In the next 32 bytes, there is a boundary every eight bytes.

This partitions the first 32 bytes into 16-bit sections (used primarily for
address manipulation) and the next 32 bytes into 64-bit sections (used primarily
for floating point quantities). The register array is, therefore, capable of
holding up to four floating-point numbers and twelve 16-bit addresses.

MULTI-BYTE OPERATIONS

The HP-83/85 CPU structure permits "multi-byte operations,” involving a string of
bytes rather than just a single byte. A string can consist of from one to eight
consecutive CPU registers. The exact number is determined by the DRP and the
next boundary.

The locations involved in a multi-byte operation are those beginning with the
location pointed to by the DRP and ending with the next boundary. The next
boundary is the one in the direction of increasing addresses (except in the case
of a shift right instruction.)

CPU Structure and Operation

The following examples should help explain this concept:
--A multi-byte increment with DRP set to 70 (that is, executing ICM R70) results

in an increment of the 64-bit quantity stored between locations R70 and R77.
Higher addresses always refer to more significant bytes.

DRP

— 00 Fo
0 R
00

7 s
0 R
I
;/////////// A6

R77

Boundary ——p

--A multi-byte test with DRP set to 44 (that is, executing TSM R44) results in
the status flags being set according to the data found in registers R44, R45,
R46 and R47. Location R47 is the most significant byte.

R40

R41

R42
DRP R43

— 00 ™
0 M

;///////////A Ras

Boundary ———»

3-5

CPU Structure and Operation

--A multi-byte complement with DRP set to 37 (that is, executing TCM R37) com-
plements only R37.

R34

R35

DRP R36
Boundary —

The only exception to the rule that the next boundary is in the direction of
increasing addresses is the shift right instruction. If a multi-byte instruc-
tion is a shift right, then the next boundary is the one in the direction of
decreasing addresses.

Thus:
--A multi-byte shift right with DRP set to 31 (that is, executing LRM R31) shifts
the combined contents of R31 and R30 right. R31 is the most significant byte.

R26
R27

Boundary —— .
DRP /45 R30

| — Lz R

SINGLE-BYTE OPERATIONS

Besides executing multi-byte instructions, the HP-83/85 CPU also executes in-
structions using single bytes. In a single-byte operation, the DRP refers to
only a single byte.

TWO-OPERAND OPERATIONS

Two-operand multi- and single-byte instructions may also be executed.

CPU Structure and Operation

In the

case of a multi-byte two-operand instruction, DRP points to the first operand
and ARP points to the second. DRP is still used to determine the number of
bytes involved for the first operand. The other operand consists of the same

number of bytes, beginning with the location to which the ARP points.
example:

For

--A multi-byte add with DRP set to 60 and ARP set to 50 (that is, executing ADM
R60, R50) results in the 64-bit quantity starting with R50 being added to the
64-bit quantity starting with R60. The sum is stored in R60 through R67.

ARP

| —

DRP

0
w4

R50

3-7

/422?;4 R51
7] R
) v
) R
W RS
N R60 — |\
nmimgy A 00000
niliiny Rz v
Ry s 20 44
Ny A w
nmiiny #es 0000
Mg s 00000
§§§§§§§§§§§§§§ R67 ;%ZZZZZ%ZZ&Z&ZZZ

R60
Ré61
R62
R63
R64
R65
R66
R67

CPU Structure and Operation

--A multi-byte Toad with DRP set to 74 and ARP set to 11 (that is, executing LDM
R74, R11) transfers the contents of four bytes beginning with R11 to locations
R74, R75, R76 and R77.

ARP R10

7 e

777 "

R15

R70
R71

R72
DRP R73

|— 77
7 s

W e

3-8

CPU Structure and Operation

--A multi-byte store with DRP set to 74 and ARP set to 11 transfers the contents
of R74 through R77 to the four consecutive locations beginning with RI1.

ARP

——>7///////%

7
A,

A,

DRP

N—V 777

00

0000
v

R10
R11

R12
R13

R14
R15

R70
R71
R72
R73
R74
R75
R76

R77

Remember: The number of bytes in a multi-byte operation is always determined by

the setting of DRP (not ARP) and the next boundary.

There are also two-operand operations where the DRP points to one operand and

the second is located in the computer's memory.

to be operated upon is determined by the DRP.

Once again, the number of bytes

The corresponding number of bytes

are accessed from memory beginning with the calculated effective address.

3-9

CPU Structure and Operation

NUMBER REPRESENTATION

Numbers in the HP-83/85 are manipulated in a variety of formats. The user has
the option of specifying quantities as octal, BCD or decimal. In addition, the
internal quantities used in the HP-83/85 occur in various formats, depending on
their use.

ADDRESSES

An address, whether in the CPU register bank or in system memory, is always an
octal value that occupies two bytes, or 16 bits. The lower-numbered byte con-
tains the less significant byte of the address, and the higher-numbered byte
contains the more significant byte of the address. Only the first byte of the
two-byte address is referenced by other instructions.

For example, address 177405, translated into a binary quantity, appears like
this:

1 7 7 4 0 5 } Octal Representation
1 111 111 100 000 101 } Binary Representation

When this binary quantity is split into two eight-bit registers, it appears as:

11 11 111 00 000 101 Binary Quantity
3 7 7 0 0 5 Register Contents

Only the first byte of the two-byte address is referenced by other instructions,
so an address pointing to ROM location 177405 from the CPU might look like this:

ARP

I 0 0 5 R32

CPU Structure and Operation

NUMERIC QUANTITIES

Numeric quantities in the HP-83/85 may be of three types: Real, short, and inte-
ger. The following illustration shows how numeric quantities are represented
internally in the computer. For the illustration, the numbers are shown in CPU
registers R40 - R47.

Real Integer Short
40 E1 E2 45 D1 DO 44 EO E1
41 EO MS 46 D3 D2 45 M3 M4
42 M10 M1t 47 S D4 46 M1 M2
43 M8 M9 47 |0 0 SM SE Mo
44 Mé M7
45 M4 M5
46 M2 M3
47 MO M1

FORMATS OF NUMERIC QUANTITIES

In real or floating-point format, the mantissa is a 12-digit quantity expressed
as a magnitude. Each digit consists of four bits. The least significant digit,
represented by MI1, is stored in R42. The most significant digit, represented by
M@, is stored in R47. The number is normalized; thus, there is an implied decimal
point between Mp and M1 in R47. The sign of the mantissa is stored in the least
significant digit of R41. A zero is stored as the sign of the mantissa if the
number is positive; otherwise, a nine is stored. The exponent is a three-digit
number stored in R40 and in the most significant digit position of R41. Expo-
nents are expressed in ten's complement form.

Integer variables are stored in three bytes, with five digits and a sign. Short

variables are stored as a mantissa sign (SM) an exponent sign (SE), five mantissa
digits, and a two-digit exponent.

3-11

CPU Structure and Operation

STATUS INDICATORS

The HP-83/85 CPU contains eight flags and a four-bit register for program status.
The flags signal the present condition of the data, while the four-bit register
serves as an "extended" register for counting and data manipulation.

Status can affect or be affected by CPU instructions. In the HP-83/85 CPU, the
instruction set has data movement instructions of both the arithmetic and non-
arithmetic types. These instructions include:

--Arithmetic: Add, subtract, compare, increment, decrement, complement.

--Non-arithmetic: Load, store, logical and, or, exclusive or, shift, clear, test.

The following status indicators are present in the HP-85 CPU:

E: Extend Register. A four-bit register which can be cleared, incremented, or
decremented independent of DCM. Shifts can be made into and out of the
extend register only when DCM is set.

DCM: Decimal Mode Flag. When set, binary-coded decimal (BCD) operations will
be performed. When cleared, binary operations will be performed. The
operations affected by DCM are all the arithmetic data movement instruc-
tions and the shift instructions. The DCM flag can be modified only by
two CPU instructions, BCD and BIN. The BCD instruction sets DCM, while
the BIN instruction clears DCM.

CY:

OVF:

LSB:

CPU Structure and Operation

Carry Flag. This one-bit register can be shifted into and out of when DCM
is cleared (i.e., BIN mode). It is loaded with the carry from the most
significant bit (MSB) according to the table shown here:

CPU Instruction Carry Flag
Add CY set according to carry of add.
Subtract CY set if result is positive, cleared if result is
negative.
Compare Same setting as for subtract.
Increment CY set as for add.
Decrement CY set as for subtract.
Shift CY loaded with bit shifted out, if in binary mode.

(Right shift loads CY from LSB.)

Complement CY cleared by nine's complement, set by ten's com-
plement, if contents of data register (DR) were
zero.

A11 other data movement instructions clear CY.

Overflow Flag. The overflow flag is set whenever the result of a binary

arithmetic operation exceeds the maximum positive or negative number that
can be contained in the destination register. This can occur as the result
of a compare, binary add, binary subtract, binary complement, or binary
left shift instruction. Thus, an arithmetic data movement instruction or

a left shift with DCM cleared affects OVF; all other data movement instruc-
tions clear OVF. The remaining instructions do not affect OVF.

Least Significént Bit Flag. LSB is set the same as the least significant

bit (LSB) of the result of each data movement instruction.

CPU Structure and Operation

MSB:

LDZ:

RDZ:

Most Significant Bit Flag. MSB is set the same as the most significant bit
(MSB) of the result of each data movement instruction.

Zero Flag. Z is set if a data movement instruction produces a result of
all zeros. If the result is not all zeros, Z is cleared. Other instruc-
tions do not affect Z.

Left Digit Zero Flag. LDZ is affected only by data movement instructions.
LDZ is set if the most significant nibble (four bits) of the result is 0000.
If the most significant four bits are not 0000, LDZ is cleared.

Right Digit Zero Flag. RDZ is affected only by data movement instructions.
RDZ is set if the least significant nibble (four bits) of the result is
0000, regardless of the setting of DCM. If the most significant four bits
are not 0000, RDZ is cleared.

Status information is based on the entire single or multi-byte quantity that is
processed. The figure below illustrates status on a three-byte quantity.

MSB LSB
E €«—
CY«— |7 6543210 76543210 76543210
OVF #——
Nt et . ——
LDZ RDZ
ZERO

MULTI-BYTE STATUS

A1l multi-byte operations except right shift start execution with the least sig-
nificant byte. A1l status flags except LSB, RDZ, and DCM are updated after each
byte of an operation, and therefore will be correct whenever the memory boundary
is reached. The LSB and RDZ flags are set only for the first byte.

CPU Structure and Operation
For a shift right instruction, where the shift is from the most significant byte

to the least significant, the MSB and LDZ flags are set only for the most signif-
icant byte; the rest are updated after each byte.

For a complete 1list of all CPU instructions and their relationships to status
indicators, refer to section 4 and appendix C.

3-15

NOTES

SECTION §

ASSEMBLER INSTRUCTIONS

The HP-83/85 Assembler instructions can manipulate data in the HP-83 or HP-85
central processing unit, and through the CPU, in HP-83/85 RAM as well.

Assembler instructions are of two types: Instructions and pseudo-instructions.
Instructions operate directly on the CPU and during assembly are translated
directly into machine language object instructions. They are specified by means
of opcodes. Pseudo-instructions are entered in the same way as CPU instructions,
but they are actually messages to the Assembler ROM. They are specified by means
of pseudo-opcodes.

ENTERING INSTRUCTIONS AND PSEUDO-INSTRUCTIONS

Source code is typed into the CRT by entering the line number, followed by a
label (if any), followed by the opcode, followed by the address or operand, if
required, followed by a comment (if any). When [END LINE] is then pressed, the
line is parsed and the elements are assigned to their respective fields on the
CRT.

1-4 characters 1-6 characters

Line Number Label I Opcode Operand/Address J Comment

|

Sp:ce Spéce Space

SOURCE CODE INSTRUCTION FORMAT

In assembler mode, the HP-83/85 is sensitive to spacing among the elements of a
line of source code. For example:

Assembler Instructions

thtggiment entered to After parsing appears as:
e as.:
&0 LEL LDMD R70,R40
%) tﬁte%nﬁgbiﬂﬁa’jﬁ? 70 Label JSB =NUMVAL
80 FUBD RS52,+R12
80 PUBD R52,+R12 - o
99 PUBD 52,+12 9‘:’_ FUBD RS2, +R12
1990 CLB R40 !THIS IS A COMMENT 100 CLEB R40

'THIS I8 A COMMENT

t !

Label Opcode Operand or
Field Field Address Field

LINE NUMBERING

Each 1ine of binary program source code must begin with a line number. These
line numbers may be entered individually, or automatic line numbering may be
specified with the [AUTO] key.

These line numbers are useful for entering and editing a binary program, but do
not correspond to the addresses of the machine language object code that is
generated during assembly.

LABELS

No spaces or one space may be typed between the line number and the label field.
A label is optional, and may be from one to six characters. A label cannot have
a digit as the first character, nor a space as any character; one or more spaces
denote the end of the label.

When a label has been entered and parsed, it appears in a label field on the
CRT or printer. This field begins in the second character space to the right of
the Tine number.

OPCODES AND PSEUDO-OPCODES

The opcodes and pseudo-opcodes for assembly language instructions may be entered

after typing at least two spaces after the line number or at least a single space
after a label. Entries in the opcode field are restricted to valid instructions

and pseudo-instructions. Blanks are not allowed within the opcode field.

Assembler Instructions

When an opcode or pseudo-opcode has been entered and parsed, it begins in the
field nine spaces to the right of the line number.

Opcodes (but not pseudo-opcodes) may be either single-byte (specified by a "B")
or multi-byte (specified by an "M").

OPERANDS OR ADDRESSES

Depending upon the format of the instruction, the operand or address field may
specify one or more of the following:

--Data Register. A CPU register which may signify single-byte or multi-byte
operation.

--Operand. May be a CPU register or a memory location. Depending on the ad-
dressing mode, memory can be addressed immediately, indirectly, or by an index.

--Register Pointer. Constant used to load ARP or DRP.

--Label. A label to specify an address or constant.

--Nothing. Some instructions do not require an entry in this field.

An AR or DR in the CPU is specified by an "R" before the register number (e.g.,
R32), or by an "X" before the register number when indexed addressing is used.
The "R" may be omitted when CPU register numbers are typed, since the assembler
inserts a missing "R" automatically. The "X" must be typed to indicate register
numbers for indexed operations.

COMMENTS

A comment or remark must begin with an exclamation point. A comment must be
typed beginning in the first or second space after the line number, or beginning
one or more spaces after the other elements of the line of source code.

After being parsed, a comment which has been entered immediately following the
other elements of the line begins in column 33; thus, on the HP-83/85 CRT it
appears on the following line. A peripheral printer with a column width greater
than 32 can permit a comment to appear on the same line as the source code
statement.

4-3

Assembler Instructions

NUMERIC VALUES

Numeric values can be entered in octal, BCD or decimal notation. A BCD value is
entered by immediately following the value with a "C," while a decimal value is
followed by a "D;" otherwise the assembler assumes octal values.

Example: LDM R45,=31, 19C, 25D Loads the same bit pattern into registers R45,
R46 and R47.

Registers can be specified by octal values only.

SYNTAX AND SYMBOLS USED

The following shows the syntax guidelines once again and also includes a Tist of
the symbols used in the descriptions of assembler instructions.

LDB Instructions shown in capital letters, but not underlined, must be
entered exactly as shown (in either upper-case or lower-case letters).

Items shown underlined (e.g., DR) are expressions or names that must be
specified in the instruction, statement, or command.

[] Items shown between brackets are optional. (e.g., CMB[D] indicates
there is a CMB instruction and also a CMBD instruction available.) If
several items are stacked between brackets, any one or none of the

items may be specified.

Three dots (ellipsis) following a set of brackets indicate that the
items between the brackets may be repeated.

“ Is transferred to.
() Contents of.

Complement (e.g., x is complement of x). This is one's complement if
DCM=0 and nine's complement if DCM=1.

B/M

1>

ARP

DRP

R(x)

M(x)

PC

SP

EA

ADR

Assembler Instructions

Single-byte or multi-byte instruction. |

Address register location--Tocation of first byte addressed by ARP.
Can be a register (e.g., R32), R* or R#.

Data register location--location of first byte addressed by DRP. Can
be a register (e.g., R32), R* or R#.

Address mode for load/store. Can be blank (for immediate), D (for
direct), or I (for indirect).

Address Register Pointer. A 6-bit register used to point to one of 64
CPU registers. The byte to which ARP points is often used as the first
of two consecutive bytes forming a memory address.

Data Register Pointer. A 6-bit register used to point to one of 64 CPU
registers. The location to which DRP points is often used as the des-
tination for data loaded into the CPU.

CPU register addressed by (x).

Memory location addressed by (x). (x) must be a 16-bit address.

Program Counter. CPU registers R4 and R5. Used to address the instruc-
tion being executed.

Subroutine Stack Pointer. CPU registers 6 and 7. Used to point to the
next available location on the subroutine return address stack.

Effective Address. The location from which data is read for load-type
instructions or the location where data is placed for store-type
instructions.

Address. The two-byte quantity directly following an instruction that

uses the Titeral direct, Titeral indirect, index direct or index indi-
rect addressing mode. This quantity is always an address.

4-5

Assembler Instructions

The following pages show the HP-83/85 Assembler ROM instructions that are used to
manipulate the CPU and external memory. These instructions are illustrated in an
abbreviated form in this section; for a complete list of all forms of each in-

struction, refer to appendix C.

Also contained in this section are the Assembler ROM pseudo-instructions.

LOAD/STORE INSTRUCTIONS

The instructions for loading and storing data have access to all eight addressing
modes, and they can be single-byte or multi-byte.

LD
Load

Format:

Operation:

Description:

ST

Store

Format:

Operation:

Description:

CPU Instruction

LDBA DR, operand Single byte
LDMA DR, operand Multi-byte
DR«(EA)

Data register is loaded with the contents of the effective address
determined by the operand and the addressing mode.

CPU Instruction

STBA DR, operand Single byte
STMA DR, operand Multi-byte
(DR)~EA

Contents of data register are stored in effective address deter-
mined by the operand and the addressing mode.

4-6

Assembler Instructions

ADDRESSING MODES

The HP-83/85 CPU allows for several addressing modes. These include literal,
register, indexed and stack modes of memory access.

Not all addressing modes are available to all instructions. The load (LD) and
store (ST) instructions have access to all addressing modes except stack address-
ing, and they are used here for illustration: For a list of the addressing modes
available to any particular instruction, consult the description of that instruc-
tion in this section or in appendix C.

In addressing, all addresses are referred to as two-byte quantities. Because all
addresses are two consecutive bytes, only the first byte of the sequence is ref-
erenced. For instance, the AR is actually a single byte within the CPU register
bank that is pointed to by the ARP. When the AR is described as being an address,
remember that R (ARP) contains the low byte of the address and R (ARP + 1) con-
tains the upper byte of the address.

The multi-byte feature of the CPU allows data to be manipulated in quantities of
from one to eight bytes. Therefore, in the following descriptions, only the
address of the first byte of data is specified. As explained earlier, the number
of bytes is determined by the distance of the DR from the next consecutive
boundary.

In the following descriptions, the effective address (EA) points to the first
byte of data to be loaded for load instructions.

For store instructions, EA points to the location where the first byte of data
is stored.

REGISTER MODE

The first category of addressing is the register addressing mode. This mode
allows the CPU registers (64]0 bytes) to be used as addresses as well as for
data. There are three levels of register addressing modes.

4-7

Assembler Instructions

REGISTER IMMEDIATE

Format: Opcode B/M DR, AR
Effective
Address: AR

Description: The operand is another CPU register (single or multi-byte) begin-
ning at AR. Thus, the AR is the source for load instructions or
the destination for store instructions.

CPU Register Bank

DRP

REGISTER IMMEDIATE ADDRESSING

Examples: LDB R36, R32 Loads contents of R32 into CPU register R36.

STM R40, R50 Stores contents of registers R40 through R47 ‘into
registers R50 through R57.

REGISTER DIRECT

Format: Opcode B/M D DR, AR
Effective
Address: M(AR)

Description: The effective address is a location in system memory that is
addressed by the AR. This mode is useful when using a CPU regis-
ter as a pointer to system memory.

4-8

Assembler Instructions

CPU Register Bank System Memory
ARP
| | — ar - . - EA
DRP -
| | —— or
REGISTER DIRECT ADDRESSING
Examples: LDBD R36, R32 Loads CPU register R36 with the contents of the

system memory location addressed by R32-R33.

STMD R40, R50 Stores contents of R40-R47 into system memory
beginning with location addressed by R50-R51.

REGISTER INDIRECT

Format: Opcode B/M I DR, AR
Effective
Address: M(M(AR))

Description: The address register points to a system memory location, which in
turn points to another memory location that is the effective
address.

Assembler Instructions

System Memory

CPU Register Bank

DRP
| ——> DR l - l

ARP
[—— AR =

— EA -
REGISTER INDIRECT ADDRESSING
Example: LDBI R36, R32 If R32 and R33 contain the address 105371, loads

CPU register R36 with the contents of the memory location that is
addressed by the contents of system memory locations 105371 and
105372.

LITERAL MODE

The second of the categories of address modes is the literal mode. In literal
mode, the operand is a literal quantity stored in memory immediately following
the opcode. A literal string can be:

--BCD constant, e.g., 99C, ..., 79C (5 10g bytes)

--Octal constant, e.g., 12, ..., 277 (< 10g bytes)
--Decimal constant, e.g., 201D, ..., 9D (s 108 bytes)

--Label (The Titeral quantity is a one- or two-byte value or address assigned
to the label.)

The programmer is responsible for ensuring that the number of bytes of the 1it-
eral string matches the DRP setting. The assembler does not check for mismatch.

Assembler Instructions

There are three types of literal addressing modes.

LITERAL IMMEDIATE

Format: Opcode B/M DR, = literal
Effective
Address: (PC+1)

Description: The operand is a literal string that, during assembly, is stored 1n‘
memory immediately after the instruction opcode. This mode is use-
ful for loading constants into the CPU register bank.

System Memory

CPU Register Bank
4 PC
> Instruction
5 PC
Literal EA
DRP
——— DR
LITERAL IMMEDIATE ADDRESSING
Examples: LDB R36, = 3D Loads 3]0 into CPU register R36.
LDM R40, = 0,0,0,0,0,0,0,120 Loads 1208 (i.e., a floating-point

5) into registers R40-R47.

LITERAL DIRECT

Format: Opcode B/M D DR, = label
Effective
Address: M(PC+1)

Assembler Instructions

Description:

DRP

The operand is a memory location that, after assembly, is addressed
by a two-byte literal quantity stored immediately after the instruc-
tion opcode. The label defines the two-byte Titeral quantity to be
used by the Assembler ROM.

System Memory

CPU Register Bank

Instruction
[w]/ 2o I

5 PC address

——— DR EA -

Examples:

LITERAL DIRECT ADDRESSING

LDBD R34, = ROMFL Loads the contents of the memory location
addressed by the label ROMFL into CPU register R34.

STMD R74, = CHIDLE Stores contents of CPU registers R74 through
R77 into four memory locations beginning with the location addressed
by the label CHIDLE.

LITERAL INDIRECT

Format:

Effective
Address:

Description:

Opcode B/M I DR, = label

M(M(PC+1))

The operand is a memory location that, after assembly, is addressed
by a two-byte memory location that itself is addressed by a two-byte
literal quantity stored immediately after the instruction opcode.
The label defines the two-byte literal quantity used by the Assem-
bler ROM.

CPU Register Bank

Assembler

System Memory

Instructions

Instruction

2-byte

Literal

2-byte

address

EA

Stores the contents of CPU register R30 into

the memory location addressed by another memory location which is
itself addressed by the two-byte literal quantity specified by the

. o /
5 PC
DRP
l — » DR
LITERAL INDIRECT ADDRESSING
Example: STBI R30, = ADDR
label ADDR.
INDEX MODE

The index mode is the third addressing category.

ing data when the data is stored in a table

base address is added to an offset to create the desired address.

forms this addition using CPU registers 2 a

Indexing is useful for access-

. In indexed addressing, a fixed

nd 3.

The CPU per-
After an index instruction,

registers 2 and 3 contain the effective address (i.e., the sum of the base and

the offset).
There are two modes for indexed addressing.

INDEX DIRECT

Format: Opcode B/M D DR, XAR, label
Effective
Address: M(AR+(PC+1))

Neither the original base nor the offset is altered in memory.

Assembler Instructions

Description: The effective address is found by adding (in binary) the two-byte
contents of the AR to the two-byte address that immediately follows
the instruction opcode in memory.

System Memory

CPU Register Bank

- EA
>)2 /
/ hp 0 -
4 PC __— Instruction
5 PC 2-byte
address lw
ARP
e l - AR
DRP
— DR

INDEXED DIRECT ADDRESSING

Example: LDBD R36, X30, TABLE Loads into CPU register R36 the contents of
the memory location addressed by registers R2 and R3. R2 and R3
contain the sum of the contents of R30 and the contents of the
address TABLE.

INDEX INDIRECT

Format: Opcode B/M I DR, XAR, label
Effective
Address: M(M(AR+(PC+1)))

Description: The effective address is found in a memory location. This memory
location is found by adding (in binary) the two-byte contents of

Assembler Instructions

the AR to the two-byte address that immediately follows the in-
struction opcode in memory. This mode is useful when addresses are
stored in table form.

System Memory

CPU Register Bank

2 l
> | - (:) S | U -
4 3
4 PC
5 PC
EA -

ARP

Instruction

2-byte

address

== =)

INDEXED INDIRECT ADDRESSING

Example: STMI R36, X30, OFFST Stores the contents of CPU register R36 and
R37 in memory, beginning with the location addressed by another
memory location which is itself addressed by CPU registers 2 and
3. Registers 2 and 3 contain th sum of the address in R30 plus the
offset specified by the label OFFST.

STACK INSTRUCTIONS

There is a large set of instructions that are available to push data onto and pop
data from stacks in the main memory of the HP-83/85. These stacks can be ad-
dressed by the instructions using direct or indirect addressing.

Assembler Instructions

PU CPU Instruction
Push
Format: PUB D/I DR +/- AR Push single byte

PUM D/I DR +/- AR Push multi-byte

Description: Pushes single byte or multi-byte onto stack. ©D/I indicates direct
or indirect addressing. +/- indicates stack pointer is incremented
(increasing stack) or decremented (decreasing stack) in memory.

Examples: PUBD R32, +R12
PUBI R32, -R46

PO CPU Instruction
Pop
Format: POBD/I DR +/- AR Pop single byte

POMD/I DR */- AR Pop multi-byte

Description: Pops single byte or multi-byte off stack. D/I indicates direct or
indirect addressing. +/- indicates stack pointer is incremented
(increasing stack) or decremented (decreasing stack) in memory.

STACK ADDRESSING

CPU registers R6 and R7 are permanently dedicated, and always contain the address
of the subroutine return stack. CPU registers R12 and R13 contain, by convention,
the address of the operational stack used during runtime by many of the internal
HP-85 routines. The user can, of course, address a stack from nearly any CPU
register pair.

Stacks may be increasing or decreasing. An increasing stack is one which is

filled in the direction of higher memory locations and from which data is removed
in the direction of lower memory locations. In a decreasing stack, data is

Assembler Instructions

pushed in the direction of lower memory locations, and taken off in the direction
of higher memory locations. To avoid confusion, it is best to address a particu-
lar stack using only instructions for an increasing stack or only instructions
for a decreasing stack, but not both.

For stack addressing, the stack pointer is contained in the AR. Multiple stacks
are handled by having multiple stack pointers within the CPU register space. A
stack is activated by setting ARP equal to the location of that stack's pointer.

For an increasing stack, the AR must point to the next available location on the
stack. For a decreasing stack, the AR points to the occupied location on top of
that stack.

Lower Memory
Locations

MR

2nd enlry

NN
ARP AR \\\\3:@‘3“'\\\&\\

———————— e >

4_——____—__—-—._

Stack Stack
Push Pop
Higher Locations

INCREASING STACK

Lower Memory
Locations

ARP AR

| —] |— Vw5577
WAL

———_—_——__.>
- —————

Stack Stack
Push Pop
Higher Locations

DECREASING STACK

4-17

Assembler Instructions

STACK DIRECT

In this addressing mode, the stack is presumed to contain data. Stores to the
stack (pushes) fill the stack. Loads from the stack (pops) empty the stack.

For a push onto an increasing stack, the AR points to the location where data is
to be stored. Following the store, the AR is incremented by the number of bytes
stored. For a pop operation from an increasing stack, the AR is first decre-
mented by the number of bytes to be popped off. The AR then points to the
location of the data to be removed from the stack.

For a pop from a decreasing stack, the AR points to the Tocation of the data to
be removed. Following the removal, the AR is incremented by the number of bytes
moved. For a push operation onto a decreasing stack, the AR is first decremented
by the number of bytes to be stored on the stack. Then the data is pushed onto
the stack.

STACK INDIRECT

In this addressing mode, the stack is presumed to contain an ordered list of
addresses. These addresses point to the location from which data is read by
pops or to the location into which data is stored by pushes.

For a push onto an increasing stack, the AR points to the effective address.
After storing data in M(EA), the AR is incremented by two. For a pop instruction
from an increasing stack, the AR is first decremented by two in order to point to
the effective address. M(EA) is then loaded into the CPU register designated by
the DRP.

Assembler Instructions

INSTRUCTIONS FOR AN INCREASING STACK

An increasing stack is one which is pushed in the direction of higher addresses
(+) and popped in the direction of lower addresses (-).

D (Direct Mode)

Lower Memory
Locations

1st entry

2nd entry
ARP AR 3rd entry

A
|
|
|
|
|
|

!
|

Stack Stack
Push Pop

Higher Locations

1 (Indirect Mode)

2-byte

address

2-byte
ARP AR address

1st entry

———————————————_——_ e

2nd entry *

Stack Stack
Push Pop

Each entry can be one or more bytes

INCREASING STACK

4-19

Assembler Instructions

The instructions available for use with an increasing stack are:

PUBD DR, +AR Push byte direct with increment

PUMD DR, +AR Push multi-byte direct with increment
PUBI DR, AR Push byte indirect with increment

PUMI DR, +AR Push multi-byte indirect with increment
POBD DR, -AR Pop byte direct with decrement

POMD DR, -AR Pop multi-byte direct with decrement
POBI DR, -AR Pop byte indirect with decrement

POMI DR, -AR Pop multi-byte indirect with decrement

INSTRUCTIONS FOR A DECREASING STACK

A decreasing stack is one which is pushed in the direction of Tower addresses
(-) and popped in the direction of higher addresses (+).

D (Direct Mode)

Lower Memory
Locations

ARP AR

—_— _— 3rd entry

2nd entry

1st entry

A |
| |
i I
.
L

R

Stack Stack
Push Pop

Higher Locations

4-20

Assembler Instructions

I (Indirect Mode)

ARP AR
|
| — L —I —- 2-byte T I
address | :
2-byte l I
address : |
|
' |
' |
| |
l |
| [
| |
1st entry I |
| [
L
2nd entry : +
Stack Stack
Push Pop

Each entry can be one or more bytes

DECREASING STACK

The instructions available for use with a decreasing stack are:

PUBD DR, -AR Push byte direct with decrement

PUMD DR, -AR Push multi-byte direct with decrement
PUBI DR, -AR Push byte indirect with decrement

PUMI DR, -AR Push multi-byte indirect with decrement
POBD DR, *AR Pop byte direct with increment

POMD DR, +AR Pop multi-byte direct with increment
POBI DR, *+AR Pop byte indirect with increment

POMI DR, +AR Pop multi-byte indirect with increment

4-21

Assembler Instructions

ARITHMETIC AND LOGICAL INSTRUCTIONS

The arithmetic and logical instructions consist of add, subtract, compare, logi-
cal AND and logical OR instructions.

AD
Add

Format:

Operation:

Description:

Examples:

ANM
Logical AND

Format:

Operation:

Description:

Examples:

~ ADM [D] DR, operand

CPU Instruction

Add byte
Add multi-byte

ADB [D] DR, operand

DR < DR + operand

Add single or multi-byte. The contents of the effective address
determined by the addressing mode are added to the DR. If DCM=1,
BCD addition is performed; otherwise, binary addition is performed.
The result is stored in the data register.

ADB R40, R50
ADMD R30,=LABEL

CPU Instruction

ANM [D] DR, operand
DR <« DR - operand

The DR is loaded with the logical AND of itself and the contents
of the effective address determined by the addressing mode used.
This instruction is multi-byte only.

ANM R40, R50
ANMD R32,=LABEL

4-22

Assembler Instructions

CM CPU Instruction
Compare ,
Format: CMB [D] DR, operand Compare byte

CMM [D] DR, operand Compare multi-byte
Operation: DR + ten's complement of operand if BCD mode set

DR + two's complement of operand if binary mode set

Description: Compares operand with data register(s). The contents of the effec-
tive address determined by the operand and the addressing mode are
subtracted from DR. BCD subtraction is performed if DCM=1; other-
wise a binary subtraction is performed. The result is used to
affect CPU status indicators and is not stored; DR is not affected.

Examples: CMB R24,=377
CMM R22, R32
OR CPU Instruction

Logical OR (Inclusive)

Format: ORB DR, AR Inclusive OR (single byte)
ORM DR, AR Inclusive OR (multi-byte)

Operation: DR <« DR v AR

Description: Contents of DR are replaced with inclusive OR of DR and AR. CY and
OVF are cleared.

Examples: ORB R21, R4l
ORM R40, R70

4-23

Assembler Instructions

SB

Subtract

Format:

Operation:

Description:

Example:

XR

CPU Instruction

SBB [D] DR, operand Subtract byte
SBM [D] DR, operand Subtract multi-byte

DR <« DR + ten's complement of operand if BCD mode
DR « DR + two's complement of operand if binary mode

The contents of the effective address determined by the addressing
mode and the operand are subtracted from the contents of the DR.
BCD subtraction is performed if DCM=1; otherwise binary subtraction
is performed. The result is stored in DR. CY is set if the result
is positive, cleared if the result is negative.

SBM R26,=177, O

CPU Instruction

Logical OR (Exclusive)

Format:

Operation:

Description:

Example:

XRB DR, AR Exclusive OR (single byte)
XRM DR, AR Exclusive OR (multi-byte)
DR+« DR ® AR

Contents of DR are replaced with the exclusive OR of DR and AR.
CY and OVF are cleared.

XRM R40, R50

4-24

Assembler Instructions

SHIFT INSTRUCTIONS

Al11 shift instructions can be BCD or binary. The shift instructions consist of
logical left, logical right, extended left and extended right instructions; all
are available in single byte or multi-byte modes.

EL

CPU Instruction

Extended Left Shift

Format:

Description:

ELB DR Extended Teft shift byte
ELM DR Extended left shift multi-byte

Binary Mode. In binary mode, the contents of DR (one to eight
bytes) are shifted left one bit position. Carry flag CY is loaded
from MSB. LSB is loaded from CY. OVF is set if the shift causes
a sign change.

CPU Register Bank
(1-8 bytes)

oR [T TTTTT T =—[]er

cYy |:|<-—— <’

Boundary

4-25

Assembler Instructions
BCD Mode. In BCD mode, the contents of DR (one to eight bytes) are

shifted left one digit position (i.e., four bits) through the E
register. CY is cleared.

CPU Register Bank

(1-8 bytes)
on - 1, ~—[e
/ [| i1t
‘\
\\\
\\\
\\\
\\\\\
)
E - l I(
1 1 I
|
Boundary

4-26

ER

Assembler Instructions

CPU Instruction

Extended Right Shift

Format:

Description:

Example:

ERB DR Extended right shift byte
ERM DR Extended right shift multi-byte

Binary Mode. In binary mode, the contents of DR (one to eight
bytes) are shifted right one bit position. For multi-byte shifts,
the shift proceeds from DR to the next lower boundary. Carry flag
CY is loaded from LSB. MSB is loaded from CY.

CPU Register Bank

Boundary (-8 by_tf:.)_

AT —= e

cyY D —_— [| --' bR

BCD Mode. In BCD mode, the contents of DR (one to eight bytes) are
shifted right one digit position (i.e., four bits) through the four-
bit E register. CY is cleared.

CPU Register Bank
(1-8 bytes)

! [WO T T N ||||

-~

o — o

Notice that a multi-byte right shift instruction, unlike other
multi-byte instructions, proceeds from the DR to the preceding
(i.e., lower-numbered) boundary.

ERM R47 Shifts all eight bytes of R40 - R47 right.

4-27

Assembler Instructions

LR

CPU Instruction

Logical Right Shift

Format:

Description:

LRB DR Logical right shift byte
LRM DR Logical right shift multi-byte

Binary Mode. In binary mode, the contents of DR (one to eight
bytes) are shifted right one bit position, and the MSB is cleared.
For multi-byte shifts, the shift proceeds from DR to the next Tower
boundary. Carry flag CY is loaded from LSB.

CPU Register Bank
Boundary -8 bytes)

ST — O

P

o — [[[[T[[[]-"on

BCD Mode. In BCD mode, the contents of DR (one to eight bytes) are
shifted right one digit position (i.e., four bits), and the most
significant digit is cleared. For multi-byte shifts, the shift
proceeds from DR to the next lower boundary. The least signifi-
cant digit is shifted into the four-bit E register.

CPU Register Bank

Boundary (1-8 bytes)
- — e
' 1 i 1 i 1 1
N
\\\
\\\
\\\\
\\\\
]
0000 ——» | | -~" DR
1 L 1. 1] 1

Notice that a multi-byte right shift instruction, unlike other
multi-byte instructions, proceeds from the DR to the preceding
(i.e., lower-numbered) boundary.

4-28

Example:

LL

Assembler Instructions

LRM R54 Shifts contents of R54, R53, R52, R51, and R50 right.

CPU Instruction

Logical Left Shift

Format:

Description:

LLB DR Logical left shift byte
LLM DR Logical left shift multi-byte

Binary Mode. 1In binary mode, the contents of DR are shifted left
one bit position, and the LSB is cleared. The bit shifted out of
MSB is saved in CY. OVF is set if the shift causes a sign change.

CPU Register Bank

(1-8 bytes)
on =TT T[T]]=~—s¢
\\\\\
T ™\
cY D e S 4’/
Boundary

BCD Mode. 1In BCD mode, the contents of DR are shifted left one
digit position (i.e., four bits), and the least significant digit
is cleared. The digit shifted out of the most significant digit
position is saved in the E register. CY is cleared.
CPU Register Bank
(1-8 bytes)
| L | ~——— 0000

DR —‘l
4 L)

)

L]~ -
SRR SRR ——

Boundary

4-29

Assembler Instructions

Example: LLM R45 Shifts contents of R45, R46, and R47 left one bit posi-
tion through CY (in binary mode) or left one digit position through
E (in BCD mode).

4-30

Assembler Instructions

REGISTER INCREMENT AND DECREMENT INSTRUCTIONS

The increment and decrement instructions for the CPU registers can be BCD or

binary.

DC

Decrement

Format:

Operation:

Description:

Example:

CPU Instruction

DCB DR Decrement byte
DCM DR Decrement multi-byte

DR < DR + two's complement of 1 (binary mode)
DR « DR + ten's complement of 1 (BCD mode)

Binary Mode. In binary mode, DR is decremented by 1 (binary).
OVF is set if this operation causes a sign to change to a positive

value. CY is set by decrementing a non-zero number.

BCD Mode. In BCD mode, DR is decremented by 1 (decimal). OVF is
cleared. CY is set by decrementing a non-zero number.

DCB R12

4-31

Assembler Instructions

IC CPU Instruction
Increment
Format: ICB DR Increment byte

ICM DR Increment multi-byte

Operation: DR « DR + 1]
Description: Binary Mode. 1In binary mode, DR is incremented in binary by 1.
OVF is set if this operation causes a sign change to a negative

value.

BCD Mode. In BCD mode, DR is incremented in decimal by 1. OVF is
cleared.

Example: ICM R40

4-32

Assembler Instructions

COMPLEMENT INSTRUCTIONS

The complement instructions can be BCD or binary.
NC CPU Instruction
Nine's (Or One's) Complement

Format: NCB DR Nine's (or one's) complement byte
NCM DR Nine's (or one's) complement multi-byte

Operation: DR < DR

Description: Binary Mode. In binary mode, the one's complement of the contents
of DR replace the contents of DR. CY and OVF are cleared.

BCD Mode. In BCD mode, the nine's complement of the contents of
DR replace the contents of DR. CY and OVF are cleared.

Example: NCB R30

4-33

Assembler Instructions

TC

CPU Instruction

Ten's (Or Two's) Complement

Format:

Operation:

Description:

Example:

TCB DR Ten's (or two's) complement byte
TCM DR Ten's (or two's) complement multi-byte
DR« DR + 1

Binary Mode. In binary mode, the two's complement of the contents
of DR replaces the contents of DR. CY is set if the contents of DR
were zero. OVF is set if contents of DR were 100...000.

BCD Mode. 1In BCD mode, the contents of DR are replaced with their
ten's complement. CY is set if the contents of DR were zero. OVF

is cleared.

TCM R50

4-34

Assembler Instructions

TEST INSTRUCTION

The test instruction can check the status of single-byte or multi-byte CPU

registers.

I

Test

Format:

Description:

Example:

CPU Instruction

TSB DR Test byte

TSM DR Test multi-byte

The contents of DR are tested and condition flags are set accord-
ingly. CY and OVF are cleared.

TSM R36

REGISTER CLEAR INSTRUCTION

The clear instruction permits the clearing of any byte or of any multi-byte por-
tion of the CPU register bank.

CL

Clear

Format:

Operation:

Description:

Example:

CPU Instruction

CLB DR Clear byte
CLM DR Clear multi-byte
DR+« 0

DR is cleared. CY and OVF are cleared.

CLB R47

4-35

Assembler Instructions

SUBROUTINE JUMP INSTRUCTION

The subroutine jump instruction is available in the literal direct or the indexed
addressing mode.

JSB

CPU Instruction

Jump to Subroutine

Format:

Operation:

Description:

Examplies:

JSB = label Jump subroutine literal direct
JSB XR, label Jump subroutine indexed

Literal Direct. M(SP) « PC+3, SP <« SP+2, PC <« M(PC+1)

Indexed. M(SPj <« PC+3, SP « SP+2, PC « AR + M(PC+1)

The PC is saved in the memory location addressed by the R6 stack
pointer. Program control is then transferred to the location de-
fined by the label. In indexed addressing, control is transferred
to the location defined by the two-byte contents of the address
register plus the label.

After a subroutine jump, the next RTN instruction executed causes
a return to the instruction after the JSB.

JSB = LOC1
JSB X32, LOC2

Note: Since an indexed subroutine jump (i.e., JSB XR, label) can
cause a jump to an unlabeled destination, the programmer must
ensure that the ARP and DRP are set to ensure proper operation at
the destination. See Handling of ARP and DRP During Assembly later
in this section.

4-36

Assembler Instructions

CONDITIONAL JUMP INSTRUCTION

The conditional jump instruction can alter execution based on 16 different con-
ditions in the CPU.

J CPU Instruction
Conditional Jump

Format: JMP label Unconditional jump
JNO label Jump on no overflow
JOD label Jump on odd
JEV label Jump on even
JPS label Jump on positive Takes overflow into
Sl Ry N
JZR label Jump on zero
JNZ label Jump on non-zero
JEZ label Jump on E zero
JEN label Jump on E non-zero
JCY label Jump on carry
JNC label Jump on no carry
JLZ label Jump on left digit zero
JLN Tabel Jump on left digit non-zero
JRZ label Jump on right digit zero
JRN label Jump on right digit non-zero

Description: This group of instructions gives the capability of branching as a
function of status conditions previously generated. The branching
capability uses relative addressing. If the status condition
interrogated is found to be true, then the relative branch to the
address of the label will be taken. Otherwise, the next instruc-
tions after the jump will be executed.

Each jump instruction is assembled into two bytes: An opcode, and
an offset in two's complement notation.

4-37

Assembler Instructions

A jump can cover 4008 destinations from 2008 before the next in-
struction to]778 after the next instruction. The address to which
the jump is made is the sum of the address of the jump instruction
plus the offset plus two.

Example: JMP INITAL When assembled, this instruction would appear as
shown below.

200

375 n -—- Offset = -3

376 n+ 1 JMP Offset = -2

377 n + 2 Offset Offset = -1 (Current byte)
0 n+3--- Offset = 0 (Next byte)
1 n+4 --—- Offset = +1
2 n+5--- Offset = +2

177

4-38

Assembler Instructions

ARP AND DRP LOAD INSTRUCTIONS

Two instructions are available for loading the address register pointer or the
data register pointer. These instructions are not normally needed because the
assembler automatically generates necessary ARPs and DRPs where required.

ARP CPU Instruction
Load ARP

Format: ARP AR
Operation: ARP

Description: Sets address register pointer to point to address register.

Example: ARP R25 Sets ARP to point to R25.

DRP CPU Instruction
Load DRP

Format: DRP DR

Operation: DRP

Description: Sets data register pointer to point to data register.

Example: DRP R25 Sets DRP to R25.

4-39

Assembler Instructions

NOTE
The instructions to load DRP indirectly with RP and to load ARP
indirectly with RP are:

DRP 1
ARP 1

Thus, to avoid confusion, Rl is not allowed in either the DR or AR
fields. This means that CPU register R1 is for all practical pur-
poses inaccessible except by means of a multi-byte R@ operation or
when RP = 1 and the ARP or DRP is specified by R*. See Using R*
later in this section.

4-40

Assembler Instructions

OTHER INSTRUCTIONS

In addition to the instructions above, there are a few other instructions which
the programmer can use to manipulate quantities in the CPU and memory.

BCD CPU Instruction

Set Decimal Mode

Format: DCM

Operation: DCM <« 1

Description: Sets DCM to 1 so that arithmetic operations will be in binary-
coded decimal.

BIN CPU Instruction

Set Binary Mode

Format: BIN

Operation: DCM <« 0

Description: Sets DCM to zero so arithmetic operations performed will be in

binary.
CLE CPU Instruction
Clear E
Format: CLE

Operation: E<« 0

Description: A1l four bits of the E (extend) register are cleared to zero.

4-41

Assembler Instructions

DCE CPU Instruction
Decrement E

Format: DCE

Operation: E«E-1

Description: E (extend) register decremented by 1. This instruction is always
a binary operation, regardless of the setting of the DCM status

flag.
ICE CPU Instruction
Increment E
Format: ICE
Operation: E«<E+1

Description: E (extend) register incremented by 1. This instruction is always
a binary operation, regardless of the setting of the DCM status
flag.

4-42

Assembler Instructions

PAD CPU Instruction
Pop ARP, DRP and Status

Format: PAD
Operation: M(SP) -~ ARP, DRP and all status flags except E.

Description: Restore ARP, DRP and status (usually after a PAD instruction) by
popping them off the stack.

Stack pointer is decremented by 3, and all status flags except E
are altered by the contents of the three stack locations that are
read.

The first byte processed is read as LSB in bit 0, RDZ in bit 1, 7
in bit 2, LDZ in bit 6 and MSB in bit 7. The second byte is read
as DRP in bits 0-5, DCM status in bit 6, and overflow flags in
bit 7. The third byte is read as ARP in bits 0-5, carry flag

in bit 6, and overflow flag in bit 7.

Following a PAD instruction, the stack has been read as shown here:

sp —» [ove| cy . AR .
increasing OVF |DCM DRP
Addresses — = | ——
msB| oz | o | 0 I 0 I 7 IRDZlLSB
l 1 1 1 [1 1 1

7 6 5 4 3 2 1 0

4-43

Assembler Instructions

RTN CPU Instruction
Return From Subroutine

Format: RTN
Operation: SP « SP — 2, PC « M(SP)
Description: Subroutine return stack pointer is decremented by two. Then the

return address is read from the stack and written into the program
counter.

SAD CPU Instruction
Save ARP, DRP and Status

Format: SAD

Operation: M(SP) « ARP, and all status flags except E.

Description: Saves ARP, DRP and status (except E) in memory locations addressed
by SP (stack pointer).

Three bytes are pushed onto the stack. The first byte contains
ARP in bits 0-5, CY in bit 6, and the overflow flag in bit 7.
The second byte contains DRP in bits 0-5, DCM status in bit 6,
and the overflow flag in bit 7. The third byte contains LSB in
bit 0, RDZ in bit 1, Z in bit 2, LDZ in bit 6, and MSB in bit 7.

SP is then incremented by three. Status is not affected by this
operation.

4-44

Assembler Instructions

Following a SAD instruction, the stack contents are as shown here:

"Increasing
Addresses
OVF| CY ARP
1 1 1 i 1
OVF |DCM DRP
mse[iZ [o | o | o |z | Dz [LsB
Sp —>
[} L | 1 1 1 1

4-45

Assembler Instructions

USE OF R*

When entering source code, the programmer may substitute R* for the AR or DR in
any CPU instruction. R* causes the ARP or DRP to be loaded with the least sig-
nificant six bits of CPU register Rp. The effect is that the DR and AR are
specified by the contents of Rf.

Example: LDB R@, = 26 Loads RP with 26.

LDB R*, R30 Loads CPU register specified by Rp (i.e.,
R26 now) with contents of R30.

STB R40, R* Stores contents of R40 into register (R26
now) specified by RP.

ASSEMBLY OF CPU INSTRUCTIONS

When the address field of an instruction consists of a DR and an AR, each source
statement is usually assembled into three bytes of machine code. These bytes are
assembled in order as:

1. DRP: DRP set to point to DR.
2. ARP: ARP set to point to AR.
3. Opcode: Perform operation.

Thus, a stack push instruction such as PUBD would be assembled and appear as
shown here:

Byte No. Machine Code Source Code

000227 110 006 342 PUBD R10, -R6

When the address field of an instruction consists of a DR and a label, as in the
case of literal direct and literal indirect addressing (e.g., LDMI R32, = ADDRS),
each source statement is usually assembled into four bytes of machine code:

DRP: DRP set to point to DR.
Opcode: Perform operation.
Low-order byte of literal quantity.
High-order byte of literal quantity.

Pw NN -

4-46

Assembler Instructions

When the address field of an instruction consists of DR, AR, and a label, as in
the case of indexed direct and indexed indirect addressing (e.g., LDBI R36, X32,
TABLE), five bytes of machine code may be generated for each source statement:

DRP: DRP set to point to DR.
ARP: ARP set to point to AR.
Opcode: Perform operation.
Low-order byte of address.

A BwWw NN -

High-order byte of address.

HANDLING OF ARP AND DRP DURING ASSEMBLY

An optimizing feature of the Assembler ROM is the deletion of "unnecessary" ARP
and DRP instructions during assembly.

If an instruction is not labeled (i.e., there is not an entry in the label field)
and the ARP (and/or DRP) is already set to the correct value, the previously-set

ARP (and/or DRP) is not generated during assembly.

For example:

Byte No. Machine Code Source Code
000227 110 006 342 LABEL POBD R10, -R6
000232 342 POBD R10, -R6

In this example, both the ARP and the DRP are specified beginning with byte 227.
Since they are now correctly set for the next instruction, they are automatically
deleted when the second POBD R10, -R6 instruction is assembled. This results in
the machine code shown in byte 232.

Not all previously-set ARPs and DRPs are deleted during assembly. Instances
where a previously-set ARP and/or DRP will not be deleted include:

--Labeled instructions. Since a jump from anyplace in code may cause execution
to resume at the label, the first ARP and DRP are not deleted after an instruc-
tion that contains an entry in the label field.

4-47

Assembler Instructions

--Returns. After executing a JSB, then returning, the first ARP and DRP encoun-
tered are not deleted.

--PAD. Following a PAD instruction, the first ARP and DRP are not deleted.

USING R# i

When entering CPU instructions, the user may substitute R# in almost any instruc-
tion requiring an AR or DR. R# causes the ARP or DRP to be deleted from the
machine code, regardless of other conditions. For example:

Byte No. Machine Code Source Code

000265 240 LABEL LDB R#, R#

R# is normally used after labels, when the ARP and DRP are already set correctly.
By using R#, it is not necessary to squander time or bytes resetting ARP and DRP.

PSEUDO-INSTRUCTIONS

Pseudo-instructions are instructions to the assembler. Each may be entered by
typing a pseudo-opcode in the same field as the opcode for an instruction, fol-
lowed by any additional required operand.

Pseudo-instructions perform three main functions when encountered during assembly:
--Assembly control

--Data definition
--Conditional Assembly

4-48

Assembler Instructions

PSEUDO-INSTRUCTIONS FOR ASSEMBLY CONTROL

ABS Pseudo-Instruction
Absolute Program

Format: ABS 16
ABS 32
ABS ROM base address

Description: Declares an absolute program (i.e., with addresses that cannot be
relocated), for either a computer with 16K bytes of memory, a com-
puter with 32K bytes, or for a ROM beginning with the specified
base address. If ABS 16 or ABS 32 is declared, the instruction
must precede a NAM instruction.

FIN Pseudo-Instruction
Finish Program

Format: FIN

Description: Signifies the end of the source code. This pseudo-instruction is
required for assembly.

GLO Pseudo-Instruction
Declare Global File

Format: GLO
GLO file name

Description: If no file name, declares this source code to be a global file.
Otherwise, declares the global file to be used in the assembling of
the current source code. Comments are not allowed on the same line
as the GLO instruction, and the instruction must precede ABS and
NAM.

4-49

Assembler Instructions

LNK

Pseudo-Instruction

Link Files At Assembly

Format:

Description:

Example:

LST

List

Format:

Description:

LNK file name

Will load another file containing more source code and continue
assembling. Allows assembly of larger programs than would otherwise
be possible.

LNK SOURC2 When this instruction is encountered during assembly,
the assembler looks for the file SOURC2 on the current mass storage
device, loads the file, and continues assembling using the source
code from the file.

Pseudo-Instruction

LST

Causes the code to be Tisted on the current PRINTER IS device at
assembly time. If the column width of the printer is sufficient
(>46 characters) the listing will contain both the object and
source code; otherwise, only the object code will be listed.

An address that is undefined when its label is encountered will be

printed in object code as 326, 336, or 377, depending upon whether
it is a DEF, a relative jump, or a GT0 statement.

4-50

NAM

Name Program

Format:

Description:

Example:

ORG

Origin

Format:

Description:

UNL

Unlist

Format:

Description:

Assembler Instructions

Pseudo-Instruction

NAM unquoted string

Sets up the PCB (Program Control Block) for a binary program.
Should be preceded only by GLO, ABS, LST, UNL, DAD, EQU, or com-

ments. Illegal when ABS ROM has been declared.

NAM KEYHIT Names a binary program KEYHIT and sets up the 328-byte

program control block for that program.

Pseudo-Instruction

ORG address

Specifies a base address which is added to all following defined
addresses (DAD's).
files.

This pseudo-instruction is most useful in global

Pseudo-Instruction

UNL

Turns off the list feature which was turned on by the LST pseudo-

instruction. After an UNL, code is not listed during assembly.

4-51

Assembler Instructions

PSEUDO-INSTRUCTIONS FOR DATA DEFINITION

ASC
ASCII

Format:

Description:

Example:

ASP

Pseudo-Instruction

ASC numeric value, unquoted string
ASC quoted string

Inserts into the object code the ASCII code for the number of char-
acters specified of the unquoted string. Inserts the entire quoted
string.

ASC 3, FTOC Inserts the ASCII code for FTO.

ASC 4, FTOC Inserts the ASCII code for FTOC.
ASC "LOCATION" Inserts the ASCII code for LOCATION.

Pseudo-Instruction

ASCII With Parity

Format:

Description:

ASP numeric value, unquoted string
ASP quoted string

Same as ASC except that the parity bit (MSB) of the string's final
character is set. (During operation, the HP-83/85 system determines
the end of an ASCII string in some system tables by checking to see
if the character's parity bit is set. When the bit is found set,
the system assumes the next character begins a new string or entry
in the table.)

4-52

Assembler Instructions

BSZ Pseudo-Instruction
Bytes To Zero

Format: BSZ numeric value

Description: Inserts into the object code the octal number of bytes of zeros
specified by the numeric value.

Example: BSZ 30 Fills 308 bytes with zeros.

BYT Pseudo-Instruction
Bytes To Values

Format: BYT numeric value [,numeric value...]

Description: Inserts literal values into the object code.

Examples: BYT 377 Inserts octal 377 (i.e., all ones) into object code.
BYT 20,55C Inserts octal 20 into this byte of object code and
BCD 55 into next byte.

DAD Pseudo-Instruction

Direct Address

Format: Label DAD address

Description: Assigns either an absolute address or a constant to a label. DAD
and EQU are similar; DAD is usually used for addresses, while EQU
is used for values other than addresses. ORG affects only DAD's.

Example: INTORL DAD 56343 Assigns absolute address 56343 to the label
INTORL,

4-53

Assembler Instructions

DEF Pseudo-Instruction
Define Label Address

Format: DEF Tabel

Description: Inserts the two-byte address associated with the label.

Example: DEF RUNTIM Inserts two-byte address of the label RUNTIM.

EQU Pseudo-Instruction
Equals

Format: Label EQU numeric value

Description: Assigns either an absolute address or a constant to a label. DAD
and EQU are similar; DAD is usually used for addresses, while EQU
is used for values other than addresses. ORG affects only DAD's.

4-54

GTO
Go To

Format:

Description:

Example:

VAL

Value

Format:

Description:

Example:

Assembler Instructions

Pseudo-Instruction

GTO label

Generates four bytes of object code which load the program counter
(CPU registers 4 and 5) with the address minus one (i.e., ADR-1) of
the label. The label must be for an absolute address.

The CPU relative jump instructions (JRZ, JNO, etc.) can cause jumps
of from]778 to —2008 memory locations. The GTO pseudo-instruction
is useful for jumping beyond the range of relative jumps.

WARNING
The GTO pseudo-instruction is primarily for use in
ROMs. It should not be used in a binary program
unless that program has been declared an absolute
program.

GTO INTORL

Pseudo-Instruction

VAL label

Inserts the one-byte literal octal value associated with the label.

PPROM# EQU 360
VAL PPROM# Inserts the one-byte literal octal value (360) of the
Tabel PPROM# into the object code.

4-55

Assembler Instructions

PSEUDO-INSTRUCTIONS FOR CONDITIONAL ASSEMBLY

This set of pseudo-instructions permits the user to control assembly by means of

conditional assembly flags. A conditional assembly flag has the same constraints
as a label--it can be no more than six characters in length, and the first char-

acter cannot be a digit.

A conditional assembly flag is treated the same as a label by the HP-83/85 sys-
tem. (For example, an assembly flag can be located by a label search.) For this

reason, a conditional assembly flag name should be unique, and should not dupli-
cate a label.

AIF Pseudo-Instruction
Assemble If Flag True

Format: AIF assembly flag name

Description: Tests the specified conditional assembly flag and, if true, con-
tinues to assemble the following code. If the flag tests false,
the source code after the flag is treated as if it were a series
of comments until an EIF instruction is found.

Example: AIF CYCLE Tests assembly flag CYCLE.

CLR Pseudo-Instruction
Clear Flag

Format: CLR flag name

Description: Clears the specified conditional assembly flag to the false state.

Example: CLR CYCLE Clears assembly flag CYCLE.

4-56

EIF

Assembler Instructions

Pseudo-Instruction

End Of Conditional Assembly

Format:

Description:

SET
Set Flag

Format:

Description:

Example:

EIF
Terminates any conditional assembly in process. Only one condi-
tional assembly can be handled at a time. If a second one is

encountered while the first is still active, the second will
override the first,

Pseudo-Instruction

SET flag name

Sets the specified conditional assembly flag to the true state.

SET CYCLE Sets conditional assembly flag CYCLE.

4-57

NOTES

4-58

SECTION 5

HP-83/85 SYSTEM ARCHITECTURE AND OPERATION

This section explains how system memory is allocated in the HP-83 and HP-85
computers, how programs are stored in that memory, and how a statement is parsed
and becomes part of a BASIC program. It also explains the sequence of operations
that occurs when a BASIC program is run.

In the computer, BASIC programs are executed by an interpreter that is part of
the firmware operating system. However, the code that is interpreted is vastly
different from the BASIC statements as they were originally entered. As the
statements are entered, they are parsed and compiled into a form of RPN (reverse
Polish notation), which can be interpreted more efficiently than the BASIC state-
ments. As part of the parsing and compiling process, all BASIC reserved words
are converted to single-byte tokens. This makes the internal form of the code
somewhat more compact than the original form, and also makes interpretation
easier and faster.

Also as part of the process of parsing and compiling, variables are placed in a
variable storage area, with only their addresses remaining in the area containing
the tokens.

A BASIC program, then, is held in memory as a series of tokens and addresses of
variables. To execute the program, the computer processes these token and vari-
able addresses in order. As each token is processed, it causes the machine to

go to a table of routine addresses and execute a specific routine whose address is
within that table. If the token indicates a variable, the machine uses the next
two bytes as the variable address.

HP-83/85 System Architecture and Operation

Execution
Variable Token for MULTIPLY |- ——————— > MULTIPLY Routine
A8 ~
_— SN Token for LET oS —
— \\ N\ \\\ ——
~ Token for Variable |W N\ >~
—_— \\ \ \ S ———
S Variable \\ \\ ~
Te~a Address \\ \\
- .
-~ Next Token NN
\ \
N LET Routine
\ ——
\
\ —_
N\ _

EXECUTION BY TOKENS

A binary program in memory, or a plug-in ROM, merely provides additional tokens
(and their corresponding routines) to the set of HP-83/85 tokens and routines.
This should become clear later in this manual.

HP-83/85 System Architecture and Operation

SYSTEM MEMORY

The memory of the HP-83/85 is arranged as shown here:

Decimal Octal
Address Address
(] 000000
System
8K 017777 ROM
020000 System
16K 037777 ROM
040000 System
24K 057777 ROM o
080000 ROMO | ROM1 | ROM2 l ROM 3—|r TROM 254 |
System Plugin | Plugin | Plugin | | Plugin |
32K 077777 ROM ROM l ROM l ROM | l ROM |
100000 System
48K 137777 RAM
140000 Plugin |
177377 | RAM |
177400 1o
Addressing
64K 177777

SYSTEM MEMORY

As shown in the memory map, the main system contains three 8192]0-byte ROMs, the
system ROMs. The fourth ROM space is for bank-selectable ROMs and it is shared
by another system ROM and all plug-in ROMs. The only differences between the
last system ROM and plug-in ROMs are that the select code for the system ROM is
0, and that the system ROM contains routines necessary for the HP-83/85 system
to operate. Each plug-in ROM has its own unique select code. For example, the
select code for the Assembler ROM is 4010.
The last 256]0 locations in the RAM address space are reserved for memory-mapping
I/0 addresses.

HP-83/85 System Architecture and Operation

PROGRAMS IN MEMORY

There are two kinds of programs that can be resident in memory: BASIC programs
and binary programs. In the HP-83/85, memory can contain a single BASIC program,
BASIC subprograms, and a single binary program at one time. In addition, the
computer can access the binary programs located in plug-in ROMs; these ROMs are
bank-selectable by means of their select codes. In form and application, a
plug-in ROM is closely akin to system ROM @ or a binary program. Unlike a binary
program, however, ROMs are not relocatable, and always begin with memory location
600008.

Within the HP-83/85, there are many pointers that are used to delineate and
jdentify the different components of memory. Some of these pointers are in CPU
registers, while others are at various locations in RAM.

ALLOCATION

A BASIC program may be resident in either allocated or de-allocated form. As a
program is first entered from the keyboard, it is de-allocated and can still be
edited. When a BASIC program is run for the first time, however, it must be
allocated before it is actually executed. Memory that contains a de-allocated
BASIC program appears as shown on the left below. An allocated program results
in memory as shown on the right.

HP-83/85 System Architecture and Operation

rm————= |
System RAM Pointers
103300
Area Reserved by
External ROMs
FWUSER
Pointers Common
’- —_—— _I FWPRGM/FWCURR
| System RAM i Main
--——— 103300
Area Reserved by Subprogram
External ROMs NXTMEM
“«——— FWUSER/FWPRGM/FWCURR Operating Stack
Main R12
«——— NXTMEM Available Memory
New Program Line LAVAIL
-«—— R12 Calc.Variables
Available Memory CALVRB
Temp Memory
-«-——— LAVAIL
Calc.Variables ForiNext Stack
<——— CALVRB/RTNSTK Assign Buffers
RTNSTK
GOSUB/RTN Stack
GOSUB/RTN Stack
-«———— BINTAB FWBIN
Binary Program Binary Program BINTAB
<—— LWAMEM LWAMEN

De-Allocated Program (Edit)

DE-ALLOCATED

PROGRAM

Atlocated Program (Non-Edit)

MEMORY AREAS

When a BASIC statement is typed and [END LINE] is pressed, the computer checks

for de-allocation.

then de-allocates it.

If the program is not already de-allocated, the HP-83/85

In a de-allocated program, program variables are held as names rather than
addresses, and the program can still be edited.

As illustrated above, in a de-allocated program the entire memory space is made
up of RAM. The pointers that define the areas within RAM are:

HP-83/85 System Architecture and Operation

FWUSER: FWUSER points to the first byte of RAM that can be accessed for a BASIC
program by the user. FWPRGM points to the first byte of the main program.
FWCURR is the first byte of the current program. These three pointers are all
the same in a de-allocated program using the basic HP-83/85. (An external ROM
that gives subprogram capabilities might cause these to be different.)

NXTMEM: NXTMEM points to the first byte after the end of the program as the
program currently exists.

R12: CPU register R12 points to the execution stack. It is always used as an
increasing stack, so R12 defines the first word of available program memory.

LAVAIL: This pointer defines the last word of available memory. LAVAIL actually
points to the first word of the area where calculator variables are stored.

CALVRB and RTNSTK: These define the end of the calculator variables and the
beginning of the BASIC subroutine return stack. These returns are the BASIC
program's returns (and in a de-allocated program no returns exist here). These

returns are not the same as those in a binary program, which are stored on the
R6 stack.

BINTAB: Address of the first byte of the binary program. Although other pointers
may change during allocation, BINTAB does not.

ALLOCATED PROGRAM

When a RUN, INIT, or STORE command is executed on the HP-83/85, the computer
checks the allocation status of the resident BASIC program. If the program has
not been allocated, the HP-83/85 allocates the program before executing further.
Allocation creates variable space at the end of the BASIC program for all vari-
ables, and replaces all variable names with relative addresses. This allocation
ultimately causes the program to be executed much more quickly.

The previous illustration of memory areas also shows an allocated program in

memory. If common variables have been declared (that is, variables that are
held in common by two BASIC programs), FWUSER points to the beginning of this

5-6

HP-83/85 System Architecture and Operation

common area, while FWPRGM points to the first word of the main BASIC program.
(FWCURR points to the current program; this is the same as the main program un-
less an external ROM has provided subprogram capability.)

Such internal routines as print operations and string concatenation require
temporary scratch-pad memory; this is provided as needed in the area directly
after that addressed by CALVRB, and is released by the system immediately after
the operation is performed. The FOR/NEXT stack is another temporary area that
is provided when needed.

The Mass Storage ROM and the internal tape routines require 284]0 bytes for each
buffer (up to a maximum of 10 buffers), and these scratch-pad work areas are
obtained in the buffer area directly above the GOSUB return stack.

SOFTWARE-DEDICATED CPU REGISTERS

Certain CPU registers are hardware-dedicated, and these registers always are used
for the same tasks. Software-dedicated CPU registers are those registers which
the system routines use for specific tasks. The registers and tasks vary, de-
pending on whether the computer is parsing a statement, executing code at run-
time, etc. - However, here are the tasks of some of the most commonly-used CPU
registers:

Execution Pointer: At runtime, registers R10 and R11 house the program counter
(PCR), a pointer for executing a BASIC program. At parsetime, this pointer
addresses the input stream.

Stack Pointer: Registers R12 and R13 contain the address of the operational
stack pointer (SP).

Current Token: Register R14 contains the current token being processed in parse

and decompile operations.

CSTAT: Register R16 contains CSTAT, which defines current status.

5-7

HP-83/85 System Architecture and Operation

XCOM: CPU register R17 contains XCOM (external communication). The bits of this
byte are used to discover why execution has halted, and to specify what to per-
form during the halt.

HP-83/85 OPERATION

The basic HP-83 or HP-85 is controlled by system routines that are permanently
resident at fixed addresses in memory. The addresses and names of many of these
system routines may be found in the global file in section 7 of this manual.

In addition to the system routines, control can also pass to one of the plug-in
bank-selectable ROMs, or to a binary program in the HP-83/85 memory. At certain
times in the operation of the HP-83/85, the resident binary program and any ROMs
are polled by the main system. In addition, there are a number of entry points,
or "hooks," that allow HP-83/85 operation to be intercepted and modified by a
binary program or ROM. These hooks normally do nothing in the system, but they
can be used to take over the system at certain key times.

TOKENS

The HP-83 and HP-85 use tokens to represent the keyword, such as LET, FOR, BEEP,
etc., that make up each BASIC statement. Each token is a one-byte quantity that
indicates to the machine the addresses of routines associated with that token.
Each token must have an associated entry in a table of routines for execution

at runtime, another entry in an ASCII keyword table, and a third entry in a table
of parse routines. A list of all system tokens may be found in appendix F.

The computer jtself is a token-driven machine--a program is held in memory as a

series of tokens and variable addresses, and the machine processes these tokens
and addresses in order,

5-8

HP-83/85 System Architecture and Operation

Runtime Routine Address Tables

Token —— System Table

Token \
Main BASIC Program 4 \

Variable Address =\

Token

\ External ROMs

Variable Storage Area)

Binary Program

EXECUTION BY TOKENS (RUNTIME)

At runtime, for example, as the system executes a program, it processes a token
by fetching the address of an associated runtime routine from a table of ad-
dresses. The runtime table may exist in a binary program and/or an external ROM
as well as in the main system. The system performs a JSB to the specified
address to execute the routine, then fetches the next token and searches for its
runtime routine in the tables, etc.

Some tokens indicate to the system that the two bytes following the token con-
tain a variable address. In this case, the system processes the variable by
locating it in one of the variable storage areas in memory.

Other tokens indicate that the bytes following the token are constants to be
pushed onto the R12 stack.

Two tokens, 3708 and 37]8, are used to expand the token tables. Token 370 indi-
cates to the system that the next byte is the number of a ROM, and that the byte
after the ROM# is the token within that ROM's tables that is actually to be
executed. Token 371 directs the system to a binary program in the same way.
More on these tokens later.

5-9

HP-83/85 System Architecture and Operation

OVERALL SYSTEM FLOW
System flow in the HP-83/85 is shown by the flowchart below.

System
init.
,’4| routines
/ !
’ ¥
/
System /
PWO / ROM and
Error Initialization £ binary pgm.
Conditions ROMINI init. routines
- . O
Parser Engztlve Interpreter
. P -—
// \\ / \\
// \\ / AN
Y- 4 ¥ A
ROM and System ROM and System
binary pgm. | - —p parse binary pgm. | - runtime
parse routines runtime routines
routines routines

In general, loading and running a program, or executing a calculator mode state-

OVERALL SYSTEM FLOW

ment, will require execution within the following areas:

Executive Loop:

loop and waits for some kind of action.
appropriate areas for initialization, parsing, allocation, running, and errors.

Parser:

the CRT, parsing occurs when [END LINE] is pressed.

ASCII code into tokens.

After power-on initialization, the system enters the executive
The executive Toop makes calls to the

After a program line or calculator mode statement has been entered to
Parsing is the changing of

HP-83/85 System Architecture and Operation

In parsing, the parser first searches the ASCII tables in the resident binary
program for a keyword match, then searches the ASCII tables in any external ROMs,
and finally searches the system tables.

Interpreter: The interpreter actually runs a program or executes a calculator
mode statement by fetching tokens in order and calling the runtime routines to
execute them.

In addition to the areas above, there are two other areas which may be called:

Initialization: At many times, including power-on, RESET, SCRATCH, etc., the
system calls routines for initialization. Initialization routines are called
through the ROMINI routine; the system polls system initialization routines
first, ROM routines second, and the routine in the resident binary program last.

Errors: If errors are detected, the system generates the proper warning or error
message.

EXECUTIVE LOOP

After power-on initialization, control passes to the executive portion of the
system. The flowchart on the following page details the operation of this
executive loop.

The executive loop itself contains a smaller loop that examines CPU registers
R16 and R17 for status information. R16 contains CSTAT (current status), while
R17 contains XCOM (external communication).

As long as the value of R16 is zero and all bits of R17 are set to zero, the
system remains in the small Toop. An interrupt, such as pressing a key, causes
the system to leave the small loop and process the interrupt as shown on the
flowchart.

HP-83/85 System Architecture and Operation

‘ EXEC ’

P

A

is
R16 ODD
?

Y

JSB =
RMIDLE

XCOM (R17)

?

CSTAT (R16)

?

ALLOCATE SETRI6
Y
ERRORS 4S8 =
2 INTERPRETER
N -
JSB =
INTERPRETER
Y
CALC N

MODE IN INPUT
?

INPUT
COMPLETE
?

SETR16=2
{RUN)

!

FINISH
INPUT

l‘—_‘

CLEARBIT 1
IN R17

Y

]

JSB=
CHIDLE

s

HANDLE

KEY

Y

CLEAR SERVICE
REQUEST BIT
IN R17

PRINTALL

MODE
?

OUTPUTTO
PRINTER 1S
DEVICE

SET INPUT
COMPLETE BIT
(BIT 1) IN R17

REPORT
ERROR

JSB =
PARSER

CLEAR ALL BUT

CLEAR CSTAT.

SVCREQIN R17

!

CALC
MODE PENDING
?

SVCWRD

KEYBOARD
?

JSB =
1OSP

SERVICE
CLOCK

-

|

CLEAR BIT
IN SVCWRD

CLEAR SERVICE
REQUEST BIT
(BIT 4) IN R17

ERROR Y
?

SERVICE

REQUEST
?

INPUT
COMPLETE
?

SETR16=7
(RUN INMIDDLE
OF LINE)

Y

CLEARBIT1
IN R17
(INPUT

COMPLETE)

A

A

REPORT
ERROR

SET ROMFL

=13
(PGM HALT
ON ERROR)

EXECUTIVE LOOP

5-12

CSTAT

HP-83/85 System Architecture and Operation

CPU register R16 contains an eight-bit word that is interpreted as current status.

CSTAT (R16) Value

p

(S B~ B O I A

8 - 255

Status

Idle.

Calculator mode.

Run mode. (Program is running.)

Not used.

Idle during input statement.

Calculating during input statement.
(Evaluating expression before entering
it as variable.)

Not used.

RUN in the middle of a line.

(GOSUB or GOTO occurs because of a
timer interrupt or soft key interrupt.)

Not used.

CURRENT STATUS

CSTAT is examined as an entire byte by the system.

HP-83/85 System Architecture and Operation

XCOM

CPU register R17 contains XCOM, eight bits which are used for external communica-
tion of interpreter status.

XCOM (R17) Bits Interpreter Halt

Bit § set End of calculator mode.

Bit 1 set Input complete.

Bit 2 set Step mode.

Bit 3 set Trace mode.

Bit 4 set Service request. (Any interrupt sets this
bit.)

Bit 5 set Immediate set. (Can be set by user to
halt interpreter.)

Bit 6 set Error set.

Bit 7 set Break. (OR of bits 5 and 6.)

INTERPRETER HALTS

During its cycles, the interpreter examines bit 7 of XCOM to determine if the
interpreter is to halt. After an end-of-1ine token has been executed, the
interpreter executive loop examines all bits of XCOM to see if control should be
returned to the executive loop for further action. Any routine that sets bit 5
or bit 6 in R17 must also set bit 7, since the interpreter examines only bit 7.

HOOKS

Hooks into the executive loop are available through subroutine calls to RAM
locations RMIDLE, CHIDLE and IOSP. In the normal system, each of these locations
in RAM merely contains a return (RTN); they are present to allow the taking over
of the executive loop by a binary program or external ROM.

ROMFL

ROMFL is a single-byte RAM location used to pass program conditions (such as
RESET or RUN), to binary and ROM programs for initialization. Before the
initialization routine in the binary program or external ROM is called, ROMFL is
set to indicate the kind of condition that has occurred.

HP-83/85 System Architecture and Operation

SVCWRD

SVCWRD is a RAM Tocation that indicates the kind of interrupt.

SVCWRD Bit Type of Interrupt
Bit P set Keyboard interrupt.
Bit 1 set I/0 interrupt.
Bit 2 set Timer 1 interrupt.
Bit 3 set Timer 2 interrupt.
Bit 4 set Timer 3 interrupt.
Bit 5 set Other interrupt.
INTERRUPTS

INTERPRETER LOOP

The interpreter loop fetches the next token, processes it, and passes control to
its runtime code. When the runtime code has been executed, control returns and

the interpreter continues with another token. The following page shows a flow-

chart for the interpreter.

A token is an ordinal into a table of addresses. The address table is made up of
two-byte addresses, so to find the actual address, the token is doubled, then
added to the base address. This changes the ordinal into an offset pointing to
the correct address.

Address Table Runtime Routines

2-byte

(Token x 2) + Base Address N

~ address.

~ -
- 2-byte

_———
address.

2-byte

address.

5-15

HP-83/85 System Architecture and Operation

INTERPRETER

SETPCR (R10)
TO ADDRESS
OF 1STTOKEN

!

SET
TOS =R12

Y

RELEASE
TEMPORARY
MEMORY

———>
\

GET NEXT
SYSTEM TOKEN

Y

DOUBLE
T

Y

ADD TO BASE
ADDRESS OF
RUNTIME TABLE

Y

GET RUNTIME
ADDRESS
FROM TABLE

————— »[RUNTIME
JS8B < — — — — -] ROUTINE

RTN

INTERPRETER LOOP

5-16

HP-83/85 System Architecture and Operation

After the runtime code is executed, the interpreter checks to see if the imme-
diate break is set in R17, and processes the next token if it is not.

The procedure shown is for system tokens. Tokens 370 and 371 provide access to
external tokens (that is, tokens whose tables reside in a binary program or ROM).

To find an external token, the interpreter first processes system token 370,
doubles it, then adds it to the base address to find the system runtime routine
for token 370. This runtime routine fetches the next two bytes via the R10
pointer; these bytes include the ROM number and the number of the token in the
ROM or binary program. The runtime routine for the token 370 or 371 then handles
this ROM or binary program token much the same way that the interpreter handles
system tokens.

PARSING

As a line of a program or calculator mode statement is entered to the CRT, it is
in ASCII code. When [END LINE] is pressed, the line is parsed. Parsing is the
process of translating the ASCII code into the internal form in which programs
are stored and run in the HP-83/85.

As a line is parsed, it is checked for syntax errors, changed to RPN (Reverse
Polish Notation) from its original algebraic form, and converted into tokens that
are then stored.

Each token consists of a single byte, and can represent a single keyword, such
as LET or PRINT. Tokens 370 (ROM token) and 371 (binary program token) are used
to allow extensions of the system by means of external ROMs and binary programs.

A table of system tokens may be found in appendix F of this manual. ASCII codes,
which are also used during parsing, may be found in appendix E.

Parsing begins with the Tline number or the first character of the statement and
moves to the right, processing each character and space. Multiple non-quoted
spaces are compressed (i.e., ignored) during parsing.

HP-83/85 System Architecture and Operation

Example: In parsing the T1ine 10 LET A = B * SIN (45), the HP-83/85 system pro-
duces the following tokens in the order shown.

Tokens
(Octal Values)

20 ’ Line number in BCD. (Two digits per byte.)
0

17 Length in bytes of statement.

142 LET token.

21 Store simple numeric variable token.

40 } ASCII codes for the variable "blank A."
101

1 Fetch numeric variable token.

40] Blank B (in ASCII).

120

32 Integer token.

105

0 BCD 45 in integer format.

0

330 Sine token.

52 Multiply token.

10 Store numeric value token.

16 End of statement.

The stack addressed by CPU register R12 is used for parsing. A token is pushed
onto the stack, the stack pointer is incremented, the next token pushed on, etc.

Parsing begins with the line number. This is loaded in BCD form; 20 is loaded
first, since it is the least significant byte.

Next is the size or length of the statement. During parsing this is a blank
placeholder byte; STSIZE is a pointer to the placeholder byte.

5-18

HP-83/85 System Architecture and Operation

In order to find a match for the keyword LET, the system looks first in tables
in the resident binary program, then in any external ROMs, and finally in the
internal HP-83/85 system tables. (For this reason, a binary program or external
ROM can take over any keyword.)

After parsing, if the statement was a program line, its tokens and addresses are
inserted into the program space at the correct locations. If it was an expres-

sion or calculator mode statement, the parsed code remains on the R12 stack and

is executed immediately.

For further details of parsing operations and register conventions at parse time,
along with specific system parse routines, refer to Parsing in section 7.

ATTRIBUTES

In the process of parsing a BASIC statement, code is generated which consists of
tokens and other information. For each token there is a set of attributes which
define the type of token. The attributes occur immediately before the runtime
code for the token.

v T) ¥
Secondary Attributes (If required) Par. 3 Par. 4 Par. 5§ Par 6 Increasing
Addresses
Secondary Attributes # of parameters Par. 1 Par. 2
Primary Attributes Type Class

Runtime routine starts here

ATTRIBUTES

Attributes are used to specify how parsing is to occur, how allocation and de-
allocation are to be performed, and how decompiling is to occur. They indicate
to the system how the token is to be handled at these times. Attributes are not
used at runtime.

There are two types of attributes: Primary and secondary. All tokens have pri-
mary attributes, but only BASIC language system-defined functions and operators
have secondary attributes. The primary attributes immediately precede the run-
time code. Secondary attributes occur before the primaries, and may occupy one
or more bytes.

HP-83/85 System Architecture and Operation

PRIMARY ATTRIBUTES

Within the primary attributes, the two most significant bits specify the token
type. The next six bits specify the class.

TYPE
Bits 7 and 6 define the type of token.

Bits 7, 6 Type
11 BASIC statement, illegal after THEN.
10 BASIC statement, legal after THEN.
01 System command. (Non-programmable.)
00 Other (Not BASIC statement; e.g., function or operator.)
Examples:
Token Primary Attribute
DEF FN 3xx Illegal after THEN.
LET 2xx Legal after THEN.
DELETE Ixx Not programmable.
SIN Oxx Not a BASIC statement.
CLASS

The class indicates the form of the token. In many cases, the class is specific
to a few tokens. A complete 1ist of tokens and primary attributes may be found
in appendix F, but the classes of tokens most often used in assembly language
programming are shown here.

5-20

HP-83/85 System Architecture and Operation

Class Token Description
(Bits 5-0)
40 Immediate execute.
41 Other reserve words (i.e., most BASIC statements.)
42 100 Misc output (e.g., @ for special character handling).
44 31 Misc ignore. (Invisible at decompile time.)
50 Numeric unary operator. (e.g., —.)
51 Numeric binary operator. (e.g., +, —, *, /,\)
52 String unary operator.
53 String binary operator. (e.g., &.)
55 Numeric system function (e.g., SIN, COS).
56 String system function. (e.g., CHRS, VALS.)

USEFUL TOKEN CLASSES

SECONDARY ATTRIBUTES

Secondary attributes are used to specify the parameters for system-defined func-
tions, as well as the precedence of numeric and string operators.

SECONDARY ATTRIBUTES FOR FUNCTIONS

A single byte can specify the parameter type for a function. A second byte is
required only if there are more than two parameters. The first two bytes of
secondary attributes are shown here.

7 6 5 4 3 2 1 0 Bit

Par. 3 Par. 4 Par. 5 Par. 6 Second Byte

of parameters Par. 1 Par. 2 First Byte

PARAMETER LOCATION

Parameter types must be inciuded for all parameters used. The types are shown
here.

Parameter Type Description

0 Numeric

1 Numeric array

2 String

3 Not available
PARAMETER TYPES

R=?1

HP-83/85 System Architecture and Operation

SECONDARY ATTRIBUTES FOR OPERATORS

Secondary attributes also specify the precedence of numeric and string operators.
The least significant four bits specify the precedence, as shown.

7 6 5 it

a 3 2 1 0o B
[p[elrfe]

PRECEDENCE LOCATION

The precedence is defined within the HP-83/85 system as:

OR, EXOR

AND

Relational operators

+, -, Monadic +, monadic -, NOT
*, /»\ , DIV, MOD

A

20N P

(Some early versions of the HP-85 may have slightly different precedence.)

The only string operator is &, the concatenation operator, and it has a prece-
dence of 7.

RUNTIME

When a BASIC program is run, it is first allocated--all variable names are
changed to relative addresses and all line references (such as GOTOs and GOSUBs)
are changed to relative address references.

When the program is executed a token pointer (CPU register RIO) is set to the
first line of the main program, or to a specified line number, and control
passes to the interpreter loop. The interpreter fetches a token, fetches the
address of its runtime routine, and performs a JSB jump to the address to
execute the routine there. The interpreter then fetches another token and
execution continues to the end of the Tine.

5-22

HP-83/85 System Architecture and Operation

Example: Recall the parsing for the line
10 LET A = B * SIN(45)

After parsing and allocation, tokens for the line are stacked in the program
portion of memory as shown on the left below.

Tokens R12 Operating Stack
20]
0 —_ 1
17
142
21] Address of 2
Address of A A
1
Address of B]\ Address of A s
1";‘; Value of B
0
0 Address of A
330 } B 4
52 } 45
v |}
16 Address of A
B 5
SIN (45)
Address of A 6
B*SIN (45)
7

RUNTIME EXECUTION

R10 points to token 142. The interpreter passes over the line number (the first
two bytes here) and the length (value 17, indicating that 17 bytes following be-
long in this line), then fetches token 142.

Token 142, the token for LET, is used as an index into the runtime table, a table
of addresses which point to the runtime routines for the tokens. The interpreter
fetches the address for the runtime routine for LET and causes a JSB to the
routine. The LET routine does not affect the R12 stack.

5-23

HP-83/85 System Architecture and Operation

After a return, the interpreter loop fetches the next token, and a JSB is done
to that token's runtime routine. Since token 21 is the token for storing to a
variable, the next two bytes (the variable address) are loaded from the token
stream and pushed onto the R12 stack. These two bytes together give the address
of variable A. The name block of variable A is also fetched from that address
and pushed onto the R12 stack.

After a return to the interpreter loop, the runtime routine for the next token,

1, fetches a variable value. This fetch routine loads the next two bytes, which
are the address of the variable from the token stream, and uses that address to

fetch the value of variable B and push it onto the R12 stack.

After another return to the interpreter loop, token 32 causes the next three
bytes to be loaded from the token stream and pushed onto R12 as an eight-byte
tagged integer constant.

After a return, the next token, 330, causes a JSB to the sine routine. This
routine expects a numeric value on the R12 stack; it calculates the sine of that
value and pushes the computed result back onto R12.

The routine for the next token, 52, is the multiply routine. It expects two
numbers on R12, and it pops these numbers off, multiplies them, and pushes the
result back onto R12. The runtime routine for token 10 stores the value that
is on the stack into the address of the variable that is on the stack.

Token 16, the end-of-line token, causes some internal clean-up (such as releasing
any memory that might have been reserved by the line, etc.) and moves the run-
time pointer past the line number of the next line to its first token.

For further details and specific system runtime routines, refer to Runtime in
section 7.

DECOMPILING

Decompiling is the process of listing a program or statement. Internally, it
requires the reconstruction of input code as it was entered to the CRT screen.
The tokens which have been parsed into RPN and distributed in the system must be

5-24

reassembled into algebraic notation.
process of parsing and compiling.

Decompiling is a two-stack operation.

HP-83/85 System Architecture and Operation

Decompiling is actually the reverse of the

An expression stack is used to reconstruct

expressions from RPN to their original form, and an output stack is used to

buffer the output.

R12 is used for the expression stack.

In decompiling, the system processes each token and uses its class (a component
of the token's primary attributes) to determine how the token is to be decom-

piled.

Class

=

O W -

34

36
41

42

44
50

51

52
53
55

56

Type of Token
End-of-1ine

Fetch variable
Integer

Store variable
Numeric constant
String constant
Subscript, e.g., A(3)
Dimension subscript
e.g., A$[

Prints

Other reserved words

Miscellaneous output

Miscellaneous ignore
Unary operator

Binary operator

String unary operator
String binary operator
System function

String system function

Here are some common classes and how they are decompiled.

Action
Unstack.
To expression stack.
To expression stack.
To expression stack.
To expression stack.
To expression stack.

() to expression stack if token odd; other-
wise (,) to expression stack.

[] to expression stack if token odd; other-
wise [,] to expression stack.

Unstack and push , to output.

If : then unstack, output reserved word,
then unstack.

If @ then push to expression stack and un-
stack; otherwise output.

Ignore.

Insert after most recent missing operator in
expression stack.

Replace most recent missing operator in ex-
pression stack.

Same as class 50.
Same as class 51.

For each parameter, replace the most recent
missing operator with , . Then insert func-
tion name and (at most recent missing opera-
tor and push) onto expression stack.

Same as class 55.

DECOMPILING BY CLASS

5-25

HP-83/85 System Architecture and Operation

The following example should help illustrate how decompiling occurs:

Example: Recall agaijn that the statement

10 LET A = B * SIN(45)
was parsed into the tokens shown below. These tokens are decompiled into the
output stack and the expression stack as illustrated.

Step Output Stack Tokens R12 Expression Stack

1. 10 ¢«———— [2

3 10 LET -—
2 0 { 142

21
40
3. 10 LET 101

377

4. 10 LET 40
102

377

32 377

105
5. 10 LET 0

377

377

6. 10 LET 330

377
45

oy

377

377

377

SIN(

45

5-26

HP-83/85 System Architecture and Operation

7. 10LET 52
8. 10LET 10
ar7
A
377
B
SIN(
as
)
144
A
B
SIN(
45
)
9. 10LET A=B*SIN(45) 16

DECOMPILING

Since the tokens are arranged in RPN internally, as the system decompiles the
tokens it pushes missing operator tokens (377) onto the expression stack. These
missing operator tokens are merely "placeholders" until the arithmetic operators
can be inserted at a later step.

Unlike parsing, decompiling is not an operation to which a binary program or ROM
normally has access, since these programs are seldom required to perform any
unique operations during decompiling. In some special cases the parse routines
for a binary program or ROM may require modification if a statement is to be
decompiled correctly. But for the most part, decompiling will not be a problem
for the writer of binary or ROM programs.

For further details and specific system decompile routines, refer to section 7.

5-27

HP-83/85 System Architecture and Operation

VARIABLE STORAGE

In the HP-83/85, variables may be stored in the variable storage area at the end
of the BASIC program, in the common storage area, and in the area allotted for
calculator variables.

FWCURR ——>»

’

1st variable token

Address
(2 bytes)

Main _— —
BASIC Program <
and Memory

2nd variable token
Address
(2 bytes)

Variable space length

(2 bytes)

Name block,

1st variable

[]
Value

Program
Variables Name block,

2nd variable

Value

NXTMEM ———» \

VARIABLE STORAGE

5-28

HP-83/85 System Architecture and Operation

In the main BASIC program, each variable is referenced by means of a token fol-
lowed by a two-byte address. The variable itself is held in another part of
memory, within the storage area for program variables. Immediately after the
end of the BASIC program and available memory area in RAM is a two-byte quantity
that signifies the beginning of variable storage and contains the length of the
total space allotted for storage of that program's variables.

Each variable consists of a name block followed by the value of the variable.
The two-byte variable address in the program is a relative one--it is actually
a measure of the distance from FWCURR to the variable's name block in the
storage area. The name block for each variable contains information about the
variable. The format of the variable is shown here:

Byte Bits

LEGEND
Bit Meaning
= Numeric
= String
= Simple
= Array
= Real
= Integer
= Short
= (Not used)
= Local variable

T2

Ti, TO

R2
= Remote variable

= Not being TRACEed
= Being TRACEed

= Variable

R1

RP

- 0O — O —= O W N - O - O — O
t

= Function value

5-29

HP-83/85 System Architecture and Operation

N3 through NO and L4 through LO describe the variable name of the form A-Z or
A0-Z9.
N3 through NO

Number minus 608; or 128 if blank.

L4 through LO

Alpha (ASCII) Code minus 100,.

x In the following diagrams, x indicates the setting of the bit does not matter.

SIMPLE VARIABLE STORAGE
LOCAL VARIABLES

Byte
0 0 0 T TO N3 N2 Nt NO
1 0 R1 0 L4 L3 L2 L1 LO
2 Value 8 bytes if real number.

4 bytes if short number.

3 bytes if integer number.

REMOTE VARIABLES

A remote variable is a common variable or a subprogram parameter passed by refer-
ence. Subprogram capabilities are available through some ROMs and these subpro-
grams may have variables held in common.

Byte
0 0 0 T To N3 N2 Ni NO
1 1 R1 0 L4 L3 L2 U Lo
2 Pointer (2 bytes) to value
3

5-30

ARRAY VARIABLE STORAGE

LOCAL VARIABLES

Byte

~N O 0 s W N

10

10+n

10+n*m

10+n*m+n
etc.

REMOTE VARIABLES

HP-83/85 System Architecture and Operation

Common area passed by reference.

Byte

0 1 ™ TO N3 N2 N1 NO
0 R1 0 L4 L3 L2 U1 Lo
Total size as originally declared
(2 bytes)

Max row
{2 bytes)

Max column (377,377 if vector)

(2 bytes)

Row 0, column 0
Row 0, column 1
Row 0, column m
Row 1, column 0
0 1 Ti TO N3 N2 Nt NO
1 R1 0 L4 L3I L2 U Lo

Pointer to total size

5-31

n = Element size (3, 4, or 8)

m = Number of columns.

HP-83/85 System Architecture and Operation

STRING VARIABLE STORAGE
LOCAL VARIABLES

Byte

0 1 0 X X N3 N2 N1 NO
L4 L3 L2 L1 Lo

-
o
0
-
o

Total length
(2 bytes)

Max length
(2 bytes)

Actual length
(2 bytes)

N e o A~ N

10+ String (as many bytes as required)

Maximum length is the maximum number of characters that can be placed in the

variable string. Actual length is number of characters currently in the variable

string. Total length and maximum length are always the same unless:

--An I/0 ROM is plugged in and this string is declared an I/0 buffer.

--This string has been declared as a string array (using a ROM with advanced
programming capabilities).

REMOTE VARIABLES

Common variable or subprogram parameter passed by reference.

Byte

0 1 0 x X N3 N2 N1 NO
1 1 R1 0 L4 L3 L2 L1 Lo
2 Pointer to total length

FUNCTION STORAGE

The user-defined functions in a BASIC program (created with DEF FN) are stored in
much the same manner as variables. Each is preceded in memory by a block that
gives information about the function.

5-32

HP-83/85 System Architecture and Operation

Because a function must restore status when it returns to a calling program,

a stored function saves a return address (in R10), the BASIC program counter
(PCR), the top-of-stack pointer (T0S), temporary memory, and calculator status
(CSTAT).

In the illustrations below, the legend is the same as that for Variable Storage.

NUMERIC FUNCTIONS

Byte

0 0 0 b ¢ X N3 N2 Nt NO
1 R2 1 L4 L3 L2 L1 Lo
2 Function address
3 (2 bytes)
4 Return address
5 (2 bytes)
6 PC
7 (2 bytes)

10 TOS

1 (2 bytes)

12 CSTAT

13 Numeric function value (8 bytes)

5-33

HP-83/85 System Architecture and Operation

STRING FUNCTIONS

Byte

-h

N o g s W N

10
1
12
13
14
15
16
17
20
21

X X N3 N2 N1

NO

1 L4 L3 L2 L1

Lo

Function address

(2 bytes)

Return address

(2 bytes)

PCR
(2 bytes)

TOS
(2 bytes)

CSTAT

Total length
(2 bytes)

Max length
(2 bytes)

Actual length
(2 bytes)

String function value

FORMATS ON THE R12 STACK

The stack to which CPU register R12 points is used for many operations by inter-

nal HP-83/85 system routines.

Number of bytes = total length.
(Always 18 bytes.)

The formats of variables that are fetched and

stored during runtime execution of certain specific tokens, as well as the

formats of numeric quantities, are shown below.

VARIABLES ON THE R12 STACK

The following table illustrates the format of variables on the R12 stack after
the execution of certain tokens.

5-34

HP-83/85 System Architecture and Operation

Token
Executed Places On R12 Stack Number of Bytes
1 Value of simple variable. 8
2 Value of array element. 8
3 String length.
String address.
21 Address of value storage area.
Name block.
22 Absolute address of array variable area.
Column. (Present only if TRACEing.)
Row. (Present only if TRACEing, and array
is two-dimensioned.)
Dimension Flag. (Present only if TRACEing.) 1
Name block. 2
23 Base address of string. (Relative if pro- 2

gram mode, absolute if calculator mode.)

Length available to store string characters in.
Absolute address of 1st location available for
storing characters.

When fetching or storing substrings, the address points to the first character of
the substring.

Relative addresses are relative to FWCURR.

NUMERIC FORMATS ON THE R12 STACK

In internal HP-83/85 routines, all numbers popped off the R12 stack are eight
bytes long, so integer values are tagged with octal 377.

5-35

HP-83/85 System Architecture and Operation

Ef E2

EO MS
M10 M11

M8 M9

M6 M7 377

M4 M5 D1 Do
M2 M3 D3 D2
Mo M1 S D4

Tagged Integer

Undefined

-¢— [nteger Tag

NUMERIC FORMATS (R12 STACK)

In the illustration on the right, the byte above the number contains the octal
quantity 377. This 377 acts as a tag for the number, specifying the quantity as
an integer value that is only three bytes in length. The next four bytes popped
off the stack are then undefined and are ignored by the system.

5-36

SECTION b

WRITING BINARY AND ROM PROGRAMS

This section describes how to write a binary or ROM program. It outlines the
parts of the program, and it also explains how a binary program or a ROM program
is processed when it is assembled and when it is run.

Binary programs and ROMs are usually written to create new BASIC keywords or to
take over and modify the operation of existing BASIC keywords.

There are almost no procedural differences in writing binary programs and ROMs.
A binary program or a program for a ROM is written in an almost identical manner,
using the HP-83 or HP-85, the Assembler ROM, and, if desired, the System Monitor.
At assembly time, the object code for each is stored on a tape cartridge or disc.
The object code for a binary program is then loaded back into the HP-83/85 to be
run, while the object code for the ROM program may be read from the tape or disc
into a commercial PROM/EPROM burner.

There are a few internal differences between binary programs and ROM programs. A
binary program is usually relocatable, so that it may be loaded into computers
with different sizes of memory. ROM program addresses must be absolute, but a
ROM often needs to reserve some system RAM for its operation. Nevertheless, both
binary programs and ROMs use the same set of HP-83/85 instructions and pseudo-
instructions to generate source code.

Binary program and ROM source code is created using the instructions that make up
the set of assembly language elements found in section 4 of this manual. These

include the CPU instructions as well as the pseudo-instructions. The assembly
language elements include, of course, subroutine jumps. These jumps can be used
to actually call up internal HP-83/85 system routines for use in a binary program
or ROM. It is often much easier to call a system routine to perform a function,
rather than to painstakingly write the code to perform it. A list of available
system routines and their addresses may be found in section 7 of this manual.

Writing Binary and ROM Programs

PROGRAM STRUCTURE

The structure, or "shell," of each binary program should be the same; this shell
is shown below:

NAM

DEF RUNTIM
DEF ASCIIS
DEF PARSE
DEF ERMSG
DEF INIT

PARSE BYT 9, P
--Parse routine addresses go here.
RUNTIM BYT 9, 0
--Runtime routine addresses go here.
BYT 377, 377
ASCIIS BSZ 9
--Keyword table goes here.
BYT 377
ERMSG BSZ 9
--Error message table goes here.
BYT 377
INIT BSZ P
--Initialization code goes here.
RTN
--The rest of the binary program goes here.
FIN

BINARY PROGRAM SHELL

In order to examine the structure of a real binary program, look at the example
program on the next page. The program creates a new BASIC statement, FTOC, for
converting Fahrenheit temperature to Celsius. The function returns the Celsius
equivalent of its Fahrenheit argument, according to the formula C = F-32*5/9.
This program is one of the example programs on the Assembler Global File tape
cartridge and disc.

Both the source code as it appears on the CRT and the object code are shown.

6-2

QOO0O0
QOOO0O02

000006
QOOO1LO
DOOO1L 2
QOO014
OOO0L s
QOOOZ20
000022
QOOOZ4
QOO0

QOO0O32
QOOOZ2
QOOOIZZ
QOOOT4
QOOO40
0000432
Q00044
QOOO44
QOO0O4 4
O00O044
000044
DOOO4 4
QOOOS0

QOOOS2

OQOQOO54
QOOOS4
QOON54
QOOO54
QOOO54
QOO0
QOO0OAL
QOO041
VO00L]
QOO0N61
OO00&2
DOOOLD
000062

QOO 2

QOOOLT
QOOOOLT
QO0063
DOOOLS
QOOO0O&S
OOO0ME
QOOO7O
QOO0O71
DOO0O73

104
117
Q40
Q2
QOO0
Q00
QOO0
QOO0
OO0
QOO0
Q00
QOO0
QOO0

ot i
)
ol

ey
b i

326

526

[S1814%]

QOO0

)
Ry

377

1046
117
E77

230
16

-/
s

150
241

124
103
040
OO0
QOO0
QOO0

OO0
QOO0
QOO0
67018}
Q00
OO0
QOO0

)
IR

)
-t ulh
ey
R

326

224

QOO0

QOO0
ey

226
377

12

IOE

]
-t

Q40

L8T

Writing Binary and ROM Programs

FRCAOKKOKOK KKK KK K Ok K Ok KKK K Rk ok kKK XK
FTOC ‘BINARY

e 4
Yx (o)
R |

Hewlett-Fachkard Co.

1980

S
X
X

PRORORR00K KK XK OK KKK K KRR R KKK KKK k

GL.O
NAM

GLORAL
FToC

‘Creates program control block.

IR22S S 2352338 230353325 ETE
'System Table:

DEF
DEF
DEF
DEF
DEF

RUNTIM
ASCIIS
FARSE
ERMSG
INIT

ES2828 328283232333 3383833¢%
'Parse Routine Table:
FARSE BYT 0,0

RS2 022220283282333333383587F"

'Runtime Routine Table:

RUNTIM BYT 0,0

£KOKOKOK K Kk ROKOK K K K K KK K KOk K K KKK X

DEF
BYT

FTOC.
377,377

'AsCII Table:

AGBCIIS

1K KKK K AOK KK KKK K K K K K KKK Kk kK K

BSZ
ASF

BYT

Q
"FTOC™

377

'Error Message Table:
ERMSG BSZ ©

IR 2203222¢833323333¢¢333888%¢:
'Imitialization Routine:

INIT

1KOKOK OKOKOK KK KK KK K K 0K KKK K K K KOk

BYT

B&Z
RTN

x77

O

'Runtime Routines:

FTOC.

BYT
BSZ
BIN
JSE

LDM

20,55

(%]
=0NER

RS0, R40

'Attributes for FTOC.

'Begin runtime routine.

'Sets BIN mode for ONER routine.
'Load F into R40.

'Move F into RS0.

Writing Binary and ROM Programs

QOQO74 140 251
OOO074 OO01L OO0
QOO100 OO0 OO0
DOO102 OO0 OO0
QO0104 000 Q&2
000106 316 32 JSB =GUR10
000110 Z2
000111 170 012
Q00113 343
000114 150 251
Q00116 000 QOO0
QOO 120 OO0 OO0
QOOL22 000 000
QOO124 OO0 120
Q00126 T1é6 326 JER =MFY10
000130 326
QO0131 170 012
QOO133 343
Q00134 150 040 LDM R50O,R40
QOOL1Z4L 241

LDM R40,=1,0,0,0,0,0,0,32

FOMD R70,-~-R1Z

FOMD R70,-R12

'Load 32 into R40.

'FPertorm subtraction.

'Throw away copy on stack.

LDM RS0,=0,0,0,0,0,0,0,50C 'Load S into RSO.

'FPertorm multiplication.
'Throw away copy on stack.

"Move intermediate result to

QOOL37 140 251 LDM RAO,=0,0,0,0,0,0,0,920C !'Load 9 into R40.

QOO141 Q0O OO0
QOO1473 OO0 OO0
Q00145 000 Q00
Q00147 000 220

Q00151 316 326 JSB =DIV1O
QOO153 326

000154 23 RTN

000155 ONER DAD 56215

OO0155 SURLIO DAD 32137

Q00155 MFY10O DAD 52562

Q00155 DIV1IO DAD S1644

FIN

'Ferform division.

‘Answer is on stack, so return.

6-4

Writing Binary and ROM Programs

The explanations on the following pages refer to this example program.

PROGRAM CONTROL BLOCK

The first 308 bytes of each BASIC and binary program are called a program control
block. In the example program, the program control block appears in source code
as:

10 LST
20 GLO GLOBAL
0 N&aM FTOC

In a BASIC program, subprogram, or binary program these bytes contain information
about the program. In a binary program, the following two bytes contain the
absolute address at which the binary was last loaded. In the example program,
this 32-byte section of code is reserved by the NAM statement.

A ROM does not contain this program control block. Instead, a ROM program is
begun with the ROM number in the first byte and the ROM number complement in the
second byte. A ROM program in memory will always begin at absolute location
60000.

In the example program, the NAM statement is preceded by the pseudo-op LST, which
causes the object code to be listed during assembly of the program.

SYSTEM TABLE

Next in the example program is the system table for the program. This table is
a list of addresses that in turn locate the runtime, ASCII, parse, and error
message tables and the initialization routine farther down in the binary program.

6-5

Writing Binary and ROM Programs

&0 DEF RUNTIM
70 DEF ASCIIS
80 DEF FARSE
F0 DEF ERMSG
100 DEF INIT

The system table must always be present in a binary or ROM program, and it must
always contain the addresses of subsequent tables in exactly the order shown here.

ROM Binary
Address Contents Program Byte
60000 —» ROM# Binary program base address -«¢————— 30
ROM# complement
60002 » Address of runtime table ——— 32
60004 » Address of ASCH table - 34
60006 » Address of parse table ~——— 36
60010 » Address of error message -«——— 40
60012 » Address of initialization table w————— 42

SYSTEM TABLE ADDRESSES

At certain times during operations such as initialization, parsing, running, key-
board entry, and error conditions, the HP-83/85 system expects an address of a
table of addresses of routines for that operation to be in a specific location.

If a binary program is resident during initialization, for example, the system
expects in byte 42 of the binary program the address of an initialization routine.
The system will use the contents of bytes 42 and 43 (whatever those contents are)
for the address of the table.

PARSE ROUTINE TABLE

Next in memory is a table of addresses of the parse routines used by a program.

130 PARSE BYT 0,0

6-6

Writing Binary and ROM Programs

In the example program there are no parse routines required. This is because
the only keyword (FTOC) is a function, and thus has a syntax which can be under-
stood and parsed by the HP-83/85. FTOC is a numeric function (attributes 20,
55) of one numeric parameter, just like SIN or COS.

The HP-83/85 automatically knows how to parse numeric and string functions be-
cause of their attributes. However, if a binary program or ROM creates a new
BASIC statement, a parse routine will be required.

The data declaration pseudo-op BYT @, P is merely a filler to occupy the required
opcode field. It corresponds to token P within the binary program. (Token § is
illegal in the system and cannot be used.)

RUNTIME ROUTINE TABLE

The table of addresses that will be used during runtime follows.

160 RUNTIM BYT 0,0
170 DEF FTOC.
180 BYT 377,377

BYT P, P is again used as a filler. When executing object code, the system
locates the address for RUNTIM, skips two bytes, then uses the next two bytes as
an address for the first runtime routine.

A common convention, although not one that is required, is to name runtime
routines with the keyword (or an abbreviation) followed by a period.

The pseudo-instruction BYT 377, 377 inserts two bytes with all bits set. This
signifies the end of all addresses to be relocated during loading of the binary
program.

The address tables for binary programs are relative when assembled. When the
LOADBIN instruction is executed, the object code is first loaded, then some
relocation is done. A1l pointers up to the first occurrence of an octal 377, 377
are adjusted. This is necessary because the ASSEMBLE command stores a program

6-7

Writing Binary and ROM Programs

without readjusting the pointers and because the machine into which the program
is later loaded may not have the same memory size as the one which stored the
code.

Since a ROM program is not relocatable, the 377, 377 "marker" is not required in
a ROM.

ASCI1 TABLE

The next component of the program is the table that contains the ASCII keywords.

210 ASCIIS BSZ O
220 ASF "FTOC"
230 BYT 377

In an ASCII table, all of the keywords are arranged sequentially:. When a BASIC
statement is entered to the CRT, the system attempts to match the characters that
are entered with a keyword in one of the ASCII tables. It looks first in the
resident binary program, then in any plug-in ROMs, and finally in its own ASCII
tables for a match.

The system attempts to find a match, processing a character at a time until it
reaches a character with its most significant bit set. A character with its

MSB set signifies the last character of a keyword. If no match has been found,
the system assumes the next character in the tables begins a new keyword, and it
moves to that character, increments a token counter, and begins trying once again
to find a match.

In the example program, the ASP pseudo-instruction causes the most significant
bit of the C in the keyword "FTOC" to be set. BYT 377 sets all the bits in one
byte, signifying the end of the ASCII table.

ERROR MESSAGE TABLE

Like the other tables, the address of the error messages is required in a binary
program.

6-8

Writing Binary and ROM Programs

260 ERMSG BSZ O
270 BYT Z77

In the example program, there are no error messages. Errors during parsing will
be reported by the system, since system routines are performing all parsing; and
runtime errors will be trapped by the math routines used. Again, BYT 377 signi-
fies the end of the table.

INITIALIZATION TABLE

This section of the program contains the address of a routine that is executed
during initialization. This section is entered during power-on, reset, alloca-
tion, deallocation, and at other times. The flag in memory location ROMFL
indicates which of these entry possibilities has occurred.

F00 INIT BSZ O
10 RTN

The example program does not require any specific action during initialization,
so all that is required is a return. For an example of ROMFL usage, see the
Special Function Keys as Typing Aids example program in section 8.

RUNTIME ROUTINES

This section contains most of the code used in the program, and normally includes
many runtime routines. Routines here must be included in the tables above;
otherwise, the system will not be able to access these routines. In the example
program, there is only a single runtime routine mentioned in the tables above:
"FTOC."

During parsing, when the system finds the routine address for a particular key-
word (FTOC., in this case), it examines the primary attributes, located one byte
before the runtime code. (It also examines secondary attributes, if required.)
The attributes define for the system the type of keyword--statement, function,
operator, etc.--so that the system can process the keyword properly.

6-9

Writing Binary and ROM Programs

The attributes 20, 55 specify that the next keyword, FTOC., is a numeric function
with one numeric parameter, so the system knows how to parse a statement that
contains the keyword FTOC, and it knows how many parameters to accept at runtime.

Next is the runtime code for FTOC. The calculation to be performed is C = (F-32)
*5/9; the FTOC routine takes an argument off the R12 stack, subtracts 32 from it,
multiplies the result by 5 and divides that result by 9. Like all functions,
FTOC leaves the final result on the stack.

340 BYT 20,55 '‘Attributes for FTOC.

850 FTOC. EBSZ O 'Begin runtime routine.

360 BIN 'Sets binary mode for entry to ONER routine.
370 JSE =0NER 'toad F into R40.

8o LDM R5O,R40 ‘Move F into R350.

FZ90 LDM R40,=1,0,0,0,0,0,0,32C 'Load 32 into R40.

400 JSE =5UER10 'Ferform subtraction.

410 FOMD R70, -R12 'Throw away copy on stack.

420 LDM RS50,=0,0,0,0,0,0,0,50C 'Load 5 into R30.

470 JSR =MFY10 'FPerform multiplication.

440 FOMD R70,-R1Z2 'Throw away copy on stack.

450 LDM R50,R40 'Move intermediate result to R30.
460 LDM R40,=0,0,0,0,0,0,0,90C 'Load 9 inteo R40.

470 JSB =DIVIO Perform division.

480 RTN lAnswer is on stack, so return.

Refer to section 4 for descriptions of the CPU instructions and pseudo-
instructions used. Refer to section 7 for descriptions of the system routines
(such as ONER and MPY10) used.

EXTERNAL LABEL TABLE

After the runtime routine is a label table. The label table gives the addresses
in RAM of the system routines used in the binary program. Unlike the binary
program's own routines, there are no addresses available for system routines
unless the addresses are specified in some manner. These addresses will be found
in the system global file (listed in section 7 of this manual) and/or in the
1istings of individual system routines in the same section. In the example pro-
gram, the table of system label addresses is placed at the end for easy reference,
but it can be placed anywhere in the program after the BYT 377, 377 marker.

Writing Binary and ROM Programs

490 ONER DaD S96215
SO0 SURLO DAD 52137
510 MPY1LO DAD 52562
520 DIVIO DAD 51644

If the addresses for all system routines used in a program are available on a
global file on disc or tape (such as the Assembler Global File), a label table
need not be written. Instead, the program can be directed to look in the system
global file by means of the GLO pseudo-instruction. Merely place a GLO GLOBAL
instruction before the NAM instruction and ensure that the source file named
GLOBAL is available on the tape or disc when the program is assembled.

The user may also create a global file by assembling a 1ist of DAD's and EQU's,
with GLO as the first statement.

ENDING THE PROGRAM

FIN is used to terminate assembly; LNK is used to cause assembly to resume with
another section of source code.

50 FIN

SYSTEM HOOKS

The main reason for an external ROM or binary program is to extend the capabil-
ities of the main system. In order to allow for this, a number of hooks are
provided. A hook is a location where a binary program or ROM can gain control
of the system. There are three main categories of hooks: Language hooks,
general hooks, and initialization hooks.

LANGUAGE HOOKS

With language hooks the binary program or ROM can define new keywords, functions,
and auxiliary tokens. Because the system first polls the resident binary pro-
gram, then all external ROMs, and finally its own system tables when searching
for these, a binary or ROM program can take over or supersede any of them.

6-11

Writing Binary and ROM Programs

GENERAL HOOKS

To provide for each general hook, the system at certain times executes a JSB
subroutine jump to a specific RAM location. During normal operation each of
these RAM locations contains a RTN (return) or is otherwise idle. By placing

a JSB to a binary program or ROM at the hook location, the program or ROM gains
access to the operating system. It is the responsibility of the writer of the
external program to determine how to use the hook and how to avoid conflict with
other usages of the hook. No support is supplied by the system.

Unless otherwise noted, each general hook is seven bytes in length. General
hooks are supplied at the following points:

RAM Name Location Function

IOTRFC 102400 I/0 Traffic intercept. Used by I/0 and P/P ROMs.

IOSP 102407 I/0 Service pointer. Used by I/0 and Mass Storage ROMs.

CHIDLE 102416 Character editor intercept.

KYIDLE 102425 Keyboard intercept. Polled whenever a key is pressed.

RMIDLE 102434 Executive loop intercept.

IMERR 102452 Image statement errors. Located in image code. Used
by I/0 ROM.

PRSIDL 102461 Parser intercept.

IRQ20 102470 I/0 Interrupt (9 bytes). Interrupt vector, like key-
board service and clock routines.

SPARO 102501 Spare interrupt (9 bytes). Hardware interrupt vector
hook. Used by System Monitor.

SPAR1 102512 Spare interrupt (9 bytes). Hardware interrupt vector
hook.

GENERAL HOOKS

At power-on, the first two general hooks above are initialized to JSB = ERROR+,
BYT 25. The remaining eight are initialized to RTN.

6-12

Writing Binary and ROM Programs

The following section of code illustrates how to take over a hook (in this case,
the CHIDLE hook):

LDM R36, = KEYCHK Load address of routine to handle CHIDLE.

ADMD R36, = BINTAB Add value of BINTAB for an absolute address.
STM R36, R45 Store desired address in R45 and R46.

LDB R47, = 236 Load the opcode for return (RTN).

LDB R44, = 316 Load the opcode for JSB.

STMD R44, = CHIDLE Store it all (multi-byte store) to CHIDLE hook.

INITIALIZATION HOOKS

A routine called ROMINI is called on several occasions to perform initialization
in external programs. When this occurs, the initialization routines in binary
program and ROMs are given control.

A parameter is passed to the ROMINI routine by way of ROMFL, a single-byte RAM
cell. The occasions and corresponding ROMFL are:

ROMFL Value Function
0 Power on
1 RESET key
2 SCRATCH
3 LOADBIN
4 RUN, INIT
5 LOAD
6 STOP, PAUSE
7 CHAIN
10 Allocate token with class > 56
11 Deallocate token with class > 56
12 Decompile token with class > 56
13 Program halt on error

These calls to the ROMs and binary program allow these programs to initialize,
de-initialize, and otherwise keep track of operation. For instance, if a ROM
needs to reserve or "steal" memory permanently, it would check for ROMFL = @,

Writing Binary and ROM Programs

and reserve memory only when that is true. Another example is that during RESET
the I/0 ROM might want to deallocate buffers.

During initialization, a binary program or ROM should never destroy any CPU reg-
isters below R20. Similarly, no initialization routine should use CPU registers
other than R34-R37 until it is verified that the value of ROMFL is not 10, 11,
or 12. Once the value of ROMFL is not 10, 11, or 12, all CPU registers numbered
R20 or higher may be used.

ERROR MESSAGES

ROMs and binary programs have the option of reporting system (predefined) errors
or reporting their own error messages. System and ROM errors use positive error
numbers, while error messages defined by a binary program are referred to by
negative error numbers.

USING SYSTEM ERROR MESSAGES

HP-83/85 system errors can be used in binary programs and ROMs in the same way
they are used for system programs. This involves a subroutine jump to system
routine ERROR or ERROR+, which expect the next byte to contain the desired error
number.

Example:
JSB = ERROR Set errors.
BYT 37 System error 37.
Anything Continuation after error.
Example:
JSB = ERROR+ Set errors and return.
BYT 37 System error 37.

No return is necessary. ERROR+ throws away one return address before performing
a RTN.

Writing Binary and ROM Programs

This last section of code is equivalent to:

JSB = ERROR
BYT 37
RTN

ROM-DEFINED ERROR MESSAGES

When setting up an error message table for a ROM, remember that the first eight
error messages are warnings; they should have default conditions such as in the
ROM error message table shown here:

ERMSG BYT 200, 200, 200, 200 Eight dummy bytes with
BYT 200, 200, 200, 200 } MSB set.
ASP "SYSTEM DOWN" Error #118.
ASP "BAD INPUTS" Error #128.
ASP "WALK AWAY" Error #13,.
BYT 377 End of error message table.

Error messages defined in a specific ROM can be selected by first storing the
ROM number in a Tocation known as ERRROM, then calling system routine ERROR or
ERROR+. Since it is possible for multiple errors to occur before they are
reported, location ERRORS contains a flag that signals whether any errors have
already occurred; once ERRORS is set, ERROR throws away all subsequent errors.

Here is a section of code that would be Tocated within a ROM to check for any
prior errors, then load ERRROM with the ROM number for error reporting:

ERRSET LDBD R36, = ERRORS Get error flag.
JNZ DON'T Jump if already an error.
LDB R36, = 40D Otherwise load ROM number
STBD R36, = ERRROM (40]0 in this case) into ERRROM.

DON'T RTN

Writing Binary and ROM Programs

To report errors within ROM #50, the reporting code would first call the above
routine, then call ERROR or ERROR+, as shown in this example:

LDM R26, R36
SBM R26, R24

JZR GOAHED

JSB = ERRSET Select proper ROM number.

JSB = ERROR+ Report error 12. ("BAD INPUT"
BYT 12 in earlier error message table.)

Note that ERROR or ERROR+ will do nothing if ERRORS is already set, so no testing
is required after calling ERRSET.

BINARY PROGRAM ERROR MESSAGES

As in a ROM, the first eight errors within a binary program are warnings and
should have default conditions. Unlike system or ROM errors, however, binary
program errors are referenced by negative error numbers. Here is an example of
a binary program error message table:

ERMSG BYT 200, 200, 200, 200 Eight dummy bytes (377-370)
BYT 200, 200, 200, 200 } with MSB set.
ASP "BAD PARAMETER" Error #3678.
ASP "WILD CARD PROBLEM" Error #3668.
ASP "INPUTS LOST" Error #3658.
BYT 377 End of error message table.

When the correct error is found, the error number is reported in two's complement
form. The following section of code illustrates how an error message from the
binary program error message table might be called:

POMD 22, -12 Get a number.

JNZ 0K Jump if not zero.

JSB = ERROR+ Otherwise, report error
BYT 367 #367, "BAD PARAMETER."

Writing Binary and ROM Programs

BINARY PROGRAM AND ROM ADDRESSING

Functionally there is no difference between a binary program and an external ROM;
any task which can be performed by one can be done by the other. Each has spe-
cial problems, however, related mostly to addressing.

EXTERNAL ROM ADDRESSING

External ROMs are selectable by software, so a special problem occurs when
selecting among ROMs.

Suppose it is desired that an external ROM call the TIME function. This function
is located at address 65517 in the bank-selectable system ROM (i.e., ROM B).

Because the external ROM occupies the same address space, it is impossible to
directly select system ROM §, execute a JSB to the TIME routine, and return to

the calling ROM.

The solution is to call the system routine to be executed (TIME) through a sys-
tem routine called ROMJSB. Two parameters are passed to ROMJSB:

1. Address of the routine to be called.
2. ROM number of the location where the routine resides.

Example: To call the TIME routine, the source code in the external ROM would be:

JSB = ROMJSB Call to ROMJSB.
DEF TIME. Address of routine to be called (TIME).
BYT 9 Number of ROM that contains TIME.

When the TIME routine has been executed, control returns to the ROMJSB routine.
ROMJSB, in turn, reselects the calling ROM and returns execution to the next
instruction after BYT .

Another problem is how to return to the system ROM. It is impossible to select
ROM @ and then return, because selecting ROM P deselects the ROM which is trying

Writing Binary and ROM Programs

to execute a return. The solution is another system routine called ROMRTN, which
performs the same function (select ROM P and return). In most cases the system
automatically reselects ROM § after a normal return, but in some cases, such as
after all parse routines, the external ROM must "clean up" by selecting ROM
before returning. Executing GTO ROMRTN reselects ROM P and then returns.

A third problem is the overhead required to intercept a system routine. Several
general hooks have been provided; for example, in the executive loop a subroutine
jump is made to a RAM location (a system hook) called RMIDLE. At power-on, the
system stores a RTN at that location. To intercept the idle loop, a ROM must
load the following sequence into that location (and the following six bytes).

RMIDLE JSB = ROMJSB Call ROM switching routine.
DEF INTERC Address of routine to be executed.
BYT 17 ROM number.
RTN Return.

The load can be performed by the ROM's initialization routine when the ROM gains
control during power-on initialization (ROMFL = 0).

For a binary program to take over the same hook, all that is needed is:

RMIDLE JSB = INTERC
RTN

One further general caution is that any routine which calls an external ROM, such
as an interrupt service routine, must also use the ROMJSB utility. This is true
even if the external ROM is called from a binary program.

BINARY PROGRAM ADDRESSING

The addressing problem of binary programs is relocatability. The HP-83/85 pro-
cessor accomodates relocatable code. Al1 conditional jumps and the JMP command
are relative, so they are inherently relocatable. Arithmetic, loads, stores, and
subroutine jumps can all be performed in an indexed mode. If a two-byte register
contains a base address stored in RAM, such as BINTAB, then relocatable code can
be written using indexed addresses (indexed by the base address).

6-18

Writing Binary and ROM Programs

Examples of the various operations follow. The examples assume CPU registers
R36 and R37 contain the base address of the binary program. The base address
will be stored in BINTAB (101233) by the system LOADBIN command.

Examples:
LDMD R36, = BINTAB Load up base address.
JSB X36, DEST. JSB to destination DEST.
LDM R40, X36 CONST Load a constant into R40.
LDMD R22, X36, ADDR Load direct R22.

CONST BYT 12, 34, 56, 70
12, 34, 56, 70

DEST. RTN Short subroutine.
ADDR BSZ 2 Address in main memory.
FIN End of program.

A1l of the labels in this section of code are merely examples.

RESERVING RAM

A binary program or ROM sometimes requires that system RAM be "stolen," or
reserved, for its use. There are two distinct uses for this RAM.

1. Temporary scratch-pad area for the current routine.
2. Permanently-reserved RAM.

For temporary use of RAM, the binary program or ROM can call system routine
RESMEM, which will reserve memory. (See the RESMEM system routine in section 7
for documentation.)

RAM can be permanently reserved by a ROM or by a binary program.

RAM RESERVED BY A ROM

RAM that is permanently "stolen" by a ROM must be reserved at power-on. This can
be performed during initialization by an INIT routine such as the one shown here:

Writing Binary and ROM Programs

INIT. BIN
LDBD 36, = ROMFL Get ROMFL contents
JNZ NOTPWO Jump if not power-on.
LDMD 36, = FWUSER Get address of first user byte.
STMD 36, = UNBASI Store base address for later use.
ADM 36, = 100,0 Add number of bytes needed.
STMD R36, = FWUSER Reset the first word pointer.
JSB = ROMJSB Call the system scratch routine
DEF SCRAT+ to clean up some pointers and the
BYT P program header.
RTN Return. (Or do more initialization.)

System addresses UNBAS1 and UNBAS2 are locations where the base address of re-
served RAM is stored. Any time access to this "stolen" RAM is required, the
address in UNBAS1 (or UNBAS2) can be loaded into a register and used as a base
address with which to index the reserved RAM. For example:

LDMD 22, = UNBASI Stores zeros into the
CLM R40 10th through the 17th (octal)
STMD R40, X22, VALUE bytes of stolen RAM.

VALUE EQU 10

RAM RESERVED BY A BINARY PROGRAM

A binary program is not loaded at power-on, so it cannot reserve RAM at this
time. Also, a binary program should not reserve memory at the time LOADBIN is
performed because a BASIC program may be resident in that RAM space. However, a
binary program can reserve RAM within its own program space. For example:

VALUE BSZ 10 Generates 8 bytes of storage area
and inserts them into object code.

ENTRY. LDMD R22, = BINTAB Base address of binary program.

CLM R40
STMD R40, X22, VALUE Stores 8 zeros into location VALUE.

6-20

Writing Binary and ROM Programs

This routine reserves eight bytes of zeros for permanent use as either scratch-
pad or permanent storage memory.

ACCESSING THE PROGRAM CONTROL BLOCK

Although most of the program control block of a BASIC program is of little use to
assembly-language programmers, there is one byte that contains program informa-
tion that can prove valuable in writing binary programs or ROMs. The seventh
byte of the PCB contains the status information shown below.

LEGEND

C = Common Variables
p if no common variables are present
1 if common variables present in program

o
"

Option Base
for option base 1
1 for option base f

A = Allocation Status
@ if deallocated program
1 if allocated program

P = Program Type
P BASIC main program
1 BASIC subprogram
2 Assembly-language program (ROM or binary)

Access to this byte can be gained through the section of code shown here:

6-21

Writing Binary and ROM Programs

LDMD R30, = FWCURR Pointer to 1st byte of
PCB of current program.

ADM R30, = 6,0

LDBD R30, R30

ASSEMBLING

To assemble a binary or ROM program:

1. Ensure that a tape cartridge is inserted in or a disc attached to the
HP-83/85.

2. Store the source code on the mass storage device first. This step is not
required, but is highly recommended. The HP-83/85 system is vulnerable to object
code which takes over hooks or keywords, and source code may be irretrievably
lTost during assembly. (See below.) Source code is stored with the ASTORE
command.

3. Type ASSEMBLE "file name" to assemble the object code on the mass storage
device and load it back into memory. Or type ASSEMBLE "file name", number other
than @ to assemble the object code on the mass storage device without loading it
into the computer's memory.

The file names used can be different from those specified by NAM. However, a
good convention is to name the object code file with the name specified by NAM,
followed by a "B" for binary. The source code file can be specified with the
name followed by "S" for source.

Generally, the source code will be destroyed during assembly by any of the fol-
lowing conditions:

1. If a LNK has been specified, the linking code will destroy the previous code.

2. If an immediate load is specified and the initialization routine contains
faulty code.

6-22

Writing Binary and ROM Programs

3. If a binary or ROM program that takes over CHIDLE is assembled, then listed
with the [LIST] key.

USING A BINARY OR ROM PROGRAM
BINARY PROGRAM

Once assembled and loaded, a binary program makes all its keywords available for
use by the HP-83/85 system. The keywords become part of the computer's BASIC
instruction set, so a BASIC function such as FTOC, for example, could be used

as a calculator mode statement:

FTOC(32)
Or as a BASIC language element:

10 LET A = FTOC(100)

ROM PROGRAM

A ROM program is stored in a tape or disc file as a series of 125-character

ASCII strings. To create an EPROM, the HP-83/85 can be connected through HP-IB
(Hewlett-Packard Interface Bus) or another I/0 interface card to a commercial
PROM burner. The HP-83/85 can then be loaded with a simple BASIC program to read
the strings from the tape or disc and send them byte-by-byte to the PROM burner.

NOTE
For further aid in writing binary and ROM programs, study
the sample programs supplied on the tape cartridge and disc
and listed in section 8 of this manual.

6-23

NOTES

6-24

SECTION 7/

HP-83/85 SYSTEM ROUTINES

This section of the manual gives a listing of the global file contained on the
tape cartridge and disc provided with the HP-83/85 Assembler ROM; it also gives
detailed information on operation of many specific areas in the computer and on
the system routines within the global file.

THE GLOBAL FILE

The global file on the tape cartridge and disc is listed below. It gives the
permanent addresses in memory of many of the system routines used by the HP-83/
85. The global file also contains locations of system pointers, buffers, vari-
ables, and constants which may be referenced in a binary program.

On the tape cartridge and disc supplied with the Assembler ROM, there are
actually two copies of this global file.

--GLO1S and GLO2S together make up the global source file. This is an extended
file, type ****, and can be edited by the user, if a user-written change to
the global file is desired. GLO1S and GLO2S can also be used to print out a
listing of the global file.

--GLOBAL is the global file in object code. This is a data file containing normal
ASCII strings that make up the assembled object code for the global file. When
the pseudo-op GLO GLOBAL has been placed near the beginning of a binary program,
during assembly the computer will look at this file for the addresses of any
undefined labels in the program.

Although it is usually more convenient, it is not necessary to use the file
GLOBAL as a label table. You may create your own label table on a mass storage
device, or you may specify the addresses of the system routines called in a
binary program by adding them to the label table within the program.

The global file on the following pages is the same as the one on the tape car-
tridge and disc supplied with the Assembler ROM.

HP-83/85 System Routines

LEGEND

Name
Address
Description A short description of the routine.

Name of routine, buffer, etc.

Permanent octal address of routine in HP-83 or HP-85 memory.

GLOBAL FILE

10
15
20
30
40
50
55
&0
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
=0
240
250
260
270
280
290
300
310
320
330
340
IS0
Z60
370
380
390
400
410
420
4730
440

NAME

ADDRESS

Pk R Rk ROk kR R okok ok kkokk Aok k Xk

LR ¢

1 HF-83/8%5 ASSEMBLER
GLOBAL FILE
'¥ () Hewlett—-Fackard Co.

LR

'x
R

13 KK 3K KOK 30K K kK ok ok koK ok ok K ok okok

GLO
FWUSER DAD 100000
FWFRGM DAD 100002

FWCURR
NXTMEM
LAVAIL
CALVRE
RTNSTE
NXTRTHN
FWEIN
LWAMEM
LLDCOM
FLDCOM
DISFTR
FRTPTR
ONFLAG
AUTOH#
AUTOI
ERL IN#
ERNUM#
ERRROM
ERROM#
EDMODZ2
ERRORS
ERRTYF
FEYCNT
KRFET1
ERFETZ2
LDFLTR
DRG
SVCWRD
I105W
CRTBYT
CRTRAM
XMaF
YMAF
Cs.C.
F&.0.

DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD

1980

100004

100006
100010
100012
100014
100016
100020
100022
100025
100027
10003F
100033
100040
100054
100056
100062
100064
1000465
100066

100067
100070
100071

100120
100121

100122
100123
1001235
100151

100152
1001746
100200
100262
100263
100264
100274

¥
X
X
X
X
%
%

DESCRIPTION

'FWA USER AREA

FWA FROGRAM AREA

PTR TO CURRENT PGM

'NEXT IN AVAIL USER MEM
'LAST AVAIL EBYTE IN FGM AREA
'START OF CALC VARIABLES
'TOF OF GOSUER RETURN STACEK
INEXT AVAIL GOSUB/RTN

= WAMEM IF NO BFGM LOADED ELSE
tLWA USER MEM

‘LAST LINE DECOMFILE
'FIRST LINE DECOMFILE
IDISF BUFFER PTR

'FRINT BUFFER FPTR

'ON GOSUB FLAG

AUTO LINE # LAST VAL
TAUTO LINE # INCREMENT
'LINE$# OF BAD LINE

'ERROR NUMEER

'ROM# OF ERROR

TROM # OF LAST ERROR
VING/RFL. MODE FLAG

'RUN TIME ERRORS

TERROR TYPE

'WEYROARD COUNTER RFT
'"MAJOR KYERD REFEAT

'MINOR KYBD REFEAT

WIST BREAE LINE COUNT
'DEG/RAD/GRAD

'SERVICE WORD

1I0 SVC WORD

'CRT BYTE ADDRESS

'CRT FAGE ADDRESS

'LAST X FLOTTED (0-255)
'LAST Y FLOTTED (0-255)
ICRT IS select code (8 BYTES)
TPRINTER 15 select code

7-2

=RINTAB-1

450
460
470
480
490
500
510
520
S30
540
S50
560
570
580
590
&HO0
&10
620
%4]
640
&S50
&H60
&70
&80
&P0
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
a80
890
P00
910
92

QIO
40
950
60
Q70
980
90

NAME ADDRESS

DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD

100310
100447
100450
100524
100524
1005464
100642
100644
100645
100650
100660
100665
100666
100671
100672
100710
100730
101016
101073
101077
101101
101103
101110
1011730
101132
101231
101233
101235

INPBUF
LASTIN
ERRBUF
ERBEND
FRTBUF
DISEUF
FCR
FRFLAG
DSFLAG
TIME
DATE
DISFLN
PRNTLN
KEYHIT
INPTR
LEGEND
LEGENZ2
CRTWRS
F.« BUFF
F.FTR
F.FLAG
LINELN
SCTEMF
STGIZE
TS
ROMFL
BINTAB
ROMTAE
ROMLST DAD 101272

STACK DAD 1013200

1o sk ok ok ok koK ok ok K ok ok Ok k kK ok kok
'% THE Ré& STACK USES THE X
‘% AREA OF MEMORY FROM X
% 101300 THRU 101777. ¥
bRk ok kokKok ok ook oKk k Kok ook Xk koo ok
IOTRFC DAD 102400

108F DAD 102407

CHIDLE DAD 102416

KYIDLE DAD 1024295

RMIDLE DAD 102434

IMERR DAD 1024352

FREIDL DAD 102461

IRGZ2O DAD 102470

SPARO DAD 102812

S8FAR1 DAD 102823

R3320 322222222223 32322202334
' THE FOLLOWING LOCATIONSX
% CONTAIN BASE ADDRESSES X
' OF STOLEN RAM FOR EACH X
'x OF THE EXTERNAL ROMS. X
T ROKOK Ok K KK KOk O KK kK oKk kK K kK ok ok K
IOBASE DAD 102536

MSBASE DAD 102540

AGLEBAS DAD 102542

AFRBAS DAD 102544

1000 BSREBAS DAD 102544

1010 MBABE DAD

102550

1020 ASMBAS DAD 102552

HP-83/85 System Routines

DESCRIPTION

'PARSER INFUT BUFFER

'END OF INFUT BUFFER

'ERROR BUFFER (44 BYTES)

'END BUFFER +1

'FRINT BUFFER

'DISFLAY BUFFER

'BASIC PGM LINE PTR

'PRINTED YET? FLAG AT FRINT EOL FOR FPRINT
'FPRINTED YET? FLAG AT PRINT EOL FOR DISF
'TIME OF DAY

'JULIAN DAY YEAR

'1 BYTE DISPLAY LINE LEN

'l BYTE FRINTER LINE LEN

'FEYRBOARD ASCII CODE

VINFUT LINE FOINTER

'EEY LABEL LEGEND AREA

'SECOND LINE LEGEND AREA

'CRT STATUS IN RAM

'INDIRECT BUFFER FTR

'INDIRECT FTR TO BYTE COUNT FOR CURRENT BUFFER
'INDIR. PTR TO PRFLAG OR DSFLAG OR F/P ROM FLAG
'DEVICE LINE LENGTH

'SELECT CODE TEMF STORE

'STATEMENT SIZE FLACE HOLDER FTR

'TOP OF R12 STACK

'ROM FLAG FOR INIT ROUTINES

!CONTAINS BASE ADDRESS OF BFGM

'LIST OF FRESENT EXTERNAL ROMS

'LAST ENTRY IN ROM TABLE

'BEGINNING OF THE Ré& STACK

'1/0 TRAFFIC INTERCEFT

‘10 INTERRUFT SERVICE FTR
'CHAR. EDITOR INTERCEFT
'KEYROARD INTERRUFT INTERCEFT
'EXEC LOOF INTERCEFT

'IMAGE ERROR INTERCEFT

'FARSER INTERCEFT

YI-0 INTERRUFPT

'SYSTEM MONITOR INTERRUFT HOOK
'SFARE INTERRUFT HOOK #1

‘170 ROM

'MASS STORAGE ROM
'FLOTTER/FRINTER ROM
'ADVANCED FROGRAMMING ROM
'BLUE SFRUCE

'MATRIX ROM

'ASSEMEBLER ROM

7-3

HP-83/85 System Routines

1030
1040
1050
1060
10465
1070
1075
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370

1380

1390
1400
1410
1420
1430
1440
1450
14460
1470
1480
1490
1500

NAME ADDRESS

UNBAS1 DAD 102554
UNBASZ DAD 102836
FWROM EQU 103300
12223333233 2232323233333323

R X
' 1/0 ADDRESSES *
1k X

122232222232 3223222358%2¢ ¢
GINTEN DAD 177400
GINTDS DAD 177401%
KEYSTS DAD 177402
KEYCOD DAD 177403
CRTSAD DAD 177404
CRTBAD DAD 1774035
CRTSTS DAD 177406
CRTDAT DAD 177407
RSELEC DAD 177430
R 2222323322220 222223 ¢
‘¥ THE FOLLOWING ARE OMLYX
1% CONVENIENT LABELS FOR ¥
' SOME ASCII CODES AND X

‘% SOME DIGITS X
1222232222223 33 323 ¢3333822¢;
IRO EQU ©
ONE EGQU 1
TWO EQU 2
THREE EGU 3
FOUR EQU 4
FIVE EQU 5
81X EQU &6
SEVEN EBU 7

EIGHT EQU 10
NINE EQU 11
TEN EQU 12
BLLANK EQU 40
BANG EQU 41
" EQU 42
ERU 43
EQU 44
EQU 45
EQU 46
EQU 47
EQU S0
EQU S1
EQU 52
EQU 353
EGQU S4
EQU 55
. EQU S6
/ EQU 57

t ¥~ o~ Rk

DESCRIPTION

'UNUSED: AVAILABLE
'UNUSED: AVAILABLE

'FWA

USER FROGRAM ROMRAM

'GLOBAL INTERRUPT ENAEBLE
'GLOBAL. INTERRUFT DISABLE
'FEYRBOARD STATUS

'KEYBROARD CODE AND EODJOE

'CRT
'CRT
'CRT
{CRT
TROM

START ADDRESS
BYTE ADDRESS
STATUS

DATA

SELECT ADDRESS

7-4

1510
1520
1530
1540
1850
1560
1570
1580
1590
1600
14610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1220
1930
1940
1950
1960
1970
1980
1990
2000

fil o ome e

P s AN X ECLCHUDOTOZIrAO~=IONMMOODD & - v

al

FTwu=TOa-0anow

EQU
EGU
EQU
EGU
EQU
EQU
EQU
EGU
EQu
EQU
EQU
EQU
EQU
EGU
EQU
EQU
EQU
EGU
EQU
ECU
EQU
EQU
EGU
EGQU
EQU
EQU
EGU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGU
EQU
EGQU
EQU
EQLU
EGQU
EQU
EGL
EGU
EQU
EGU
EQU
EQU
EQU
EGU

72

73

74

75

76

77

100
101
102
103
104
108
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
1320
131
132
133
134
135
136
137
140
141
142
143
144
145
1446
147
150
151
152

153

7-5

HP-83/85 System Routines

HP-83/85 System

2010
2020
2030
2040
2050
20860
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160

P S0V 033 -

b G =

M

EQU
EGU
EQU
EGU
EQU
EQU
EQU
ECU
EQU
EGU
EQU
EQU
EQU
EQU
EQU
LNK

Routines

154
155
136
157
160
161
162
163
164
165
166
167
170
171
172
GLOZS

7-6

HP-83/85 System Routines

NAME ADDRESS DESCRIPTION

10 Dxokkkkdokkkkkdokkkkiokkkkkkkkkx

20 % HF-83/8% ASSEMELER b ¢
IO 'k GLOBAL FILE X
40 'x SECTION 2 X
50 ‘X (¢) Hewlett—-Packard Co. X
&0 X 1980 X
TFO TERRKKKKKKEKKKKKKKKKKKKKKKKKK

80 !
G !
2160 TEXRXREKKKXKKKKKKKKKKKKKX
2170 '¥ SYSTEM ROUTINE ENTRY X

2180 'x FOINT ADDRESSES X

2190 xokkkokkkkkokokokxkkokkk kKK kkk

2200 ARSH DAD 353731 'ABSOLUTE VALUE

2210 ADDROI DAD 32150 'ADD TWO NUMBERS

2220 ALFA DAD 117735 'CHECE. FOR ALFHA CHAR. % UFC IF S0
2230 ALPHA. DAD 361035 'FORCE CRT TO ALFHA MODE

2240 ASIGN. DAD 27056 'OFEN A BUFFER TO A DATA FILE

2250 ATNZ. DAD 764355 'DOES ATNZ2 (Y, X)

2260 BEEF. DAD 6737 'BEEF COMMAND

2270 BLELIN DAD 36320 'BLANE. A LINE ON CRT

2280 BFLOT. DAD 34365 'BRLOT

2290 BYTCRT DAD 33423 !SETS CRT BYTE ADDRESS TO R#

2300 BYTCR! DAD 35422 !'SETS CRT BYTE ADDRESS TO R34

2210 CEIL10 DAD 53615 'CEIL FUNCTION

2320 CHKSTS DAD 36330 'DEMAND CRT NOT BRUSY

2330 CHSROI DAD 52075 'CHANGE SIGN OF A REAL OR INTEGER
2340 CLEAR. DAD 35021 'CLEAR A PAGE OF CRT ALFHA

2350 CLREOL DAD 35535 'CLEAR TO END OF LINE

2360 CNTRTR DAD 36002 'COUNT CRT RETRACES

2370 COMFLT DAD 32621 'COMPARE TWO NUMEBERS

2380 COMMA$ DAD 704634 'PRINT A STRING FOLLOWED BY COMMA
2390 COMMA. DAD 70756 'FRINT A NUMBER FOLLOWED BY A COMMA
2400 CONBIN DAD 3572 'CONVERT A 1464-BIT # TO A REAL #
2410 CONCA. DAD 73005 'CONCATENATE TWO STRINGS

2420 CONINT DAD 4432 'CONVERT A REAL # TO A 16-BIT

2430 COFPY. DAD 73360 'COPY CRT TO INTERNAL PRINTER

2440 COS10 DAD 53556 'COSINE FUNCTION

2450 COT10 DAD S3536 'COTANGENT FUNCTION

2460 CREAT. DAD 26561 'CREATE A DATA FILE

2470 CRTBL+ DAD 36255 VINITIALIZE FPART OF CRT ALFHA

2480 CRTBLE DAD 36247 VINITIALIZE ALL OF CRT ALFHA

2490 CRTINT DAD 36177 VINITIALIZE ALL OF ALFHA &% GRAFHICS
2500 CRTPOF DAD 35703 'FOWER DOWN CRT

2510 CRTPUF DAD 335716 'FOWER UF CRT

2520 CRTUNW DAD 36047 'UNWIFE CRT

2530 CRTWFO DAD 33661 'WIFE-QUT CRT TO HIDE UGLY FLASH
2540 CSEC10 DAD 53503 'COSECANT FUNCTION

2550 CURS DAD 35055 'SFIT OUT A CURBOR TO CRT

2560 CVNUM DAD 71135 'FORMAT A REAL # TO ASCII FOR QUTFUT
2570 DATE. DAD 374673 'DATE FUNCTION

2580 DECURZ DAD 39547 'ERASE CURSOR FROM CRT

2590 DEG. DAD 61736 'SET HP-85 TO DEGREE MODE

2600 DEG1O DAD 54142 'RADIANS TO DEGREE CONVERSION

2610 DIGIT DAD 12027 'CHECE. FOR A DIGIT

2620 DISF. DAD 70046 'SET FRINT FTRS TO "CRT I&8" DEVICE
2650 DIVZ DAD 51641 'DIVIDE TWO NUMBERS

2640 DMNDCR DAD 15060 'DEMAND EITHER A CARRIAGE RTN OR BANG (!)
2650 DNCUR. DAD 335306 'MOVE CURSOR DOWN ONE ROW ON CURRENT FAGE
2660 DNCURS DAD 35370 'MOVE CURSOR DOWN ON ALL 4 PAGES

7-7

HP-83/85 Systein Routines

NAME ADDRESS DESCRIPTION
2670 DRAW. DAD Z32015 'DRAW A LINE ON THE CRT
2680 DRV1Z2. DAD 5462 'DUMF A& BUFFER TO CRT,FRINTER,0OR 1/0
2690 EOJ2 DAD 34772 'RESET R17 AND SVCWRD AFTER KEY IS HANDLED
2700 EPS10 DAD 54126 'EPSILON FUNCTION
2710 EQ. DAD 62173 'CHECEK. TWO #°8 FOR EGQUALITY
2720 EGs. DAD Z00é4 'CHECES TWO STRINGS FOR EQUALITY
2730 ERROR DAD 6615 'REFPORTS AN ERROR
2740 ERROR+ DAD 6611 'REFORTS ERROR % THROWS AWAY ONE RETURN
2750 EXPS DAD 52377 TEXPONENTIATE
2760 FETAV DAD 44727 'FETCH ARRAY VARIAEBLE
2770 FETAVA DAD 44734 'FETCH ARRAY VARIABLE ADDRESS
2780 FETST DAD 45206 'FETCH STRING VARIABLE
2790 FETSY DAD 44535 'FETCH SIMFLE NUMERIC VARIABLE
2800 FETSVA DAD 44556 'FETCH SIMFLE VARIABLE ADDRESS
2810 FLIF. DAD 35011 'FLIF KEYBOARD UFPERCASE/LOWERCASE
2820 FORMN+ DAD 71146 'FORMAT NUMERER
2830 FPS DAD 54071 'FRACTIONAL FART
2840 GEN DAD 14323 'GET A STRING AND NUMBER
2850 GEN+NN DAD 14421 'GET A STRING AND NUMEBER AND OPTIONS
2860 GO12N DAD 14465 'GET 0,1,0R 2 NUMBERS
2870 GOIN DAD 14504 'GET O OR 1 NUMBERS
2880 GOOR2N DAD 14522 'GET O OR 2 NUMBERS
2890 G120R4 DAD 14550 'GET 1,2 OR 4 NUMBERS
2900 G1OR2N DAD 14537 'GET 1 OR 2 NUMEBERS
29210 GCHAR DAD 117355 'GET THE NEXT CHAR TO R20
2920 GCLR. DAD 36013 'GCLEAR
2930 GER. DAD 62304 'CHECE. TWO #°6 FOR »=
2940 GEG$. DAD 3111 'CHECE. STRINGS FOR =
2950 GET$N? DAD 14560 'GET STRING AND NUMBER?
2960 BET) DAD 13345 'GET CLOSE FAREN
2970 GET1$ DAD 14435 'GET ONE STRING
2980 GETIN DAD 14337 'GET 1 NUMBER
2990 GET2N DAD 14407 'GET 2 NUMBERS
3000 GET4N DAD 14414 'GET 4 NUMBERS
3010 GETCMA DAD 173414 'DEMAND A COMMA
3020 BETCMT DAD 13425 'CHECK. FOR A COMMA
3030 BETPAT? DAD 14516 'GET FARAMETERS
3040 GETFAR DAD 14342 'GET PARAMETERS
3050 GRAD. DAD 61753 'SET COMFUTER TO GRAD TRIG MODE
3060 GR. DAD 62255 ICHECK TWO NUMBERS FOR >
3070 GRs$. DAD 3036 'CHECK. TWO STRINGS FOR >
3080 GRAPH. DAD 36147 'FORCE CRT TO GRAFPH MODE
3090 GRINIT DAD 36220 VINITIALIZE THE GBRAPHICS SCREEN
3100 HLFLIN DAD 35121 'DUMF A BUFFER TO THE CRT WITH NO CR
3110 HMCURS DAD 35527 'SEND CURSOR TO HOME
3120 ICO8 DAD 74552 'ARCCOSINE FUNCTION
3130 IDRAW. DAD 32732 ' INCREMENTAL. DRAW
3140 IMOVE. DAD 31673 VINCREMENTAL MOVE
3150 INCHR DAD 35244 'READ IN A CHARACTER FROM CRT
3160 INCHR~ DAD 35220 'READ CRT IF WFO GUARANTEED
3170 INF10 DAD 53524 VINFINITY
3180 INTS DAD 53774 'INTEGER PART
3190 INTDIV DAD S4005 'INTEGER DIVIDE
JI200 INTEGR DAD 11447 'GET AN INTEGER NUMBER
3210 INTMUL DAD 53076 TMULTIPLY TWO 16-BIT BINARY NUMBERS
3220 INTORL DAD 56343 'CONVERT A TAGGED INTEGER TO A REAL #
3230 IPS DAD 54174 'INTEGER FPART
235 ISIN DAD 765472 'ARCSIN FUNCTION
3240 ITAN DAD 76562 'ARCTANGENT
3280 LABEL. DAD 34044 'LABEL. ON CRT GRAFHICS
3260 LDIR. DAD 34020 'SET LABEL DIRECTION

7-8

HP-83/85 System Routines

NAME ADDRESS DESCRIPTION
3270 LEG. DAD 62232 'CHECK. TWD #°5 FOR «=
3280 LEE%. DAD 3100 TCHECK, TWO STRINGS FOR <=
3290 LNS DAD 351551 'NATURAL LOGARITHM
3300 LOGTS DAD 51720 'LOG BASE TEN
3310 LT. DAD 622173 'CHECE. TWO #7858 FOR <
3320 LTS, DAD 3057 'CHECK. TWO STRINGS FOR <
E3ET0 LTCUR. DAD 35332 'MOVE CURSOR LEFT ONE COLUMN ON CURRENT FAGE
340 LTCURS DAD 35376 'MOVE CURSOR LEFT ON ALL 4 FAGES
3350 MAX10 DAD 553464 'MAXIMUM FUNCTION
3360 MIN1O DAD 55345 TMINIMUM FUNCTION
EF370 MODIO DAD 51744 'MOD FUNCTION
IE80 MOVCRS DAD 35410 'MOVE CURS0OR
3390 MOVDN DAD 37324 'MOVE MEMORY AND DECREMENT
3400 MOVE. DAD 21703 'MOVE ON CRT
3410 MOVUF DAD 37365 'MOVE MEMORY AND INCREMENT
420 MPYROI DAD S2722 'MULTIPLY TWO NUMBERS
3430 NARRE+ DAD 137376 'SCAN % PARSE ARRAY REF WITHOUT FARENS
3440 NARREF DAD 13402 'FPARSE ARRAY REF WITHOUT PARENS
3450 NUMCON DAD 13466 IGET A NUMERIC CONSTANT
3460 NUMVA+ DAD 12407 'SCAN AND GET A NUMERIC VALUE
E470 NUMVAL DAD 12412 'GET A NUMERIC VALUE
3480 OFTIM. DAD 66211 'YTURN A TIMER OFF
2490 ONEB DAD G6113 'GET 1 NUMBER OFF R12 AS 15-RIT SIGNED BINARY
3500 ONEI DAD 56154 'GET ONE NUMBER OFF R12 AS TAGGED INTEGER
3510 ONER DAD 56215 'GET 1 NUMBER OFF R12 AS FLOATING FOINT
3520 ONEROI DAD S562353 'GET 1 NUMBER OFF R12Z AS REAL OR INTEGER
F530 ONTIM. DAD 66041 'TURN ON A TIMER
3540 OUTCHR DAD 35114 'OUTFUT ONE CHAR TO CRT
3550 OUTSTR DAD 35052 'QUTFUT A STRING TO CRT
3560 FHARAY DAD 57642 'FRINT AN ARRAY TO A DATA FILE
ES570 PAPER. DAD 76144 'ADVANCE INTERNAL FRINTER
3580 PEN. DAD &&6416 ‘PEN STATEMENT
I590 FPENUF. DAD 66440 YFENUF
3600 FILO DAD 53577 'PI FUNCTION
610 FPLOT. DAD 324642 'FLOT TO CRT
3620 POS. DAD 3435 'FOS FUNCTION
3630 FPRDVRY DAD 757467 'OUTFUT A STRING TO THE INTERNAL FRINTER
3640 PRINT. DAD 700467 'SET UF PRINT PTRS TO "PRINTER I18° DEVICE
3650 FRLINE DAD 70402 'DUMF THE FRINT BUFFER
3660 FRNTH#4 DAD 30577 'FRINT A STRING TO A DATA FILE
3670 PRNTH#. DAD 30053 IMOVE THE FPRINT FTRS IN THE BUFFER
3680 FRNT#N DAD 31022 'FRINT A NUMBER TO A DATA FILE
3690 PURGE. DAD 26013 'PURGE FILES
3700 FUSHLIA DAD 14244 'FUSH A TOKEN
3710 FUSHIEZ2 DAD 14277 'FUSH TOKEN IN R14 % REGS R44-6 % SCAN
I720 PUSHAS DAD 14266 'FUSH TOKEN IN R14 % REGS R44-3 % SCAN
3730 R#ARAY DAD 77602 'READ AN ARRAY FROM A DATA FILE
3740 RAD. DAD b61746 'PUT COMFUTER IN RADIANS TRIG MODE
3750 RAD1O DAD 53475 IDEGREES TO RADIANS CONVERSION
E760 READ#® DAD T1335 TREAD A STRING FROM A DATA FILE
E770 READ#. DAD 30055 'MOVE THE READ FTR
3780 READH#N DAD 31167 'READ A NUMBER FROM A DATA FILE
EF790 REFNUM DAD 17025 'GET A VARIAELE REFERENCE
E800 RELMEM DAD 37534 'RELEASE RESERVED MEMORY
EB10 REM1O DAD 31736 'REMAINDER
3820 RESMEM DAD 37442 'RESERVE MEMORY FOR TEMFORARY SCRATCH
B30 RNDIO DAD 53144 'RANDOM NUMBER FUNCTION
3B40 RNDIZ. DAD 551135 'RANDOMIZE STATEMENT
850 ROMJISE DAD 4776 'FOR CALLING BETWEEN BANE SELECTED ROMS
3860 ROMRTN DAD 4762 'GTO ROMRTN = RETURN WITH ROM O SELECTED
ZB70 ROULO DAD 535163 'ROUND

7-9

HP-83/85 System Routines

NAME ADDRESS DESCRIPTION
3875 RSMEM— DAD 7453 'RESERVE TEMFORARY SCRATCHFAD MEMORY
3880 RSUM#E DAD 37726 'CHECKSUM # OF BYTES
3890 RSUMBE. DAD 37722 'CHECESUM AN 8K ROM
3900 RTCUR. DAD 353551 'MOVE CURSOR RIGHT ON CURRENT PAGE
3910 RTCURS DAD 35404 'MOVE CURSOR RIGHT ON ALL 4 PAGES
3920 RTOIN DAD 44204 'CONVERT A REAL # TO A TAGGED INTEGER
3930 SCALE. DAD 663247 'SCALE THE CRT GRAFHICS
3940 SCAN DAD 11262 'SCAN FOR FPARSER
3990 SCAN+ DAD 11257 'GCHAR AND SCAN
3960 SCRAT+ DAD 4344 'SUBSET OF SCRAT. (SCRATCHES BASIC PGM & BRPGM)
3970 SCRAT. DAD 4437 'SCRATCH (DOES SCRAT+ & RESETS SOME PTRS)
3980 SCRDN DAD 35625 'SCROLL ALFHA DOWN
3990 SCRUFP DAD 25654 'SCROLL ALFHA CRT UF
4000 SEC10 DAD S3463 'SECANT
4010 SEMIC® DAD 70643 'FRINT A STRING FOLLOWED BY SEMICOLON
4020 SEMIC. DAD 70765 'PRINT A NUMEBER FOLLOWED BY & SEMICOLON
4030 SEGNO+ DAD 17454 'FUSH THE INCOMING TOKEN AND GET A LINE #
4040 SEENO DAD 17437 'GET A LINE NUMEBER
4050 SET240 DAD 11243 'SET IMMEDIATE BREAK BITS IN R17
4060 SGNS DAD 53405 'SIGN FUNCTION
4070 SIN1O DAD S3546 'SINE
4080 SMLINT DAD 13474 'FARSE AN INTEGER
4090 SORS DAD $52442 'SGARE ROOT
4100 STBEEF DAD 7017 'STANDARD BEEF (NO FARAMETERS)
4110 STOST DAD 456073 !STORE STRING
4120 5TOSV DAD 45254 'STORE SIMPLE AND ARRAY VARIABLE
41320 STRCON DAD 14036 'FARSE A QUOTED STRING
4140 STREX+ DAD 13623 'SCAN AND FARSE A STRING EXFRESSION
4150 STREXF DAD 134626 'FARSE A STRING EXFRESSION
4160 STRREF DAD 13753 'FARSE A STRING VARIABLE AS A STORE STRING
4170 SUBROI DAD 5212 'SUBTRACT TWO NUMEERS
4180 TANLIO DAD 53566 ' TANGENT
4190 TIME. - DAD 65517 'TIME FUNCTION
4200 TRY1IN DAD 14566 'GETS © OR 1 NUMERIC VALUES
4210 TWOB DAD 56176 'GET TWO NUMBERS OFF R12 AS 15-BIT SIGNED #°S
4220 TWOR DAD 56236 'GET TWO NUMEERS OFF R1Z AS REAL #°8
4270 TWOROI DAD 856266 'GET TWO NUMBERS OFF R12 AS REAL OR INTEGER
4240 UNEG#$. DAD Z0295 PCHECE, TWO STRINGS FOR NOT ERUAL
250 UNER. DAD 62202 'COMFARE TWO #°& FOR INEQUALITY
4260 UNGUOT DAD 14212 'FPARSE AN UNGUOTED STRING
4270 UPC$. DAD ZZ73 'UFPFER CASE FUNCTION
4280 UPCUR. DAD 35264 'MOVE CURSOR UF ON CURRENT FAGE
4290 UFCURS DAD 35262 'MOVE CURSOR UF ON ALL FOR FAGES
4300 VAL$. DAD 3207 'VALS FUNCTION
JF10 VAL, DAD 3250 ‘WAL FUNCTION
4320 WAIT. DAD 635701 'WAIT X MILLISECONDS
4F30 XAXIS. DAD 32303 'XAXIE STATEMENT
340 YAXIS. DAD 32347 'YAXIS STATEMENT
4300 YTXS DAD 53242 'YX FUNCTION
4360 IROMEM DAD 44066 'ZERO OR BLANE A BLOCKE OF MEMORY
4370 FIN

HP-83/85 System Routines

SYSTEM OPERATION AND ROUTINES

This section provides some specific details, register conventions, etc. for cer-
tain areas of HP-83/85 system operation. It also shows the input conditions
required and the outputs produced by selected system routines. The names and
addresses of most (but not all) of the system routines detailed here are also
available on the Global File tape cartridge and disc.

The areas of focus are:

--Parsing and parse routines
--Runtime and runtime routines
--General-purpose utility routines
--CRT control and routines

--Tape control routines
--Decompiling

The system routines are arranged within their areas of primary

use. Simply because a routine is listed under a certain application, however,
does not Timit its use to that area. For example, many utility routines may
also be used during runtime operations.

SYSTEM ROUTINE FORMAT

The format of the individual system routines is shown here:

Name: Name of the routine (from the global file).

Address: Permanent octal address of routine in computer memory.
Type: Primary tasks for which routine will be used.
Function: Outlines the function of the routine.

Input Conditions: Shows the assumptions made by the routine (e.g., contents of
specific registers and condition of stack pointed to by CPU
register R12) when routine is called.

Qutput Conditions: Shows results, outputs, etc., as they are found in specific

registers and/or on the stack addressed by CPU register RiZ2.

HP-83/85 System Routines

CPU Changes:

De:

im

DRP:

ARP:

STATUS :

ROMJSB :

NOTE
In the descriptions of R12 stack contents, the
contents of the stack are shown as they occur
on the stack. The nomenclature R12» indicates
the location of the stack pointer.

Darkened area indicates the CPU registers whose contents are
altered by execution of the routine.

Setting of decimal mode flag after routine is executed: B
indicates binary mode; D indicates decimal mode; — (dash)
indicates unchanged by routine; and U indicates undefined.

Contents of four-bit extend register after routine is exe-
cuted. Contents may be: Value (2-digit octal quantity);
— (dash) for unchanged by routine; or U for undefined.

Shows setting of data register pointer after routine is exe-
cuted. May be: CPU register number; — (dash) for unchanged
by routine; or U for undefined.

Shows setting of address register pointer after routine is
executed. May be: CPU register number; — (dash) for un-
changed by routine; or U for undefined.

Shows whether other CPU status flags are altered. May be:
— (dash) for unchanged; or U for undefined.

Indicates whether or not this routine, if called from an
external ROM, must be called through ROMJSB. May be: Y for
yes, must be called through ROMJSB; or N for no, need not be
called through ROMJSB.

HP-83/85 System Routines

PARSING AND PARSE ROUTINES
PARSE ROUTINE REGISTERS

In parsing, the HP-83/85 system uses the CPU registers shown here.

R10 Input buffer pointer.
R12 Qutput stack pointer.
R14 Next token. (Set by SCAN routine.)
R20 Next non-blank character. (Set by GCHAR routine.)
R40-R47 Detailed scan output. (Set by SCAN.)
R40 First character scanned.
R41-R42 ROM #. (If R42 = 9.)
or Binary program address. (If R42 # p.)
or System ROM. (If R41 = R42 = p.)
R43 ROM token #.
or Binary program token #.
or Type. (If variable.)
R44-R46 Name. (If variable, R46 not used.)
or Integer.
or Secondary attributes for function.
R47 Primary attributes.

PARSE ROUTINE REGISTER USAGE

PARSING FLOW

Program flow in parsing is shown in the flowcharts on the next few pages. A
brief explanation follows the flowcharts.

HP-83/85 System Routines

P.PARS

PARSER

Y

P.PARS
ANY
ERRORS
?

Y

END-OF-LINE
PROCESSING

SET
CALCULATOR
MODE

PARSING A PROGRAM LINE

MAIN PARSE LOOP

7-14

HP-83/85 System Routines

SET ERRN AND
ERRL AND CLEAR
ERRORS

Y

RESET INPUT
POINTERS

FOUND
Y ?
N
END-OF-LINE
PROCESSING RESTORE
ORIGINAL ERROR

PARSING A CALCULATOR MODE STATEMENT

7-15

HP-83/85 System Routines

PARSIT

VARIABLE Y

? Y

N IMPLIED
Y E
N

LET TOKEN
commMAaND N\ N
? A .
Y ERROR
CALCULATOR
MODE N @
2

Y

PARSE
ROUTINE

ERROR Y

~)

PROCESS @
OR'!

e

PARSIT ROUTINE
7-16

HP-83/85 System Routines

SCAN

A

JSB=
SAVREG

Y ANY
ERRORS

?
N

Y

SAVE R10 FOR SET VARIABLE
ERROR REPORT NAME

[
_—

Y

SELECT
ROM 0

NUMBER

TOK

FOUND
?

T0

TOKEN3
TO R14

CARRIAGE
RTN
?

TOKEN 1
TO R14

A

—

TOKEN FOR ILLEGAL

TO R14
JSB=
RSTREG
SCAN ROUTINE

7-17

HP-83/85 System Routines

BINARY

SAVE R10
IN R30

PGM PRESENT
? -
y 1
GET ADDRESS OF GET NUMBER OF
[| [e "
ASCH TABLE

SET ORDINAL
=0

BINARY
PGM
?

SELECT ROM AND
GET ASCII TABLE PTR.

INCREMENT
ORDINAL

i

RESET INPUT
STREAM PTR.
{R10)

RESET TO SYSTEM.

RESET INPUT
STREAM PTR.

i:

FETCH NEXT CHAR.
FROM INPUT STREAM

LOWER- N

MATCH
INPUT CHAR.
2

]

CLEAR
PARITY BIT
MATCH

INPUT CHAR.
?

GET NEXT CHAR.
FROM TABLE

CASE ALPHA
?

MAKE UPPER
CASE

FLAG THAT MATCH
WAS FOUND

SYSTEM
ROM TOKEN
?

PLACE ORDINAL
IN R43

LOAD R14 WITH
EXTERNAL ROM
TOKEN (370}

BINARY N
2

Y

LOAD R14WITH
BINARY TOKEN
@M

GET RUNTIME
ADDRESS OF TOKEN

L |

!

FETCH ATTRIBUTES
OF TOKEN

*NOTE: BINTAB, 101233, CONTAINS BASE ADDRESS OF BINARY PROGRAM.

ROMTAB, 101235, CONTAINS TABLE OF CURRENT EXTERNAL ROM NUMBERS.

HP-83/85 System Routines

Main Parse Loop: In the main parse loop, if there is a line number, control
passes to P.PARS, for parsing a program statement. If the statement has no line
number, C.PARS parses a calculator mode statement.

Parsing a Program Line: P.PARS calls the PARSIT routine, then calls the EOL
(end-of-1ine) and LINEDR (Tine editor) routines.

Parsing a Calculator Mode Statement: C.PARS calls the PARSIT routine, then checks
for and processes any errors.

PARSIT Routine: The PARSIT routine calls another parse routine, SCAN.

SCAN Routine: The SCAN routine is always called in parsing. It is SCAN that
places the next token in R14.

The SCAN routine finds the next token, or the next character if a token match
cannot be found.

If the input is: SCAN:

Digit Places integer in R44 or floating-point on R12.
Period Places floating-point quantity on R12.

Quotation mark symbol Returns token 42 in R14 and does not execute GCHAR.
Anything in tables Returns token.

Alpha not in tables Returns variable type.

Other not in tables Returns error token 17.

Blank Skips the character.

SCAN FUNCTIONS

SCAN, in turn, calls the routine SALT.

SALT Routine: The SALT routine searches all ROM and binary program tables, one

character at a time, looking for a keyword match.

HP-83/85 System Routines

PARSING IN BINARY PROGRAMS AND ROMS

A binary program or ROM gains control at parsetime when the system matches a
keyword within that binary program or ROM. Once control is passed to the binary
program or ROM, there are certain responsibilities of the parse routine before
control is passed back to the calling location.

One responsibility is that SCAN must be called at entry to get the next token.
SCAN may be called in one of three ways:

--Calling SCAN.

--Calling NUMVA+ (which calls SCAN first).

--Calling STREX+ (which also calls SCAN first).

When parsing is completed, SCAN must also be performed before returning to the
system. However, most system parse routines (NUMVAL, STREXP, GETCMA, etc.) call
SCAN before returning, so it is usually done for the user.

Another responsibility is that if a binary program is intended to be resident in
an external ROM, the parse routines must ensure that ROM P is enabled when con-
trol is passed back to the system. This can be accomplished by executing GTO
ROMRTN.

PARSE ROUTINE EXAMPLES

Here are some examples of parse routines for different functions:

Statement With No Parameters: e.g., BLOOPER

BLOPRS LDB 42, = 371 Load binary program token marker.
PUBD 42, +12 Push it.
PUBD 42, +12 Push a garbage byte.
PUBD 43, +12 Push binary program token.
JSB = SCAN Do a scan.
RTN Return.

Statement With One Parameter: e.g., SLOOPER numeric or string value

SLOPRS PUBD 43, +6 Save binary program token.
JSB = NUMVA+ Do a scan and try to get numeric.

7-20

JEN GOTNUM
JSB = STREXP
JEN GOTNUM
POBD 57, -6
JSB = ERROR+
BYT 81D

GOTNUM POBD 57, -6
LDB 55, = 371
PUMD 55, +12
RTN

HP-83/85 System Routines

JIF found a numeric.

Try to get a string, then:

JIF found a string.

Clean up RTN stack.

Report error.

Bad expression.

Recover binary program token.
Load binary program token marker.
Push them.

Done.

Statement With More Than One Parameter (written for an external ROM): e.g.,

TROOPER numeric value, numeric value, string value

TROPRS PUBD 43, +6
JSB ROMJSB
DEF NUMVA+
BYT 9
JEN NUMOK

ERR POBD 57, -6
JSB = ERROR
BYT 88D

RTN GTO ROMRTN

NUMOK JSB = ROMJSB
DEF GETCMA
BYT 9
JSB = ROMJSB
DEF NUMVAL }
BYT 2

JEZ ERR

JSB = ROMJSB)

DEF = GETCMA

BYT @

JSB = ROMJSB

DEF STREXP

BYT 9

JEZ ERR

"

Save ROM token.

Do a scan and get a numeric.
JIF got one.

Clean up R6 stack.

Report error.

Bad statement.

Ensure ROM P is reselected.

Demand a comma.

Try to get another numeric.

JIF not there to error.

Demand another comma.

Get a string expression.

JIF not there.

7-21

HP-83/85 System Routines

POBD 57, -6 Recover ROM token.

LDB 56, = MYROM# Load ROM number.

LDB 55, = 379 Load ROM token marker.
PUMD 55, +12 Push them all.

JMP RTN Re-select ROM 0.

MYROM# EQU 341

PARSE ROUTINES

System routines useful in parsing follow.

7-22

FUNCTION |

Determines if next SCAN character is an alphabetic one

(i.e., A-Z or a-z).

NAME ALFA
ADDRESS 11775

TYPE Parse

" REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

R20 = Current character being scanned

OUTPUT CONDITIONS

E set to 1 if: A <= R20 <= Z (upper ca
or
a <= R20 <= z (lower ca
Otherwise E cleared to 0.
If lower-case input, R20 is changed to
upper-case for output; otherwise R20 is
left unchanged.

se)

se).

CPU CHANGES COMMENTS

2] 3] 4] 5] 6 7jocm) E

12{13|14]15]16]17 B

22

23

24

25

31

32

33

34

35

DRP

ARP

[rRomJse] | |

R20 contents may be changed if lower-case. No other

registers are affected.
E used as output flag.

40 14142]43]144]145)46] 47 U - .
50 |51 |52 |53 [54] 55| 66| 57 frate= Mode changed to binary.
60 161162 163 |164]165]66] 67
7017172173741 75176] 77 U
FUNCTION NAME DIGIT
ADDRESS 12027
Determines if next SCAN character is a digit (0-9; i.e., TYPE Parse
ASCII 60-71).
REGISTER CONTENTS R12 STACK CONTENTS
2]
2
o
5| R20 = Current character being scanned
5
(&
-
>
o
z
w
4
o .
5| E set to 1 if 60g <= R20 <= 7145 other-
z . . ?
gl wise, E is cleared.
—
)
o
'_
2
(@]
CPU CHANGES COMMENTS |.Romuse] N
0] 1 2| 3] 4} 5] 6] 7]bcwm E
w2345 16]17] _ s _ :
EAVEREIA SR CTA LR LA AL:P Affects nothing but E-register.
30 (31132 |33 3435 36| 37 } 220
40141142143 |44]45]46] 47 - =
50 [51 {62 [53|54] 55| 56| 57 F=svatos
60 |61 [62163]64)|65]|66] 67

71172173]174175{76] 77 =

7-23

FUNCTION

|

Checks R14 for either the carriage return character (15)
or an exclamation point (233).

Generates error if neither

is found; returns if either is found.

NAME DMNDCR
ADDRESS 15060
TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS
wn
P4
Q
5| R14 = Current token
&
Q
’_
A2
a
z
1]
=4
o
15| R14 = Same current token
18
(&
=
2
a
[
2
o
CPU CHANGES COMMENTS [romusB] Y
of 1 2] 3] 4] 5] 6] 7JocmM] E)
1041112413 11411851161 174 _ F This routine demands a carriage return or a remark after
20 1211221232425 26] 27 - T -I . f MN CR t h -” .
30137 3213332 35 136 13T 120F. a line; if DMNDCR returns to the calling routine, a CR
a0a1]42]43aalas5]a6]az] U | - or a ! is guaranteed.
50 151162 163 |54]55]56] 67 FzTRtoS
60161/62163]64]65]/66] 67
70171 172173]|724]175]76] 77 U
FUNCTION NAME G$N
ADDRESS 14323
Parses one string followed by one number (e.g., BPLOT A$,1). | TYrE Parse
REGISTER CONTENTS R12 STACK CONTENTS
[2]
=
Q
5| R14 = Input token
&
Q
[
o]
a
z
w
zZ R
o
5| R14 = Next SCAN token String expression tokens
8 Numeric value tokens
e Token from R14
z RIZ » e memmmee e
-
2
Qo

CPUCHANGES

COMMENTS

Calls STREX+ and GETPA-.

I ROMJSB I Y

(Similar to GETPAR.)

7-24

FUNCTION | NAME GSN+NN
ADDREsSs 1442]
Parses one string followed by 1 or 2 numer1c parameters TYPE Parse
(e.g., CREATE A$, n [,m]).
REGISTER CONTENTS R12 STACK CONTENTS
1%2]
P-4
o
5| R14 = Input token
&
(&)
(-
2
z
[42]
&
El R14 = Next SCAN token String expression tokens
g 1 or 2 numeric value tokens
et Token from R14
2 R12 » cmmmmo e
[
2
o -
CPU CHANGES COMMENTS LRomusB] Y
1 4] 5] 6] 7j0CM E
101 (RLIREA e IV Calls another routine which demands 1 or 2 numerics.
CREINETETNE 15l i M (R34°=1 or 2.)
l : 4 STATUS
60161]62163]164]/65]|66}67
70 -
FUNCTION NAME GP12N

ADDRESS 14465

Gets @, 1 or 2 numeric parameters. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS

[72]

8| Normal parse input, i.e.:

£l R10 = Input buffer pointer Stack output pointer

Z1 R14 = Next token

©| R20 = Next character in input buffer

z

(n 0

&| Normal parse output, i.e.:

E[R14 = Next token Results of successful parse

Z| R40-47 = Current parse information RT12 > —memmmmmmcmd e o

e

2

o

CPU CHANGES COMMENTS LRomuse] Y
DCM E
-1 U Parses @, 1 or 2 line numbers separated by "," (1 <=
DRP J ARP Tine number <= 9999). Calls SEQNO+ for 1line number.
BED 14112 Error 90 if line number outside specified range.
R e 2 2L STATUS Error 91 if "," not followed by another 1ine number.
70 (7172173178 75]76] 774 U :

7-25

FUNCTION

Same as GP12N, except gets @ or 1 numeric parameters. TYPE Parse

NAME GOIN
ADDRESS 14504

v

REGISTER CONTENTS R12 STACK CONTENTS
[2]
Z
o
=
5 . -
§ Normal parse input (see SCAN)
-
2
a
2
2]
Z
)
= Results of successful parse
3 R12 » =ommm e
Q
[
e
a
(™=
2
@]
CPU CHANGES COMMENTS LRomuss] Y
1[0 4] sf 6] 7JocmMm]| E
10111213 i6f17] _
2122]23]24[25]26] 27 AL:P See GPI12N.
30 [31]32 (33]34 35 37 228
' : 14112
50]51]52 |53 |54]55|56] 57 STATUS
60161162 |63|64]165]66] 67
770 71172173|174]75]76] 77 U
FUNCTION NAME GPOR2N
ADDRESS 14522
Same as G@12N, except gets P or 2 numeric parameters. TYPE Parse
4 REGISTER CONTENTS R12 STACK CONTENTS
w
<
Qo
E
D -
§ Normal parse input (See SCAN)
-
s
a
z
[2]
<
o
5 Results of successful parse
3 R12 + —=memmmmm e e
(&)
.—
p’
[+
(=
2
o
CPU CHANGES COMMENTS [RomusBlY
1 4] S| 6] 7)O0CcM E ’
10111 [12113 16|17 .
20 (7122 [73] 24| 25267} Alip Error 91 if only one parameter. Calls NUMVA+ to get
301313233 37 B2 numeric value.
341 U
STATUS
60161 162]163[{64/65]66] 67
70 ; Ll

7-26

T Y Calls GETPA?.
E#p if parameters found.

FUNCTION | NAME G120R4
ADDRESS 14550
Same as GP12N except gets 1, 2 or 4 numeric parameters. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
w
2
o
=
[a]
8| R14 = SCAN token
’—
o}
>
2| R14 = Next SCAN token
£| R20 = Next character (Set by SCAN) ,
2| R34 = Number of parameters found (Error Numeric value tokens
3 exit if # 1, 2 or 4) Token from R14
§ R35 = @ R12 » ——=-—mmmmem e
g R40 = Set by SCAN
CPU CHANGES COMMENTS |RomusB] Y

STATUS parameters.

FUNCTION NAME G10R2N
ADDRESS 14537
Same as GP12N, except gets 1 or 2 numeric parameters. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
[2]
Z
o
| R14 = Current token
&
@]
5
2
(2]
5
E| R14 = New current token Numeric value tokens
3 Token from R14
t R1I2 + =mmemmcmmce e e
o]
&
2
o
CPU CHANGES COMMENTS [rRomJsB] ¥
3
- Calls GETPA?.
ARP Aborts through ERROR+ (91) if error in finding param-
- eters. Aborts through another routine if too many

7-27

FUNCTION | NAME GCHAR
ADDRESS 11755
Fetches next character (usually from input buffer) addressed | Type Parse
by R10 pointer. GCHAR skips blanks, and it increments R10
unless the character is a carriage return.

REGISTER CONTENTS R12 STACK CONTENTS
2]
8
£l R10 = Pointer to character
&
(&)
[~
>
o
z
2]
8| R10 = Pointer to following character
£ (unless present character was a
2 carriage return)
| R20 = Character popped from R10
2
[
2
o
CPU CHANGES COMMENTS LRomuss] Y
3] 4] 5| 6] 7JocM]Y E
131a]sf16f17] _ _ s
sitsetaetss Performs SAD at entry, PAD at exit.

30 [31 [32 133134 35]36] 37 poRe 4 ARP
40 |41 142143 |44[45]46] 47 - -
50 [51 52 |53 | 54| 55 | 56 57 frertems

60 |61 |62 |63 64| 65]66] 67

70 717273 78] 75 [26] 77 -

FUNCTION NAME GETS$N?
: ADDRESS 14560
Demands one string; also gets one numeric if present. Used TYPE Parse

to parse a statement with one string, and that may have one
numeric parameter. Generates error if no string found.

REGISTER CONTENTS R12 STACK CONTENTS

%]
=
o
=
o 0
Z| Normal parse inputs (See SCAN)
e
>
o
z
w
3
E Parse results
z R12 + —=mmmmmceee -
8]
-
2
o
frong
2
@]

CPU CHANGES COMMENTS [romJse] Y

1 12 4] 5] 6} 7]jOCM E

e 1 - | - Parses: string expression or string expression, fol-
30 [31 [32 |33 | 34 35 [38] 37 p2ooJ-2RF Towed by 1 or 2 line numbers.
40161 142 143 J e 46 146147 14] - Possible errors: 90 if line number out of range. 91 if
50 [61 162 T63 TeaTes Toe 67 F—2rS , not followed by another line number.
70171 172173|74|75176] 77 =

7-28

FUNCTION] NAME GET)
‘ ADDRESs 13365
Looks for the symbol) in R14 (usually following a call to TYPE Parse
SCAN). If) is found, calls SCAN and clears E; otherwise,
aborts through ERROR+ with error 80D.
REGISTER CONTENTS v " R12 STACK CONTENTS
2]
P-4
Qo
=] R14 = Current input buffer symbol
3
Q
-
o
‘a.
z
172}
P-4
o
=| R14 = New current symbol, if successful
g
|8
-
2
[
2
o
CPU CHANGES COMMENTS ~ | ROMJSB] Y
1 41 51 6] 7)0C™M E
e st -1 U Expects E cleared (#-1) at entry.
30 131132 |33 (341 35 | 36 37 2R L ARP At exit, E signals whether) was found:
S0 AT1AS AS e sy -] - E=E+1 means) was found.
IGIEE R R E=p means) was not found.
70 171172173 {74]175176] 77 -
FUNCTION NAME GET1$
. ADDRESs 14455
Demands a string expression and processes it. TyPe - Parse
REGISTER CONTENTS R12 STACK CONTENTS
[72)
]
E| R10 = Pointer to input stream R12 -+ Qutput stack
Z| R14 = Current token
et
o’
o
4
w
Z
o
E| R14 = Next token
Z| R40-47 = Set by SCAN
et
2
Q.
=
2
O .
CPU CHANGES COMMENTS LRomusely
0] 1 . 4] 5] 6] 7]0C™ E
1011]12]13 i5{16{17
27 [22 (232425 [26] 27 fmemmmafeueeed Calls STREX+. . .
30 (3132 |33 | 34| 36 |36 37 = Returns an error if no string is found.
4112
50 {5152 |53 |54]55]56]57]STATUS
60 161]162163[(64]65]66]67
70171 172 33174125 {76 [77 U

7-29

FUNCTION __ | NAME GETIN
ADDRESS 14437
Gets one numeric parameter, and pushes onto R12 the TYPE Parse
corresponding numeric value token and the token in R14.
REGISTER CONTENTS R12 STACK CONTENTS
z
2
g| R14 = SCAN token
3
[
2
z
@ R14 = Next SCAN token
Of R20 = Next character (Set by SCAN) Numeric value tokens
| R34 = Number of parameters found (Error Token from R14
g if#1) R12 & =mmmmmmmmmmmimcee e
s[R35 =1 (Set by GETPAR)
&| R40 = Set by SCAN
3
CPU CHANGES COMMENTS LRoMJse | }I‘ ‘

Sets R35 = 1, then calls GETPAR.

E#@ if found.

FUNCTION NAME GET2N
ADDRESS 14407
Gets two numeric parameters, and pushes onto R12 the TYPE Parse
corresponding numeric value tokens and the token in R14.
REGISTER CONTENTS R12 STACK CONTENTS
. _
P4
o
£l R14 = Current SCAN token
S
=
2
F4
2| R14 = Next SCAN token
g R20 = Next character (Set by SCAN) Numeric value tokens
S| R34 = Numer of parameters found (Gener- Token from R14
o) ates error if # 2) R12 + ~=cemmcmccccccc e
5 R35 =2
g R40 = Set by SCAN
(@]
- CPU CHANGES COMMENTS [rRomusB] y
- :
] .
e E#Q if found.
- GET2N jumps to GETPAR.
STATUS |

7-30

FUNCTION |

Gets four numeric parameters and pushes onto R12 the TYPE Parse
corresponding numeric value tokens and the token in R14.

NAME GET4N
ADDRESS 14414

REGISTER CONTENTS R12 STACK CONTENTS
w
<
o
5| R14 = Current SCAN token
8
[
2
z
2| R14 = Next SCAN token
£] R20 = Next character (Set by SCAN) Numeric value tokens
2| R34 = Number of parameters found (Gener- Token from R14
3 ates error if # 4) R T
§ R35 = 4
g R40 = Set by SCAN
CPU CHANGES COMMENTS lromuse] Y
1 4] 5] 6] 700cm]_E
10 [11 16[17] - U .
2122 123124125 [26 [27 fommedmrees E#@ if found.
30 131132 133) 37 3l - GET4N jumps to GETPAR.
STATUS
60 |61 |62 636465’66 67 _
70 .
FUNCTION NAME GETCMA
ADDRESS 13414
Demands a comma as the next SCAN token. Sets E#@ if found; TYPE Parse
otherwise, returns an error.
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
£1 R14 = SCAN token
Z| R40 = Set by SCAN
g
2
z
(73]
2
)
S| R14 = Next token
Z| R40 = Set by SCAN
e
2
5
(o]
CPU CHANGES COMMENTS . [ROMJSB] Y
o 1 E
10 ;] U E#0 if comma is found.
303 ARP
50 (51152 [63[54[65[56]67 ;TA us—
60 161162]163|64|/65]/66]67
70171 172173]|74]75176] 727 =

7-31

FUNCTION __| . NAME GETCM?
ADDRESS 13425
Checks for a comma. Sets E#@ if found. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
3 :
=
o
§ R14 = SCAN token
S| R40 = Set by SCAN
2
z
[75]
=
o
5| R14 = Next token, if SCAN token was a
8 comma
g R40 = Set by SCAN
&
(@]
CPU CHANGES COMMENTS [romusB] Y
0 1 2 3| 4 51 6} 7]DOCM E
10111213 16117 - U .
2122 | 23] 24] 25 | 26] 27 E£D if comma found.

30 |31 [32133]3a] 36 [36] 37 J-2RE L ARP

50 |51 152 |53|54[55][566]57 STATUS
60 161162 [63|64]65]66] 67
70171 172173]74]|75]|76]177

FUNCTION NAME GETPA?
ADDRESS 14516
Gets an arbitrary number of numeric parameters. (Same as TYPE Parse

GETPAR except R35 is set to zero.)

REGISTER CONTENTS ' R12 STACK CONTENTS

z
o
5| R14 = Input token
§ R35 = § (Then GETPAR is called)
2
z
[72]
&
E| R14 = Next SCAN token Numeric value tokens
&| R34 = Number of numeric parameters found Token from R14
g R12 » —cemmmcme e
2 .
5
@]

CPU CHANGES COMMENTS [RomusB] Y

Same as GETPAR with R35 = 0. Calls NUMVA+.

7-32

FUNCTION | NAME GETPAR
GETPAR gets as many numeric parameters as it can. If at ﬁzzﬁsss ;:igg
entry R35 = @, any number is acceptable. If R35 # f, the
number fetched must equal that in R35. GETPAR pushes the input token.
REGISTER CONTENTS R12 STACK CONTENTS
[72]
§ R14 = Input token
5| R35 =9 (Any number of parameters)
S| or
; R35 # # (R35 = Number of parameters)
z
w
8
=| R34 = Number of parameters found. Numeric value tokens
S| If R35 # @, then R34 = R35; otherwise, Token from R14
§ an error is returned. R12 + =mmmmmmmmmmmm e
z
2
(@)
CPU CHANGES COMMENTS [romuss] ¥
6] 7]bC™M E |
-1 U
—e Calls NUMVA+.
STATUS |

FUNCTION

Tries to get an integer of up to 14]0 digits from input

NAME INTEGR
ADDRESS 11447

TYPE Parse
buffer. Used in applications such as sequence numbers, where
it is desired to ignore decimal points and exponents.
REGISTER CONTENTS R12 STACK CONTENTS

2]
-4
o
5| R10 = Input buffer pointer (Next
5 character)
2| R20 = Current character from buffer
w
8| R10 = Next character in buffer after
£ number
2| R20 = First non-digit character
Ol R36 = Exponent of integer in R40
2| R40 = Digits of number found
8

CPU CHANGES COMMENTS [ROMJSB] Y

3] 4] 5] 6] 7jDCM E

ettt LU No SCAN is necessary before INTEGR is called.

g ORP | ARP E=@ if no number found, E=1 if found.

: 221U On return, R40 contains right-justified number if R36 =
20 pol 182158 5e 1 50156 BT [STATUS 15C; otherwise R40 contains integer with exponent of
70171 172173[74|75]176] 77 U R36']5C-

7-33

FUNCTION |) NAME NARRE+

ADDRESS 13376

Same as NARREF, except that it performs a SCAN first. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
w i .
2
)
=
o
4
O
&)
[~
z
z
z
)
é R14 = Next token 2 (Fetch array token)
S| R40-47 = As per SCAN outputs gzgl Name
-
é RI2 » —mmmmmmeemcmceee e
2
o .
CPU CHANGES COMMENTS [RromusB] Y
0] 1 6] 7jOCM E
10 [11 16[17] 1 .
772223 26| 27 e Calls SCAN at both entry and exit.
30131]32[33|34|35]36{ 37
14] 36
50 |6162 (63|54 55]56 57 et
60 (6162 |63|64]65]66]67
70171 172173| 74| 75]76{ 77 U
FUNCTION NAME NARREF
ADDRESS 13402
Parses a simple numeric variable reference as an array TYPE Parse
reference (i.e., MATA=Q).
REGISTER CONTENTS R12 STACK CONTENTS
w
-4
o
5! R14 = Current token (Should be a 1)
g R12 + —-mmmmmmmmmmmeecme e
Q
[
2
4
g
)
5[R14 = Next token 2 (Fetch array token)
3| R40-47 = As per SCAN outputs R44 N
O ame
- R45
& R12 + =-mmmmmmcmcm e
(==
o
o
CPU CHANGES COMMENTS [rRomusBlY
1 4] 5; 6] 7]DCM E
1011 F12]13 16117 .
RFPAFEISTAB AN 53 = M Calls SCAN before returning.
30 [31]32 [33 |34 35 36 | a7 j e F-2RF
14 § 36
50 {51162 153 |54]55]56| 57 p=zmrtes
60 [61]162]163[/64]|65]|66] 67

70

71 (72173174 75| 76| 77 y

7-34

FUNCTION

J

NAME NUMCON
ADDRESS 13466

Pushes integer or floating point number onto the R12 stack TYPE Parse
and calls SCAN. ;
REGISTER CONTENTS R12 STACK CONTENTS
g
Of R14 = Token from SCAN (4 if floating
S point, 32 if integer)
S| R40 = Set by SCAN
'_
e
a
z
2
) R14 = Next token from SCAN Integer or floating point number
5 R40 = Set by SCAN R1I2 » = e e
o
Q
[
2
a
[
2
(o]
CPU CHANGES COMMENTS LRomusel Y |
0of{ 1 2 E
R U | Must SCAN before calling this routine.
30 |31 133 ARP Routine SCANs before exit.
' -1 - At exit, E#@ if number found.
50 |51]52[63]54]55] 56 57 fmemtems
160 161 162163 |64]|65]166] 67
70171172173174175]176} 77 -
FUNCTION NAME NUMVA+
ADDRESS 12407
Same as SCAN routine followed by NUMVAL routine. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
E
ja)
Z
@]
Q
-
o]
o
z
wn
2
=]
E
[a]
=z
(@]
O
[
2
a
=
2
o
CPU CHANGES COMMENTS LRomJsSB] Y
ol 1 2] 3| 4| 5] 6] 73§DbC™M E
101112 |13]|14]15]16] 17 .y
20 (21135 123133135 126 1 27 See NUMVAL for conditions and changes.
30 |31 |32 |33 34 35 36 37 pmg20F
40 j41[42 |43]44]145146] 47
50 |51]52]53|654|55]56{57 STATUS
60 [61 162 [63]/64]65]66] 67
70171172173 |74} 75]176} 727

7-35

FUNCTION

NAME NUMVAL
ADDRESS 12412

Pushes a numeric value onto the R12 stack and calls SCAN. TYPE Parse
Sets E#@ if numeric found; otherwise sets E= and restores
input buffer.
REGISTER CONTENTS R12 STACK CONTENTS
(4]
P4
o
5| R14 = SCAN token
§ R40 = Set by SCAN
5
z
w
S| R14 = Next SCAN token
a| R20 = Set by SCAN
&| R40 = Next character (Set by SCAN)
=
g
2
(@]
CPU CHANGES ~ COMMENTS IROMJSBI Y
1 4] 5] 6] 7focM] E ‘
 IEREt I p s e E#9 if numeric found.
30 [3132 [33[34] 35 36| 37 pone L ARP Calls SCAN at exit.
60 |61]62]63}64]165]|66]67 STATUS
70 1711721237241 725126] 77 -
FUNCTION NAME PUSHTA
ADDRESS 14244
Pushes the token in R14 onto the R12 stack and calls SCAN. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
1753
2
o
=| R14 = Token
8
[&]
[
g
z
w
8
E| R14 = Next token (Set by SCAN)
Z| R20 = Next character (Set by SCAN)
©| R40 = Set by SCAN
g
=
(@]
CPU CHANGES COMMENTS [romusB] Y
6 1 4] s 6] 7jpcmM]l E
1011 ‘ 16117 ' s
- 11 Calls SCAN before exit.
I S E ET) 2 Sets E=1.
141 36
50 |51 |52 |63 |54 55 | 56 57 J=gmms
60 |61 162163|64|65{66]67
70171172173]|74175]176] 727 -

7-36

FUNCTION | NAME PUSH32
ADDRESS 14277

Pushes an integer onto the R12 stack (at parse time). TYPE Parse

REGISTER CONTENTS R12 STACK CONTENTS

R14 = 32 (Integer token)
R44-46 = BCD integer

INPUT CONDITIONS

R14 = Next token 32 (Integer token)
R40-47 = Set by SCAN BCD integer value from R44-46

OUTPUT CONDITIONS

CPU CHANGES COMMENTS IROMJSBI !
1 4 5 6 7 §DCM E
10111]12]13 6117
2722232425126 27 fmre AlP Sets E=1. .
31132]33]34]35]36]37 Calls SCAN at exit.
141 36
51152 [53[54]566]66] 57 et
61162 [63164]65]|66]67
71172 (731 74] 75 | 76| 77 U

FUNCTION NAME PUSH45
ADDRESS 14266

Pushes the token in R14 onto the R12 stack; then pushes the TYPE Parse
variable name in R44-45 onto the stack and calls SCAN.

8

3(318

REGISTER CONTENTS : R12 STACK CONTENTS

R14 = Token
R44-45 = Variable name

INPUT CONDITIONS

Next token (Set by SCAN)
Next character (Set by SCAN)
Set by SCAN

R14
R20
R40

QUTPUT CONDITIONS

CPU CHANGES COMMENTS LROMJSB] Y
1 4] 5] 6] 73DCM E
10111 | 16§17]
207121122 123[24[25]26] 27
30 |31132733134]35]36] 37

Jumps to another routine, which calls SCAN.

DRP § ARE Sets E=1.
14 | 36
51152 |53 [54]56[56] 57 p=prare=
61]162163}64]65]166]|67
7117217231741 725726} 77 -

31818

7-37

FUNCTION |

Parses a simple numeric variable or a numeric array
reference.

NAME REFNUM
ADDRESS 17025

TYPE Parse

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

R14

1 if simple numeric variable
reference.

2 if array reference.
Otherwise, exit.

OUTPUT CONDITIONS |

R14 = Next SCAN token 21

22

Variable name OR Array name
Parsed subscript

nE . 4| 5] 6] 7j0OCc™m E

CPU CHANGES COMMENTS

11 v 16| 17 U 0
2122 23]24]25]26] 27 E=0 at entry.
313233 37 2R | ARP

STATUS

61162 163164165]66]67

FUNCTION

Scans the input buffer and returns the next token.

l ROMJSB I Y

E#0 at exit (if found).

NAME SCAN

ADDRESS 11262
TYPE Parse

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

R10
R20.

Input buffer pointer
Next character in input buffer R12

i u

Output stack pointer

OUTPUT CONDITIONS

R10
R14

Input buffer pointer
Next token

R20 = Next character R12
R40 = First character searched

R41-42 = ROM#, binary program address, or @

R43 = ROM token or variable type
R44-46 = Name of var. or int., or sec. att.

R47 = Class

o nn
i

Qutput stack pointer

7

30

50

CPU CHANGES COMMENTS
12+ 3] 4] 5] 6] 7JocM] E

12112223724 25}26] 27

11]12]13 177 _ {0 E=@ at exit.

311323334 35] 36] 37 R ARP

e , 14 | 36

51152 153154]55156157 F cTATUS

61/62(63)64]|65[66]67

70

71|72 [73]74] 75] 76| 77 U

I ROMJSBl Y

7-38

FUNCTION

|

Gets next character (through GCHAR) and executes SCAN. TYPE Parse

NAME SCAN+
ADDRESS 11257

REGISTER CONTENTS R12 STACK CONTENTS
1]
=
o
E
Q
Z
o
(6]
-
2
a
z
[%2]
Z
o
E
o
Z
(@]
(8]
-
=2
a
[
2
o
CPU CHANGES COMMENTS [romuse] Y
0] 1 2{ 3] 4] 5] 6] 7jOC™M E
1011 [12]13]|14)16]16] 17 PR
36121 T2z (23 2a 35 136 T3 See SCAN for conditions and changes.
30 |31 [32 |33 [34] 35 | 36| 37 pore 4 ARP
40 |41 |42143744]45]46] 47
50 |51]52 53 [54] 5556 57 g
60 |61]62|63|64]165]66} 67
R720171 1721731741 75]|76] 77 .
ADDRESS 17454
Pushes current token onto R12 stack and looks for valid TYPE Parse
sequence (1ine) number. Pushes line number if found.
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
5| R14 = Current token
&
QO
[
D
a
z
w
5 Current tok
O urrent token
= = :
S R14 = New current token Sequence number (2-byte integer.
S Present only if found.)
5 RI2 » ——mem e e e
a.
[
2
o
CPU CHANGES COMMENTS [RomusB] Y
K " 4] 51 6] 7jocmM) E)
1011]12]13] 116]17] _ U Expects E cleared (7‘-]) at entry.
21 [22123124] 25126127 == Calls SEQNO (which calls SCAN) to get an integer.
30 |31 |32 |33 |34 35] 36 37 o0 ; .
1 Generates error if sequence number = @, or if number> 9999.
50 |51 [52 [53|54] 5556] 57 Jrgretemm Sets E=E+] if sequence number found; sets E=p if number
606162163]64]65]66]67 not found. .
70 1711721731741 75]76[77 =

7-39

FUNCTION | NAME SEQNO
ADDRESS 17457
Scans for sequence (1ine) number, and pushes the number TYPE Parse
onto the R12 stack.
REGISTER CONTENTS R12 STACK CONTENTS
w
4
Q
E
[a]
P-4
o]
o
b=
2
o
F4
2
O If no sequence number found: If sequence number found:
g R14 = New current token R12 stack = Sequence number (2-byte
9 integer)
=
2
=
2
@]
CPU CHANGES COMMENTS LromJsB] Y

1 4] 6] 6] 7ZJDCM
10§11 11213 16{17
21 122{23]24}25]26] 27
30 131]32133|34{35]36] 37

im

Expects E cleared (#-1) at entry.
Calls SEQNO (which calls SCAN) to get an integer.
Generates an error if sequence number = @, or if sequence

DRP § A

1 %IC

numbhe 999,

653 2: 2§ 23 Z 22 22 2; STATUS 1 Sets E=E+i ?f sequence number found; sets E=@ if no sequence
701717 {72 {73 [7a L 75 [76 [77 - number found.

FUNCTION NAME SMLINT

ADDRESS 13474
Pushes an integer (R44-46) at parse time if R14 contains TYPE Parse
integer token (32).
REGISTER CONTENTS R12 STACK CONTENTS
7]
-4
Q
5| R14 = Current token
S
t—
-
z
g If R14 = 32 at entry: If R14 = 32 at entry:
E R14 = Next token E=1 and stack contents are:
S R40-47 = Set by SCAN 32 (Integer token)
8| Otherwise, registers unchanged R44-46 Value
5 R12 » ~emeceemm e
el Otherwise, R12 unchanged and E=(
(@]
CPU CHANGES COMMENTS [rRomusB]y
DCM E
-1 U Calls SCAN at exit.
°E’ Az’ If R14#32 at entry, then at exit E= ﬂ, DRP=14, and

50 5115253 | 54] 55 56] 57 zkes nothing else is changed.

60 6116263 64]65]66]|67 j
70 (71 |72 731741 75 | 76| 77 U

/ ‘ s 7-40

FUNCTION |

NAME STRCON
ADDRESS 14036

Pushes a quoted string onto the R12 stack, then calls SCAN. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
Q
[
5| R14 = Token (Must be quote)
3| R40 = Set by SCAN
-
>
o
z
w
8
2 5
[a] . .
2| R14 = Next SCAN token 'g‘,‘é"‘j?‘:g of bytes in string
§ R40 = Set by SCAN R]2 > e . ———————————————————
[
2
o
CPU CHANGES COMMENTS [roMJSB] Y |
0] 11 2] 3] 4] 5] 6] 7Jocm [T E. ' ‘
e e U | U Must SCAN before entry to this routine. Routine SCANs
31132 133 [34] 35 | 36| 37 Jone4-ARF before exit.
a0lailazla3laslas FEl 7] U | U E#@ if quoted string found.
STATUS
6061 |62163]64]65]66] 67
70121172173174175176] 77
FUNCTION NAME STREX+
ADDRESS 13623 |
Same as SCAN followed by STREXP. TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
2]
<
Q
E
a
Z
o
(8]
-
o]
a
z
w
Z
Q
=
a
<
O
Q
[
>
o
-
2
o
CPU CHANGES COMMENTS | RomusB] Y.
o 1] 21 3] 4] 5] 6] 7]jOCM E
1w 12fshalisef 7]
20 |21 12212324 25]26] 27 .
30137132 |33]34 35 | 36| 37 p2ro 250 See STREXP for conditions and changes.
40 |41(42143144/45]146] 47 ¢
50 [51[52 [53]54]56]56] 57 =ermto=
60)61 162163 164]65]66] 67

71172 173174175]76}177

7-41

FUNCTION | NAME STREXP
ADDRESS 13626
Pushes a string expression onto the R12 stack. E#p if found. } TYPE Parse
REGISTER CONTENTS R12 STACK CONTENTS
W)
2
o
5| R14 = SCAN token
S| R40 = Set by SCAN
§
4
[92]
4
Q v
5| R14 = Next SCAN token
§ R40 = Set by SCAN
[
2
&
2
@]
CPU CHANGES COMMENTS LRomuse] Y
0] 1 4] 5| 6 7]0OCM E
iR rans e LWL I T Must SCAN before calling this routine. The routine
30 |31 32 [33]34 3536 37 JoneJ ARP SCANs before exit.
; V - 1 - E#0 if string expresion is found.
50 |51 152 |53|64] 56|56 57 =rxros
60 |61 |62 |63|64]65]66]67
70171 172173|74]75]76] 77 -
FUNCTION NAME STRREF
ADDRESS 13753
Pushes a string variable or a substring reference onto the TYPE Parse
R12 stack, then calls SCAN.
REGISTER CONTENTS R12 STACK CONTENTS
w
&
E| R14 = SCAN token
&| R40 = Set by SCAN
(’._J
2
2
g
El R14 = Next SCAN token
Z| RA0 = Set by SCAN
o
2
5
o
CPU CHANGES COMMENTS YROMJSBL Y
E
U Must SCAN before calling this routine. This routine
ARP SCANs before exit.
- E#p if found.
STATUS

7-42

FUNCTION | NAME TRYIN
ADDRESS 14566
Gets @ or 1 numeric parameter and pushes token from R14 TYPE Parse
onto R12 stack.
REGISTER CONTENTS R12 STACK CONTENTS
w
2
]
5 R14 = Input token
(ZD X
&)
[
>
z
z
S| R14 = Next SCAN token @ or 1 numeric value tokens
5| R34 =@ or 1 (2 or more produces error) Token from R14
5 R12 & ———mmmm e e
(&)
—
2
= |
© |
CPU CHANGES COMMENTS [romusB] Y

Calls GETPA?, then demands R34 < 2.

FUNCTION NAME UNQUOT
ADDRESS 14212
Pushes an unquoted string onto the R12 stack, then calls TYPE Parse
SCAN. E#p if unquoted string found.
REGISTER CONTENTS R12 STACK CONTENTS
[72]
=z
)
5| R20 = First character of string
8
(8]
[
2
a
z
w
-
Q
5| R14 = Next SCAN token
2| R40 = Set by SCAN
et
2
a
2
o . .
' CPU CHANGES COMMENTS | RomJsB] Y
0f 1 3| 4] 5] 6] 7jbCcM E
10 [11}12]13 16[17] _ U .
2722232425 [26] 27 fmert—re E#£® if found.
03132133 34135036 ST T This routine calls SCAN before exit. -
50 {51 /52 |53 |54]55]56] 57 ==v=tos
60161 [62163164]165|66]67
70171172173 {74{75}]76] 77 -

7-43

HP-83/85 System Routines

RUNTIME AND RUNTIME ROUTINES
RUNTIME CONVENTIONS

System routines used at runtime include primarily mathematics routines and system
functions. In general, math routines always expect BCD mode at entry. System
functions expect the argument(s) on the R12 stack when the routine is called, and
leave the result on the R12 stack when completed.

CPU registers used during runtime include, but are by no means limited to, the
ones shown here.

Register Runtime Use
R12 Operating stack pointer.
R16 Contains CSTAT.
R17 Contains XCOM.

RUNTIME ROUTINES

System routines useful at runtime follow.

7-44

FUNCTION | NAME ABS5
ADDRESS 53731
Returns the absolute value of the argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
o Argument (8 bytes)
=
£ R12 & mecmmmmmmmeeoo ol
2
(@]
(&]
[
2
a
z
w
2
Qo
£ Absolute value (8 bytes)
2 2 I
Q
-
2
o
[
2
(@]
CPU CHANGES COMMENTS IROMJSB' N
0] 1 21 3| 4] 5] 6] 7)DCcwm E
1017112113 114]15]16] 17 D U
20 [21]22]23[24f25]26] 27 Y T
30 (31323334 35 28F
42 |4 145 01 12
, £ol q_STATUS
70 171172]73|74|75}176] 77 U

FUNCTION

Adds two numberé (X+Y).

NAME ADDROI
ADDRESS 52150

TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[75]
8 X-value (8 bytes)
& Y-value (8 bytes)
Z R12 » —memmmmmmeeee o
[®]
-
2
a
z
———
%]
8
E| R40 = Copy of result X+Y value (8 bytes)
F4 R12 » ool
(@]
[&)
’_
D
Q.
-
2
(o]
CPU CHANGES COMMENTS [rRoMJsB] N

0 1 2 3| 4 5] 6 7 1 DCM E
10111112]13114]15116]17 D U
201212212324 25]26] 27
0137 o DRP | ARP

401 12

et e =] STATUS
7017172 [73]74] 75 76] 77 U

7-45

FUNCTION | NAME ATN2.
ADDRESS 76455
Returns arctangent of Y/X (i.e., ATN2) in proper quadrant. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[42]
3 Y-value (8 bytes)
=l X-value (8 bytes)
z R12 + ——cmmmmmmcmeeee
O
-
z
=z
w
2
)
= ATN2 value (8 bytes)
Z R12 + =—eemmmmmcmccmee e
(&)
[
z
5
@]
CPU CHANGES COMMENTS LrRomJsB] Y
0] 1] 2| 3} 4] 5] 6} 7jDC™M E
10|11 |12]13114]15]|16]|17
s - D1 U
gg ;: L DRP | ARP
i 4 Uyl u
. e STATUS
[U
FUNCTION NAME BEEP.
ADDRESS 6737
Executes the BEEP statement. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
172
3 Parameter #1 (8 bytes) (optional)
£ Parameter #2 (8 bytes) (optional)
z R12 » =-mmmmmmmmmm e e
[&]
-
z
r
w
=
(@]
= R12Z + —m e
2
@]
Q
-
D
g
2
(@]
CPU CHANGES COMMENTS JrOMUSB] Y
ol 1 2{ 3] 4] 5] 6] 7])0C™M E
10411112113114/151161170 4) § | If no parameters are on stack at entry (i.e., TOS = R12),
202122]23]24]|25]|26] 27

a standard beep is executed.

7-46

[

FUNCTION | NAME CEIL1p
ADDRESS 53615
Returns the smallest integer > = x. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
1]
P-4
Q
5 X-value (8 bytes)
5 R12 & memmmmeee o
Q
-
2
a
z
1]
3
S| R40 = Copy of CEIL result CEIL result (8 bytes)
Z R12 + el
o}
Q
[~
2
a
-
2
(@]
CPU CHANGES COMMENTS ROMJSB
0Of 1 3] 4] 5] 6] 7y0Cc™m E
1011 [12|13}14(15][16] 17 D U
20 }21]22 2?‘ 24 25126] 27 TR WY
40112
= STATUS
70 {71 [72 17374 75| 76] 77 U
FUNCTION NAME CHSROI
ADDRESS 52075
Changes the sign of a number. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[72]
<
2 Number (8 bytes)
=) R12 + ~ e
(@]
Q
’_
2
a
Z
2]
2
o
': .
g -Number (8 bytes)
st R12 > ceemmmeeeee e
-
2
a.
[
2
o i
CPU CHANGES COMMENTS ROMJSBIN |
O] 1| 21 3] 4] 5] 6] 7}]DCM E)
10|11 [12|13}14[15]16]17 D U
2012112223]24]25]26] 27 .
30131 32133 38| 35|38 37 JRAE AP Requires BCD mode at entry.
40 112
5051 162153]54[56]56] 57 p=—mrmimm
60161 |62|63[64]65]66]67
70 (71172 |73 |74]175]176] 77 U

7-47

FUNCTION | NAME COMMA$
| ADDRESS 70634
Prints a string to the print buffer or the display buffer. TYPE Runtime
(Same as PRINT A$, in BASIC.)
REGISTER CONTENTS R12 STACK CONTENTS
w
& ~Length of string (2 bytes)
= Address of string (2 bytes)
3 R12 » = e e e
Q
[
g
=z
w
2
Q
5
§’ RIZ » emmmmm e e
5
5
o
CPU CHANGES COMMENTS LromusB] Y |

DISP. or PRINT. must be called prior to calling
COMMA$ to set up the select code and buffer pointers.

FUNCTION NAME COMMA.
ADDRESS 70756
Prints a number to the print buffer or the display buffer. TYPE Runtime
(Same as PRINT 5, in BASIC.)
REGISTER CONTENTS R12 STACK CONTENTS

w

5 Number (8 bytes)

= R12 + —-mcccmmmmee e

Z

o

&)

-

2

z

[72]

Z

o

E R12 » - mmcmcmmeceeee

@]

Z

3

[

2

5

O

CPU CHANGES COMMENTS [romusBlY

DISP. or PRINT. must be called prior to calling COMMA.
to set up select code and buffer pointers.

7-48

FUNCTION | NAME CONCA.
ADDRESs 75005
Concatenates two strings. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[42]
5 A$ length (2 bytes)
E A$ address (2 bytes)
z B$ length (2 bytes)
© B$ address (2 bytes)
g N A e ——
z
[72]
<
Q
= A$ and B$ length
z A$ and B$ address
°© R12 + ~-cccmcmmcceeeee
oo |
i
2
o
COMMENTS [romuse] Y
DCM E
Bl U
DRP ARP
Uju
STATUS
U
FUNCTION NAME COoS1p
ADDRESS 53556
Returns cosine of argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[72]
ps
Q
E Argument (real or integer #)
z R12 » mmmmeemmmmcee
Q
5
2
2
Q
=
[a]
2| R40 = Copy of result Answer (real #)
e R12 + ~memmmmmmeeee
& e
5 <
(@] o)
CPU CHANGES COMMENTS LROMJSB] N |
1 2] 3] 4] 5| 6] 7jDcMm E
10{11]12]13]114]15[16][17 D U
DRP ARP
40112
STATUS
U

FUNCTION | NAME CoT1p
ADDRESS 53536

Returns the cotangent of the argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
v)
P4
o
E Argument (8 bytes)
2 R12 » e
Q
[
2
a
z

w
Z
Q
E
(=]
Z| R40 = Copy of cotangent result Cotangent (8 bytes)
o N A e ——
2
a
-
2
(@]
CPU CHANGES COMMENTS ROMJSB
o 1] 2] 3] a] 5] 6] 7QocMT E
10|11]12)13]14]15[16]17 D U
= 423124 Lf“ DRP J ARP
143 0112
“a e 2 STATUS
U
FUNCTION ' NAME CSEC1p
ADDRESS 53503
Returns cosecant of argument. TYPE Runtime
REGISTER CONTENTS] R12 STACK CONTENTS
. «
=
o
£ Argument (8 bytes)
z R12 » e
(6]
._
2
a
z
[2]
]
g R40 = Copy of cosecant result Cosecant (8 bytes)
z R12 + =
&)
[
2
a
(==
2
(@]
CPU CHANGES COMMENTS ROMJSB [N
- 1 2| 3] 4] 5] 6] 7]DbCc™ E
10 1,1_ 12 13}14] 15 16‘ 17 D U
,',,23 24 H DRP §F ARP
140112
STATUS
U

7-50

FUNCTION | NAME DATE.
ADDRESS 37673
Returns current date. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
pd
o
=
[®]
P4
o
[&]
[
o |
a
z
[72]
b4
o
=
(&)
§ Date (8 bytes)
ht R12 + =cmmmmmmmmcee
o
a
-
2
o
CPU CHANGES COMMENTS | Romuss] N |
0 1 2 31 4 5] 6] 7Jj0OCM™ E
10111 (121314 15]16] 17 - _
20211222324 25] 28] 27
30 {31 [32[33]34] 35] 36| 37 J-2REJ-ARP
40 [41]42 40112
20 151152 STATUS
60 61]62
70 |71 [72 U
FUNCTION NAME DEFA+.
ADDRESS 61505
Turns defaults on. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
wn
4
=}
E
[a)
Z
o]
(8]
-
>
a
z
w
2
o
[
a
=
@]
[&]
[
o]
o
._
o]
@]
CPU CHANGES COMMENTS [RomusB] Y
0 1 2 3 4 5 6 7 1 OCM E '
101112113 |14115]|16| 17 - -
20121]22(23]24[25]26]| 27 e YT
30 [31]32(33(34] 35 37
40 |41 142143 |44 45]46] 47 36 -
50 |61 15253545556 57
60 |61 |62]63]64]|65{66] 67 U
70171172 |73|74]|75]76] 727

7-51

FUNCTION | NAME DEFA-
ADDRESS 61513
Turns defaults off. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[72]
2
o
-
(@]
2
o
Q
[
>
a
z
w
Z
)
=
[=]
Z
o]
[&]
-
]
o
—
=
@]
CPU CHANGES COMMENTS |ROMJSB| Y
0 1 2 3] 4] 5 6 7 | DCM E
10 (11 (121131143 15116] 17 - -
20121122]23]24]26]|26] 27
30 |31 32 [33] 34 35 [361 37 j2RP J-ARP
40141142 {43]44]45]46|47) 36| -
50 151152 |63 [54]55]|56] 57 =g
60 161162 163164}65][66}67
70171172 (7317475 [76 | 77 U
FUNCTION NAME DEG.
ADDRESS 61736
Sets computer to degrees mode for trogonometric operations. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
E
=]
P
(o]
Q
—
2
[« %
z
w
ps
Q
£
[a]
P-4
Q
(8]
-
=
Q.
[
o}
O
CPU CHANGES COMMENTS [RomusB] Y
0] v]1 2] 3] 4] 5] 6] 72}ocM :
10|11 121314\51617_ _
20 121122 [23}24]25]26] 27
30 |31 32 [33]3a] 35 37 J2RE L ARP
40141142 143]44145/46]42136 | -
50 (51|52 [53 54565]56] 57 P eTaros
60 161 [62|63[64]65[66]67
2007 (72173174175 (761771 U

7-52

FUNCTION | NAME DEG19Q
ADDRESS 54142
Converts angle in radians to degrees. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[72]
8
= Angle in radians (8 bytes)
S R1Z2 + = e
Q
-
2
o
z
[72]
2
o
E
[}
Z| R40 = Copy of result Angle in degrees (8 bytes)
© A T T ———
2
o
-
o]
o
CPU CHANGES COMMENTS [rRomJse] N
O 1} 2| 3} 4] 5] 6{ 72jbcm) E
1011]12113]14]15[16| 17 D U
2012112212324 25[26] 27 —— Y3
30 {31 !
w0 140112
STATUS
U v
FUNCTION NAME DISP.
ADDRESS 70046
Sets SCTEMP and PRINT pointers to CRT IS device. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[72)
Z
=
-
&
=4
(o]
(&)
[
>
a
z
wn
P4
o
[
a _
Z
@]
Q
[~
2
a
[
]
(@]
CPU CHANGES COMMENTS ROMJSB
0ot 1 2] 3] 4] 5] 6] 7jDCM E
10 (11 7121314115116} 17 _ -
2012112212324 25|26 27
30 |31 |32 |33 | 34] 35] 36] 37 Joe AP
40] -
STATUS
60161]62]63|/64]|65]|66]67
7017117217374 75] 726127 U

7-53

FUNCTION | NAME DIV?
ADDRESS 51641
Divides Y into X. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w .
-
o
5 X-value (8 bytes)
3 Y-value (8 bytes)
o R12 & mmmmmmmmmmeeee oo
2
a
z
[72]
P4
©
= R40 = Copy of result X/Y value (8 bytes)
g A
[&]
-
2
a
2
(o)
CPU CHANGES COMMENTS [romusB] N
O 1] 2] 3] 4] 5] 6] 7jDC™M E
10|11]12113]14]15]|16| 17 D U
2012122123 }124{25]|26] 27

STATUS

(70171192173 174175 176177
FUNCTION

NAME EPS1p
ADDRESS 54126
TYPE Runtime

Returns the smallest positive number (1E-499) the computer
is capable of handling.

REGISTER CONTENTS R12 STACK CONTENTS

INPUT CONDITIONS

R40 = Copy of smallest number Smallest number (8 bytes)

OUTPUT CONDITIONS

CPU CHANGES COMMENTS ‘ l ROMJSBl N
1] 2] 3] 4] s] 6] 70JocMY E v

n2]rafralisTre[17] |y U
2122 [23]24| 25]26] 27
31132 35[36] 37
41]42]43]4a4]4a5]a6]47050 112

STATUS

DRP § ARP

& iwlol =
(o} [=]]e] o} [e]

60 |61 62 163 64]65]66] 67
70 (71 (72 (73781 751 76 | 77]

7-54

FUNCTION | NAME DIV1p
ADDRESS 51644
Divides two real numbers. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
wn
Z
)
5| R50 = Real #A (Numerator)
&| R40 = Real #B (Denominator)
o
2
a
z
[72]
2
o
=
[a)
3
©! R40-47 = Real rounded result (Copy) Real rounded result (A/B)
2 R12 » =—cememm e
[
2
o
CPU CHANGES COMMENTS [RomJsB]
0] 1 2] 3] 4] 5| 6] 7poc™M E
1011]12]13]14]15]16]17 . . .
T o=t el U Not listed in global file. Same as DIV2, except DIV2
30 |31 [a7[5aTan ORF 3 ARF expects two real or integer numbers on the R12 stack.
’ 401 12
STATUS
70 71172 (73] 74| 75 [76 [77 U
FUNCTION NAME
ADDRESS
TYPE
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
Q
E
[a]
Z
Q
(&
[
>
a
z
[72]
Z
o
-
a
4
Q
(8]
(-
2
a
-
2
o .
CPU CHANGES COMMENTS [romuss]
0] 1 2{ 3] 4] 5] 6] 7]DCM E
10§11 {1213]|14]15]|16]|17
20 [21]22]23f24]25]26] 27 YT
30 3132 333435 36] 37 J-2E0
40 141 |42 143144 45]/46] 47
50151/62 /5354 55[56] 57 Feratos
60)61 162163 [/64][65]66] 67

71172173/74]75]76] 77

7-55

FUNCTION | : NAME EQ.
ADDRESS 62173

Compares two numbers for equality. (#1 = #2.) TYPE Runtime
REGISTER CONTENTS ' R12 STACK CONTENTS
w
& #1 Value (8 bytes)
5 #2 Value (8 bytes)
- R12 + —mmemm e
(8]
5
2

[2]
2 ;
o
-
= True/false value (8 bytes)
g [A S
(&
-
2
a
-
2
o
CPU CHANGES COMMENTS [romuse] Y

3] 4] 5] 6] 7)p0OCM E
13114115]16) 17
23]24| 25 U U

STATUS

70171172173 174175[76] 77

'FUNCTION NAME EQS.
ADDRESS 3006
Compares two strings for equality. TYPE Runtime
REGISTER CONTENTS _ R12 STACK CONTENTS
[42]
5 String 1 length (2 bytes)
= String 1 address (2 bytes)
Z String 2 length (2 bytes)
o String 2 address (2 bytes)
> R12 + mmmmmmmmmmmmmmmmmmmcmmmm e e
z
[72]
8
E True/false value (8 bytes)
z RI2Z + e
3
[
>
g
2
(@]
CPU CHANGES COMMENTS ’ LROMJSB] N |
Q] 1 2} 3] 4] 5! 6] 7]DC™M E
10§11 [12113[14]15]16{ 17 D U
20 12112212324 (25[26] 27

DRP § ARP

A —
STATUS

7-56

FUNCTION | ' NAME ERROR

ADDRESS 6615

Sets ERRORS, ERRN, ERRL and error flag in R17. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
193]
Z
Q
E
[a}
Z
@]
Q
.
D
a
Z
2]
2
Q
E
ja]
-4
@]
Q
-
>
a
-
2
O
CPU CHANGES COMMENTS ROMJSB
o] 1] 2]3]a E |
L W U_ ERROR must be called with the following code:
30 |31 |32 [33]34 ARP JSB=ERROR \ Call to ERROR.
40 /41142143144 U BYT Error number.
50 5152 [53 154 55] 56 57 o —
60 |61 162]63|64]|65]66] 67
70 |71 172 {73 [7a] 751 76| 77 U :
FUNCTION NAME ERROR+
ADDRESS 6611
Sets ERRORS, ERRN, ERRL and error bit in R17, then pops one TYPE Runtime
return address off of R6 before returning.
REGISTER CONTENTS R12 STACK CONTENTS
w
2
Q
E
(=]
<
O
O
[
)
a
=
[<2]
2
o
E
o
Z
(o]
Q
[
-
a
=
2
O _
CPU CHANGES ‘ COMMENTS ROMJSBI N |
O] 1] 2] 3] 4] 5] 6] 7jocmMmf E
1011 [12[13]14]15]16 - U ‘ . ;
20 [27 122 [23[24]25126] 27 Josmemrme ERROR+ must be called with the following code:
30 131132 133 134135136137 JSB=ERROR+ Call to ERROR+.
4041 [a2]a3]aa]as]a6|az] U | U BYT E
50 [51[52 [53[54] 55 [56] 67 f=erate= R rror number.
6061 162163[/64)65]66]67 U
70 71172173741 75]176] 77 :

7-57

FUNCTION |

" FUNCTION

NAME EXP5
« ADDRESS 52377
Returns e”. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
8 X-value (8 bytes)
g N
@]
Q
=
>
[
z
w
Z
2 X
E e” result (8 bytes)
g R12 » —mcmmmmmcmcee o
(8]
-
2
g
=2
(o]
CPU CHANGES COMMENTS Lromuse] N

Returns the fractional portion of the argument.

NAME FP5
ADDRESS 54071
TYPE Runtime

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

Argument (8 bytes)

OUTPUT CONDITIONS -

R40 =.Copy of result

Result (8 bytes)

CPU CHANGES

COMMENTS

11 2] 31 4] 5] 6] 7Jocm]y E

11[12{13]14}15[16]17 D U

21122123 [24]25]26] 27

70

DRP | ARP

40112

STATUS

31

71172173]74175176] 727 U

l ROMJSB | N

7-58

|

NAME

FUNCTION GEQ.
ADDRESS 62304
Compares two numbers for the condition: #1 >= #2. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
P4
o
5 #1 value (8 bytes)
g #2 value (8 bytes)
o R T T T ——
2
2
1]
P4
©
= True/false value (8 bytes)
3 R12 + memmm e e oo
&
-
2
&
2
o . N
CPU CHANGES COMMENTS [Romuss] Y
0l 2] 3} 4] 5] 6] 7j0C™M E
1011 {12 |13}14115]16{17 U U
gg :2;:: 2223|2425 ;26 27 TER W
401} 12
J i STATUS
70171172173174]75176] 77 U 5
FUNCTION NAME GEQS.
ADDRESS 3111
Compares two strings for the condition: string 1 >= TYPE Runtime
string 2.
REGISTER CONTENTS R12 STACK CONTENTS
%2}
8 String 1 length (2 bytes)
£ String 1 address (2 bytes)
z String 2 Tength (2 bytes)
© - String 2 address (2 bytes)
& R12 » ——mmm e e
Z
w
3 .
= True/false value (8 bytes)
z R12 » —m e
Q
-
2
5
O B
CPU CHANGES COMMENTS LROMJSB] N |
0] 1 2| 3] 4] 5] 6] 7j0C™M E
1011 {12]13]|14]15]16]17 D
20 {21]22]23]24]25[26] 27 T3
12
STATUS |

7-59

FUNCTION

J

Sets computer to grads mode for trigonometric operations. TYPE Runtime

NAME GRAD.
ADDRESS 61753

REGISTER CONTENTS R12 STACK CONTENTS
[2]
Z
o
E
[}
Z
@)
Q
[
]
a
z
wn
Z
Q
E
[a]
P4
(@]
(8]
[
2
a
b—
2
o
CPU CHANGES COMMENTS LRomJss] Y
01 1 2{ 3] 4f 5] 6| 71DCM™M E
10{11[12|13}14]115]16]17 - -
2012112212324 2526} 27
30 |31 132 [33 |34 35 [86] 37 J-oREYARP
40]a1142[a3]aala5]a6]a7] 36] -
50 {5152 [6354]55]56] 57 f=eraro=
60 161162]63|64|/65]/66]67
7017117217317 75 [76 [77 U
FUNCTION NAME GR.
ADDRESS 62255
Compares two numbers for the condition: #1 > #2. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
o #1 value (8 bytes)
= #2 value (8 bytes)
z R12 + =memmmmmmmemoee s
Q
'—
o
o
z
(/)]
2
o
= True/false value (8 bytes)
z N T
(&]
-
=
a
[
2
o
CPU CHANGES COMMENTS LROoMJsB] Y
o] 1 2] 3] 4] 5] 6] 7j0CM E
1011 {1213]14]|15|16]| 17 U U
20121122]23]24]25][26] 27 T WY
30 | 31 .
40112
STATUS
70471 172173|74|75]76] 77 U

7-60

FUNCTION | NAME GRS.
ADDRESS 3036
Compares two strings for the condition: string 1 > TYPE Runtime
string 2.
REGISTER CONTENTS R12 STACK CONTENTS
2
S String 1 length (2 bytes)
8 String 1 address (2 bytes)
§ String 2 Tength (2 bytes)
= String 2 address (2 bytes)
g A
[72]
2
9,
5 True/false value (8 bytes)
5 RI2 + cmmmmm e
(8]
-
2
a
[
2D
o]
CPU CHANGES COMMENTS [RomusB] N
011 2] 3] 41 5] 6{ 7]1DbCM E
10111 [12113]14]15}16{ 17 D U
20 [21]22({23]24]|25[26] 27 TR T
401 12
52 [53154] 55 |56 | 57 Jrmmis
7071 [72 7317475176 77 U
FUNCTION NAME ICOS
' ADDRESS 76552
Returns inverse consine (arccosine) of argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
n
Z
©
5 Argument (8 bytes)
F R12 » —emmmmmmccmeeee e
(&)
=
2
0.
z
2]
2
] .
£ Arc cosine (8 bytes)
Z R12 +» =—mmmmcmcmmecee e
Q
-
2
Q.
-
=
o
CPU CHANGES COMMENTS LRomusB] Y
0] 1 2| 3| 4} 5} 6] 731DCM E
1011 }12]13]14]15]16] 17
20 {21 D U
30 |31 DRP ARP
Uj u
STATUS
U

7-61

1 3] 4] 51 6] 7jpcm] E

11(12]13]14(15]16]17 D U

21 [22[23]24]125][26] 27

70

DRP § ARP

401 12

E——
STATUS

31

71172 [73174[175}176]77 U

FUNCTION | NAME INF19
ADDRESS 53524
Returns largest number (9. 99999999999E499) that can be TYPE Runtime
handled by the computer.
REGISTER CONTENTS R12 STACK CONTENTS
w
=z
S
5 R12Z > —ccmcmcmmcmcccmeeo
pd
(@]
©
[
z
z
2
2| R40 = Copy of largest number 9.99999999999E499 (8 bytes)
2 RI2 » mommmmem e e e
(@]
[8]
[
o]
g
o]
O
CPU CHANGES COMMENTS LRomuse] N
2 3]-4 5] 6} 7]DCM E
10|11 |12]13[|14]15]|16| 17 D U
20 (212212324 25]26] 27
30 [31 132331341 35 36] 37 | P2 ARP
50 |51 52 [653[54[65 [56] 57 ELATUS
60)61 |62]63]64|65]66]67
70 |71 172 {73781 75 [76 [77 U
FUNCTION) NAME INTS
ADDRESS 53776
Returns the FLOOR of X. (Largest integer < = X.) TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
3 X-value (8 bytes)
E)
2
@]
(8]
[
g
12
w
5
=] R40 = Copy of result Result (8 bytes)
z R12 + =eecmmccccceee e
Q
(-
)
&
2
(@]
CPU CHANGES COMMENTS LRomJsBI N

7-62

FUNCTION __| NAME INTDIV
ADDRESS 54005
Performs integer division: divides two numbers and returns TYPE Runtime
an integer result.
REGISTER CONTENTS R12 STACK CONTENTS
2
5 #A (8 bytes)
5 #B (8 bytes)
8 R12Z » —=emmmmmeeem
(&)
—
2
a
4
[22]
=
©
—
=)
Z A\B result (8 bytes)
g R12 + ~=emmmmmmmmeeme e
2D
o
-
2
o
CPU CHANGES COMMENTS LRomJsB| N
0 71 3[4] 5] 6] 7focM]I E
10f11112113{14]15]16] 17 D U
20 [21]122]2324]25]26] 27
30 31 ; DRP ARP
Uugiz
S—
STATUS
.70 1711721731741 75|76 77 U

FUNCTION

NAME IP5
ADDRESS 54174

Returns integer portion of the argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[72]
& Argument (8 bytes)
£ R1Z » ==mecmmmmceeeeeee
2
3
'—
2
z
w
£
<)
= Result (8 bytes)
z N A
Q
(-
z
5
o .
CPU CHANGES COMMENTS [rRomuse] |
5] 6/ 7§DCM E .
51160170 p | U E=® FOR TAGGED INTEGER
e NI o E#@ FOR FLOATING POINT
ujgiz
, STATUS
70 171172 |73174]75]76] 77 U

7-63

FUNCTION | NAME ISIN
‘ ADDRESS 76542
Returns inverse sine (arcsine) of argument. TYPE Runtime

REGISTER CONTENTS ‘ R12 STACK CONTENTS

[42]

=

S Argument (8 bytes)

.—

a R12 » —mcmmmmcmcmeeee o

Z

Q

Q

’—

2

o

z

[72]

P4

o

= "Arcsine (8 bytes)

3l N A

(8]

©

=2

a

[oms

2

Q

CPU CHANGES COMMENTS “[rRomusB] Y
Q¢ 1 2] 3] 4] 51 61 7]DCM E
13|14} 1516} 17

ADDRESS 76562
Returns inverse tangent (arctangent) of argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2
S| Argument (8 bytes)
5 R12 » ~——mcmmmmmmee -
=4
@]
(8]
._
2
a
4
w
P
Q
S Arctangent result (8 bytes)
3 R12 » -
Q
[
po }
a
-
2
o
CPU CHANGES COMMENTS IROMJSBI Y
Of t{ 2] 3] 4] 5§ 6] 7jboCc™M E
10|11 {12]13]14]15[16{17
20 121 D Algp
30 |31 oRP
utu
STATUS
J

7-64

FUNCTION |

DRP | ARP

400 12

S——
STATUS

FUNCTION

NAME LEQ.
ADDRESS 62232
Compares two numbers for the condition: #1 <= #2. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
. ;
o #1 Value (8 bytes)
3 #2 Value (8 bytes)
2
S R12 + =—mmmmmmcmcmm e
(&)
’_
]
a
z
1]
Z
Q
5 True/false value (8 bytes)
8 R12 + mmmcmmmm e
Q
[
>
=
2
o
CPU CHANGES COMMENTS [RomusB] Y

0| 1] 2} 3] 41 5] 6] 7]DCM E
10|11]12113]14115[16] 17 U U
20 121122 123|24]25]26] 27

NAME LEQS.

ADDRESS 3100
Compares one string to a second string for the case: TYPE Runtime
string 1 <= string 2.
REGISTER CONTENTS R12 STACK CONTENTS
12}
8 String 1 length (2 bytes)
E String 1 address (2 bytes)
z String 2 length (2 bytes)
°l String 2 address (2 bytes)
z R12 + mmemcmcemccmmccme e meeee
z
[72]
Z
Q
E
g True/false value (8 bytes)
8 R12 & =
-
2
5
o
CPU CHANGES COMMENTS [ROMJSB]N
o} 1] 2} 3] 4] 5] 6{ 7)DC™m E
10111213114} 15][16] 17 D U
23{24]25]26} 27

7-65

FUNCTION | NAME LN5
ADDRESS 51551
Returns LN(X). TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
(73]
-
o
5 X-value (8 bytes)
3 R12Z » w—emmcmme e e
Q
—
z
z
-
5
E| R40 = Copy of result LN(X) result (8 bytes)
z R12 > ==mmmmmmcmmmmeeeee -
Q
-
2
5
@]
CPU CHANGES COMMENTS [rRomusB] N
2] 3] 4) 5| 6| 7 QCM E
20 |21 ;; ;g 24] 25 D sz AEP
B! , a0 | 12
STATUS]
: €]
FUNCTION NAME LOGT5
ADDRESS 51720
Returns LOG,, (X) TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[75)
5 X-value (8 bytes)
E R12 + mmmmmmmm e e
<
(e}
(]
5
z
w
8
E| R40 = Copy of result LOG]O (X) result (8 bytes)
g 1
-
2
5
@]
CPU CHANGES COMMENTS LRomJsB] N

7-66

FUNCTION | NAME L.
ADDRESS 62213

Compares two numbers for the case: #1 < #2. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2]
Z
S #1 Value (8 bytes)
S #2 Value (8 bytes)
o R12 + cemmemeece e
Q
5
2
w
Z
o
5 True/false value (8 bytes)
& A T T —
[&]
-
o
i
o}
(o}
CPU CHANGES . COMMENTS [rRomusB] Y

1] 2] 3] 4] 5] 6] 7QpCcmM Y - E
12113]14]15]16 17 U U
23]24]25]26] 27 .

STATUS]

170 [71172[73]74] 7576 77

ADDRESS 3057
Compares two strings for the condition: string 1 < TYPE Runtime
string 2.
REGISTER CONTENTS R12 STACK CONTENTS
[42]
5 String 1 length (2 bytes)
5 String 1 address (2 bytes)
5 String 2 length (2 bytes)
o String 2 address (2 bytes)
2 R12 4 = mmmmmm oo
z
wn
Z
o
E
2 True/false value (8 bytes)
3 2
-
2
5
(@]
CPU CHANGES COMMENTS | RomJsB] N

0] 1 2] 3] 4] 5] 6] 7]bcwm E
1011 }12]13 14151617 D U
20]21122{23124| 25| 26| 27 [uum

7-67

FUNCTION | NAME MAX19
ADDRESS 55364
Returns the larger of two values. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
. .
Z
o
5 Value #1 (8 bytes)
3 Value #2 (8 bytes)
o A
g
z
w
Z
o
= Larger value (8 bytes)
z R12 & =mefmmmmommomee o
Q
-
o}
&
>
(@]
~ CPU CHANGES COMMENTS [rRomusB] N
0] 1 2] 3] 4} 5] 6] 730cm E
10|11 |12]13[14]15116]17 D U
20121]22123]24]25]26] 27 weionnm
30 131 DRP ARP
‘ Uliz
STATUS
U
FUNCTION NAME MOD]Q
ADDRESS 51744
Returns the remainder (modulo) of division. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
8 A-value (8 bytes)
5 B-value (8 bytes)
3 R12 » — e
(8]
5
z
wn
2
o
£ A MOD B result (8 bytes)
5 RI2 » == mmmmmmmmemecme e ee
qQ
[
oo
g
2
() —

CPU CHANGES

COMMENTS

4

5

6! 7]JDCM

14

15

16117 D

24

25

IC

26] 27

DRP

»i
>
0

o=

STATUS

[

IROMJSBIN

7-68

FUNCTION | NAME MINT@
ADDRESS 55345
Returns the smaller of two values. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
wn
2
o
—
5 Value #1 (8 bytes)
S Value #2 (8 bytes)
5 R12 » —mmeem e
a
z
wn
<
Q
—
2
3 Smaller value (8 bytes)
(&)
e R]Z T e e e - —————
>
a
-
o]
(@]
CPU CHANGES COMMENTS Lromuse] | |
0 1 2 31 4} 8 6] 7 QRD0EM 3
101111213114} 181 16} 17 D U
201212223]24125}26] 27
30 131 DRP ARP
ug 1z
STATUS
U
FUNCTION NAME
ADDRESS
TYPE
F REGISTER CONTENTS R12 STACK CONTENTS
wn)
P-4
=
-
&
p-d
@]
[&]
—
o]
[+ 9
z
(7]
Z
Q
—
&
Z
(@}
Q
—
o]
o
}_
D
O
CPU CHANGES COMMENTS [RomusB]
0 1 2 3 4 5 6 7 IDCM E
10§11V }12]113]|14115]16} 17
20121222324 25]26]| 27
30 [31 [32 1331341 35 [36 37 }-2REJ-ARP
40 |41 142 143144145146 47
50|51 [52 /5354 55]56] 57 i
60 |61]62]163|64[65[66]67
20171 (721737475176 27

7-69

FUNCTION

J

NAME MPY1Q
ADDRESS 52562

Multiplies two real numbers. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS

1]

Z

Q

[R40 = #A (Real)

Z| R50 = #B (Real)

o

2

z

w

Z

o

=

Qa

Z| R40 = Copy of result Real result (A*B)

o R12Z » mommmmmmm e -

2

5

o

CPU CHANGES

COMMENTS

3

4

1

12

13

14

21

22

23

24

5] 6] 71DCM]_E
56 [7] py
25 126 L 27 pme T Are

Not in global file.

expects two real or integer numbers on the R12 stack
at entry.

[rRomJsB] N
Same as MPYROI, except MPYROI

FUNCTION NAME
ADDRESS
TYPE
REGISTER CONTENTS R12 STACK CONTENTS
w
P-4
o
-
[a)
2
QO
[&]
’—
=)
a.
Z
w
P
=4
=
[a)
b4
@]
(&)
’—
o]
a
-
=
O
CPU CHANGES COMMENTS l ROMJSB I
0 1 2 3| 4 5 6 7 10CM E
101112113 |14|15(16]17
201212223]24]| 25|26} 27
30 [31 3233134 365 | 36] 37 p2nomgil
40 141142)43 |44[45]|46] 47
50 |51 52 |53 | 54| 55 56] 67 fz—at==
60 |61 62 63 64]65]66]67
701711727374 75]76] 77

7-70

30 [31]32]33
40 [41]42143]44] 45 55146
o i R——
STATUS
7017117217373 75] 76 | 77 U

11]112]13(14]15[16{17 B U
1122123[24[25]26] 27

DRP | ARP |

FUNCTION | NAME MPYROI
ADDRESS 52722
Multiplies two numbers. TYPE Runtime
I REGISTER CONTENTS R12 STACK CONTENTS
2
o X-value (8 bytes)
5 Y-value (8 bytes)
5 A Ty a———
Q
[
>
a
z
w
Z
o
5| R40 = Copy of result X * Y result (8 bytes)
3 R12 > e e o
(8]
[
2
a
-
2
o
CPU CHANGES COMMENTS [RomJsB] N
1 2] 3] 4f 5] 6] 7joC™M E
10{11112113]14]15]16] 17 D U
;g ;: 22]23[24]25]26] 27 TR BT
t 401 12
STATUS
U _
FUNCTION NAME OFTIM.
ADDRESS 66211
Turns off one of the system timers. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[2]
Z
o
£ Timer number (8 bytes)
z 23 A
Q
-
o]
a.
z
wn
2
o
E
[=]
z R12 » e e
(8]
-
2
a
[
2
(@]
CPU CHANGES COMMENTS 1rROMJSB] Y
ol 1 2| 3] 4af 5] 6] 7]Dcm E - R
10

7-71

FUNCTION |

NAME PI10
ADDRESS 53577
Pushes value of pi onto R12 stack as a real number. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
2
Q
5 7
5
(&)
-
g
z
w
Z
o
5| R40 = Copy of pi (as real number) Pi (as real number)
5 R12 + mmcmememmemeee -
Q
5
2
2
o
CPU CHANGES ' COMMENTS LromJusB] N
ol t] 2] 3} 4] 5] 6] 7focMF &
10|11 |12]13114}15]16]17 P =
N PNEYY PEYEC] LT L) Bl el Pi = 31, 41C, 59C, 26C, 53C, 59C, 0, O (BCD)
3013 o2t 33 341 35 136137 20112 Pi = 61, 101, 131, 46, 123, 131, 0, 0 (octal)
50 151152 [63]54] 5556 57 fgwms
60 [61]62]63|64]65]66] 67
7017117217374 75]176] 27 U
FUNCTION ' NAME POS.
ADDRESS 3435
Finds the character position in string A of the first TYPE Runtime
occurrence of string B.
REGISTER CONTENTS R12 STACK CONTENTS
2]
8 Length of string A (2 bytes)
£ Address of string A (2 bytes)
Z Length of string B (2 bytes)
© Address of string B (2 bytes)
2 R12 + —emmmmmc e
z
2
Q
£ Position (8 bytes)
Z R12Z » wcmmmmmcec e e
(8]
'_
g
5
(@]
CPU CHANGES COMMENTS LRomJse] N
0] 1] 2] 3] 4] 5] 6] 7Jocm] € | '
19 1M1i12 13 1411511617 U U
2012122123) LR BT
; utgu
53]54] 65 TTATOS
70171172 |723]74] 75| 76] 72 U

7-72

FUNCTION |

NAME PRINT.
ADDREss 70067
Sets SCTEMP and PRINT pointers to PRINTER IS device. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
P-4
Qo
=
=)
Z
@]
Q
—
>
a
z
[72]
Z
o
-
3
4
o]
o
-
2
a
==
2D
(@]
CPU CHANGES COMMENTS [Romuse] Y
Of 1 2] 3] 4] 5] 6] 7)]0OcM E
10111 [12(13]14] 16|16} 17 - -
2012112223 [24}25]26} 27
30 |31 132 |33 [34] 35] 36] 37 poro§ ARP
401 -
STATUS
60]61]62]163164]|65]66]67
701711721731741751761 77 U
FUNCTION NAME PRLINE
ADDRESS 70402
Dumps either the print buffer or the display buffer. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
2]
Z
o
E
o
Z
(@]
Q
[
2
o
z
w
Z
Qo
E
a
P4
o
Q
—
po
a
[
2
(@]
CPU CHANGES COMMENTS | RomJse] ¥

DISP. or PRINT. must be called to set up select code
and buffer pointers before calling PRLINE.

7-73

ARP and PRINT#. called.

FUNCTION] NAME PRNT#$
ADDRESS 30577
Prints a string to a tape buffer. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
(2]
2
o
'é R44-45 = Length of string
S R46-47 = Address of string
2
z
7]
Z
o
=
[
Z
(o]
Q
[
=
5
o
CPU CHANGES COMMENTS Lromuse] Yy |
E
U Before calling PRNT#$ a buffer must have been assigned

FUNCTION NAME PRNT#N
Abpress 31022
Prints a number to a tape buffer. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
T ,
8
S| R40 = Number to be printed
5
[&]
[
2
z
2
s]
=
Q
Z
@]
Q
-
&
5
o . .
CPU CHANGES _ COMMENTS [rROMJISBT Y
. 4] 5] 6] 7jR0CM E
B seter] UL U Before calling PRNT#N, a buffer must have been assigned
DEP 3 ORP and PRINT#. called.
uq u
STATUS
U

7-74

FUNCTION

|

NAME RAD.
ADDRESS 61746

Sets the computer to radians mode for trigonometric TYPE Runtime
operations.
REGISTER CONTENTS R12 STACK CONTENTS
[72]
P4
Q
-
5
-4
(o}
Q
’_
2
0.
z
[42]
Z
Q
-
G
-4
o
(8]
(-
2
o
-
2
o
CPU CHANGES COMMENTS LRomusB] Y
ol 1] 2] 3] 4] s] 6] 7JocM]" E ,
1011112113 [14]15][16{17 - -
20 |21]22[23]24]25]26] 27 —
3013132 [33]34[35 37 j28E
40 |41 142 4a3[4a]4a5]a6]47) 36] -
50 |51 152 153]54]55]156]57 STATUS
60 [61]62(63|64]65]66] 67
70 (71172173741 75176] 77 U
FUNCTION NAME RADIP
ADDRESS 53675
Converts angle in degrees to radians. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w 3
& Angle in degrees (8 bytes)
[
8 R12 > —— e
P4
@]
Q
[
>
a
z
[2]
&
= Angle in radians (8 bytes)
Z RI2 + —-memmmcmmm e
[&]
[
2
a
[~
2
o
CPU CHANGES COMMENTS | ROMJSB] N
0] 1 2] 3] 41 5] 6] 7]0CM E :
10111 [12113[14] 15|16 17 D U
20 [21]22]23[24[25]26] 27 et
30 |31
401 12
STATUS

7-75

FUNCTION | NAME READ#$
ADDRESS 31335
Reads a string from the tape buffer and stores it in a TYPE Runtime
variable area.
REGISTER CONTENTS R12 STACK CONTENTS
g Pointer to string variable area
= (2 bytes)
z Maximum storage length (2 bytes)
3] Pointer to 1st character of stor-
- ;
) age (2 bytes)
z R12 + = o
(2]
-4
o
E
0
Z
3 o
-
z
5
o
CPU CHANGES COMMENTS LRoMusB] Y
E
U A buffer must have been assigned and READ#. called

before READ#$ is called.

FUNCTION NAME READ#N
ADDRESS 31167
Reads a number from the tape buffer and stores it in a TYPE Runtime
variable area.
REGISTER CONTENTS R12 STACK CONTENTS
2
o See stack requirements for STOSV
-
=)
<
(@]
Q
-
]
o
z
[42]
Z
Q
E
[=}
z R1I2 &+ m e
(8]
'_
-]
o
[
>
(@)
CPU CHANGES COMMENTS | RoMJSB] Y
4| 5] 6] 7]DCM E
1011 [12]13 o 16|17 U U
DRP ARP
U
STATUS
U

7-76

FUNCTION | NAME REM1@
ADDRESs 51736
Returns the remainder (A,B) = A-B (IP(A/B)). TYPE Runtime
REGISTER CONTENTS R12 STACK CVOVNTENTS
z
<) A-value (8 bytes)
£ B-value (8 bytes)
g R12 +» —mmmmcmm e
Q
[
2
[8
Z
w
P-4
Qo
=
[a] : .
z Remainder (8 bytes)
© R1I2 » mrmemmmccc e e
s
i
=
(@]
CPUCHANGES COMMENTS - LROoMJSB] N
0 : 3] 4] 5] 6] 7QjDCM E S
101112113]14{16]16] 17 D U
20]21]22]23 ;24 25126 ;27 I WY
uglz
e
STATUS
70171 172173]174175/761 77 U
FUNCTION NAME RND]Q
ADDRESS 53144
Returns a pseudo-random number between @ and 1. TYPE Runtime
.REGISTER CONTENTS R12 STACK CCVJNTENTSV 7
2]
<
Q
E
Q
5 R12 + meemmcm e e
Q
’_
D
0.
Z
[2]
4
©
=
@]
Z| R40 = Copy of number Random number (8 bytes)
ut R12 » mmmemmmmem e
2
g
=2
o
' CPU CHANGES COMMENTS ROMJSBI N
ol 1] 2] 3] 4] s 6] 70ocm]I E
10 11712 13]14115] 16 17 D U
20121122 123(24]25]126] 27 — Aﬁ?
30 1311323334 35
401 12
STATUS
U

7-77

FUNCTION | ' NAME RNDIZ.
ADDRESS 55115
Executes the RANDOMIZE statement. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[7p]
=
o RANDOMIZE value (8 bytes)
g RI2 + =emmm e e
@]
[&]
[
z
Z
[72}
P-4
=
E
(o]
=2
@]
Q
[
o]
e
o]
o
CPU CHANGES COMMENTS) LRomJsB] Y
0 1 2 3] 4 5| 6| 73DCM E
101111213114 15]16] 17 s :
ottt Ul U RANDOMIZE value is optional.

FUNCTION NAME SCRAT.
ADDRESs 4437
Executes a SCRATCH. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[75]
2
o
E
(=]
P-4
Q
Q
|.—
o’
a
z
wn
Z
Q
E
[a]
b4
(@]
[&)
’—
=2
&
o]
(@]
CPU CHANGES . COMMENTS LRomJsB]l Y
7 joCM E
Ul u SCRAT. sets the immediate break bits (5 and 7) in R17.

46] 36

STATUS

7-78

]

i

FUNCTION NAME SEC1@
ADDRESS 53463
Returns secant of argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
P-4
o
-
5 Argument (8 bytes)
o) R A T —
o
2
r4
(2]
Z
o
&| R40 = Copy of secant result Secant result (8 bytes)
8 L
(8]
5
s
2
(o]
CPU CHANGES COMMENTS ROMJSB
1] 2] 3] 4] s] 6] 7JocmM] E L_I'N_
w 1271345767l DT U
12324 e
DRP § ARP
401 1
STATUS
U\
FUNCTION | NAME SEMIC.
ADDRESS 70765
Prints a number to the display buffer or print buffer. TYPE Runtime
(Same as PRINT 5, in BASIC.)
REGISTER CONTENTS R12 STACK CONTENTS
[72]
8
= Number (8 bytes)
g R12 » ~emmmmcmee e
o}
Q
-
2
z
2
Q
E
S R12 » ==-mmmmmmmceeeee
o
Q
5
a
2
@]
CPU CHANGES COMMENTS [RomusB] Y
4] 5] 6] 7)]DCM E
LNARE AL E A =td U | U DISP. or PRINT. must be called to set up select code
DG" Aa" and buffer pointers before SEMIC. is called.
STATUS
U

7-79

FUNCTION [NAME SEMICS$
ADDRESS 70643

Prints a string to the print buffer or the display buffer. TYPE Runtime
(Same as PRINT A$; in BASIC.) '

REGISTER CONTENTS R12 STACK CONTENTS
w
é Length of string (2bytes)
= Address of string (2 bytes)
S R12 + =
5
2 .
2]
=<
o
E
=
I} R12 » e
o
o
2
2
(@)
CPU CHANGES COMMENTS ‘ LRomusB] Y
DCM E
U DISP. OR PRINT. must be called to set up select code
ARP and buffer pointers before SEMIC$ is called.

FUNCTION NAME SGN5
ADDRESS 53405
SGN function: returns -1 if-x<@, @ if x=p, and TYPE Runtime
+1 if x>0.
REGISTER CONTENTS R12 STACK CONTENTS

w
P-4
o
= X-value (8 bytes)
g R12 » —==—mmmmmmmme -
(]
|_.
]
o
Z
w
3
E| R40 = Copy of SGN value SGN value (8 bytes)
3 R12 » —seemmmcmmcmcceee
Q
-
o]
a
2
@]

CPU CHANGES COMMENTS ‘ |RomJsB]
0 1 2 3] 4} 5| 6] 7]0C™M E
101112113 |14 15]16] 17 D U
20 [21]22]23]24]|25|26] 27

33134 3 DRP ARP

erery——
STATUS

7-80

FUNCTION |

NAME SINip
ADDRESS 53546
Returns the sine of the argument. TYPE Runtime
REGISTERCONTENTS R12 STACK CONTENTS
[72]
2
o ,
r— -
=) Argument (real or integer #)
8 R12 + == ee
-
o
a
z
42}
Z
o
=
S
5| R40 = Copy of sine result Sine result (real #)
e 3 R
2
[
2
o
CPU CHANGES COMMENTS |RomJsB] N
11 2] 3] 4] 5] 6] 7|0CM E
10111 |12113[14]15][16] 17 D U
23 124 DRP ARP
401 12
_NCR—
STATUS
u
FUNCTION NAME SQR5
ADDRESS 52442
Returns the square root of the argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
w
4
& Argument (8 bytes)
5 R12 + —-mmmmmmm e
£
[®]
|8
[T
2
a
z
2]
Z
Q
£ Square root (8 bytes)
z R12 + ——mmmmmmme e
(8]
[
>
[
[t
=)
o
CPU CHANGES COMMENTS. LRomusB N
Ol 1] 2] 3] 4] 5] 6] 7Jbcm]y E
10111]12]13[14]15[16] 17 D
20 [21 122]23]24]25]26] 27

7-81

FUNCTION | NAME STBEEP
ADDRESS 7017

Executes standard BEEP. (BEEP with no parameters.) TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS

2}

=z

Q

=

a

2

o]

Q

-

s

a

z

wn

Z

Q

-

5

Z

(@}

(8]

[

2

a

—

2

@]

CPU CHANGES COMMENTS [RomusB N

0f 1 21 3] 41 5] 6] 7]bcm E
10|11 [12113]|14]15[16] 17 B -
20 121]22|23[24]25]26] 27

DRP § ARP

3233|3435 37
40 j41]42[43]aala5(46[a7] 31} U
50 {51152 |53]54[5556] 67 et
60
70

61162163)64)65[66] 67
71172173

741 75]76] 77 U

FUNCTION NAME SUBROI
ADDRESS 52127
Subtracts Y from X. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS

[72]
4
)
5 X-value (8 bytes)
5 Y-value (8 bytes)
t R12 + —=mem- ——m——————-

o]
a
z
[%2)
2
o
| R4C = Copy of result X-Y result (8 bytes)
3 R12 + =mcmmmm el

Q

-

o]

a
-

2

o

CPU CHANGES COMMENTS [rRomuse] N

0} 1 2| 3] 4] 5] 6] 7)0c™m E ’
10[11]12|13]14]15]16f 17 D U

20|21 ?2 232412526/ 27 1 ART

30 {3

) 40112

STATUS
70 |71]172(73|74175]76) 77 U

7-82

FUNCTION

|

Subtracts two real numbers.

NAME SUB1Q
ADDRESS 52137
TYPE Runtime

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

R50
R40

Real #A
Real #B

OUTPUT CONDITIONS

R40

Real result (Copy)

Real result (A-B)

CPU CHANGES

COMMENTS

3

4

5

6

7

DCM

E

1M

12

13

14

15

16

17

21

70|71

22

23

24

25

26

27

72173174[75176] 77
FUNCTION

D

U Not listed in global file.

DRP

[ROMJSB] N |
Same as SUBROI, except

ARP SUBROI expects real or integer numbers on the R12

U

STATUS

U

U stack at entry.

NAME
ADDRESS
TYPE

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES

COMMENTS

3

4

6

7

DCM

1011

12

13

14

16

17

20 121

22

23

24

26

27

303N

32

33

34

36

37

DRP

ARP

40 41

42

43

44

46

47

50 |51

52

53

54

56

57

60 | 61

62

63

64

66

67

STA

US

70 | 71

72

73

74

76

77

l ROMJSBI

7-83

FUNCTION | NAME TANIp
ADDRESS 53566
Returns the tangent of the argument. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
v
=
o
[t .
& Argument (real or integer #)
£
o R]2 + ceeaccmcccccecc e e ————
(&
[
on]
o
z
wn
Z
o
[=
g ,
8| R40 - Copy of result Tangent result (real #)
it R12 + mecemmmmemcmcmcmcmcc—aa
2
e
2
(@)
~ CPUCHANGES COMMENTS [RomusBT N
1] 2] 3] 4] 5] 6] 71DcM] _E
13[14]15]16]17 U

FUNCTION NAME TIME.
, ADDRESS 65517

Returns the current system time. TYPE Runtime
REGISTER CONTENTS 'R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS I

R40 = Copy of time

CPU CHANGES

_COMMENTS

3] 4] 5

6] 72]bcm) E

11

13[14]15

16]17 D U
DRP | ARP

40] 12

STATUS

l ROMJSB' Y

7-84

170 (71172173 [74]175]76]77]

FUNCTION l NAME UNEQ$.
ADDRESS 3025
Compares two strings for equality. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[72]
§ String 1 length (2 bytes)
= / String 1 address (2 bytes)
8 String 2 length (2 bytes)
= String 2 address (2 bytes)
z R12 > =mmmmmmm e mmmmm e e e
[72]
Z
Q
5
8 True/false value (8 bytes)
o R12 + =me e e o
2
5
O
CPU CHANGES COMMENTS LLRomusBT N
O] 1} 21 3] 4] 5] 6] 7jDocm E
10|11 [12(13]14{15]16]|17 D U
23124] 25

FUNCTION NAME UNEQ.
ADDRESS 62202
Compares two numbers for inequality. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
wn
)
= #1 Value (8 bytes)
g #2 Value (8 bytes)
S R12 » —=mcmmmm e -
e
po)
a
z
1]
r-d
)
[
= True/false value (8 bytes)
S R12 + ==cememee- e e T
-
>
a
-
2
o
CPU CHANGES COMMENTS | RomusB] Y
O 1 2] 3} 4] 5] 6] 7)|bC™M E
10111 112113114]15|16}17 U U
20 j21]22]23]24]25]126] 27 =
3334 35

7-85

FUNCTION | NAME UPCS.
ADDRESS 3373
Converts all lower-case characters in a string to TYPE Runtime
upper case.
REGISTER CONTENTS R12 STACK CONTENTS
2
o Length of string (8 bytes)
5 Address of string (8 bytes)
9] RI2 + =emmmmm o
(8]
-
=
a
z
[2]
2
o
5 Length of string (8 bytes)
5 Address of string (8 bytes)
Q
- R12 + e
>
a
-
2
o]
CPU CHANGES' COMMENTS LRomJsB] N
ol 1 2] 3] 4| 5] 6| 7]DCM E
10111 [12}113]14]15[16] 17 B U
{2122]|23]24] 25
BRI DRP I ARP
40]a1]a2]a3]aaa5[a6]4a7] 30 U
50 |51 |52 {53]54] 55 STAW
60 161162 {63[/64]65]66] 67
70 73174

ADDRESS 3207
Converts a number into its corresponding ASCII characters. TYPE Runtime
REGISTER CONTENTS R12 STACK CONTENTS
[2]
P4
Q
& Number (8 bytes)
3 A
Q
-
2
z
(2]
8
E| R26 = Address of string Length of string (2 bytes)
Z| R30 = Length of string -Address of string (2 bytes)
et R12 =+ ==mmmme e e
2
[
pus
(@]

CPU CHANGES

COMMENTS

l ROMJSB I N

7-86

FUNCTION | NAME VAL.
ADDRESS 3250
Converts an ASCII string of numeric characters to the TYPE Runtime
corresponding numeric value.
REGISTER CONTENTS R12 STACK CONTENTS
[72]
=2
Q
5 Length of string (2 bytes)
2 Address of string (2 bytes)
o R12 > e o
2
o
z
2]
b4
o
E
Q
2 Numeric value (8 bytes)
s R12 & == me e
2
a
-
2
@]
CPU CHANGES COMMENTS LRomusB] Y
172 3] 4] 5] 6] 7JoecM]_E
1w [12]13 ’ml16]17 U U
2A1 2? 23 | 26| 27 R
: i ugu
50 {51/52153/54]55]56] 57 f=grmpe=
60 16162
70
FUNCTION NAME WAIT.
ADDRESS 65701
Executes the WAIT statement. TYPE Runtime
REGISTER CONTENTS ' R12 STACK CONTENTS
2
5 WAIT count (8 bytes)
[
&
<
o]
(&)
—
po
a
z
w
P4
o
[
@]
2
@]
(8]
-
2
a
=
2
(@]
CPU CHANGES COMMENTS [RomJsB]Y
0] 2| 3] 4] 5] 6] 7)JDC™M E
;g;: g ;g;: g ;g;; uitu WAIT count is in milliseconds. Returns immediately
30 |31 DRP | ARP if R16#2.
ultgu
STATUS
U

- 7-87

FUNCTION |

NAME YTX5
ADDRESS 53242
Executes Y~X. TYPE
REGISTER CONTENTS R12 STAGK CONTENTS
w
2
o
E Y-value (8 bytes)
z X-value (8 bytes)
o R12 > =mcmmmcemmmccmeee
[
z
z
2
)
= X
g Y” result (8 bytes)
O R12 + wemmmmeeeeees —_—
-
>
e
2
(@]
CPU CHANGES COMMENTS [romuse] Y
4 5] 6 7 | OCM E
1011112113 1617 U U
: DRP ARP
ug u
STATS]
U
FUNCTION NAME ZROMEM
ADDRESS 44066
Sets a specified number of bytes equal to zeros or blanks TYPE Runtime
(408), starting at a specified address.
REGISTER CONTENTS R12 STACK CONTENTS
W
Z
o
5| R23 = 3 for blanks, #3 for zeros
8| R36 = Pointer to first byte
o| R56-57 = Number of bytes
v
4
o
=
o]
-4
(o]
(8]
'—
&
5
(@]
CPU CHANGES COMMENTS [rRomusB] N

11 2] 3] 4] 5] 6] 7jocmy E

11112]13]14]15}16]17

21 |22 2324 26 [26| 27 e —

3132133134 35 DRP J ARP

41]42 437444546472 U]

51(52]53]64] 65 STATUS

7117217374175 U

BIN mode should be set before entry.

7-88

HP-83/85 System Routines
GENERAL-PURPOSE UTILITY ROUTINES

The general-purpose routines on the following pages may find uses during runtime,
parsing, initialization, or at other times.

7-89

FUNCTION

|

Compares two real numbers.

NAME COMFLT
ADDRESS 32621
TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS
w
P4
o
5| R40 = #A
&| R50 = #B
Q
[
>
a
z
wn
Z
o
=
2
gl R50 = B-A
(&
[
2
a
(=
2
@]
CPU CHANGES COMMENTS LromusB]N
0] 1 2] 3] 4] 5] 6] 7[|bcm E
ol f2fsfrafs]ie 7 B U
20 |21 |22 |23 24] 25| 26] 27 — At output:
3031 °°l’]“’ M E=0if #A > = #B
L E=1:14f #A < #B
STATUS
70171172173]|74|75]176] 77 U
FUNCTION NAME CONBIN
ADDRESS 3572
Converts a two-byte binary number into an eight-byte TYPE Utility
floating-point number.
REGISTER CONTENTS R12 STACK CONTENTS
w
=z
)
- - .
5 R36 = Binary #
[@]
(&)
[
po)
Q
z
172]
Z
Q
=
o . .
Z| R40 = Floating-point #
-
2
a
[
2
- :
CPU CHANGES COMMENTS [rROMUSB] Y
O] 1 21 3] 4] 5] 6] 7]bcm E
10[11]12]13{14] 15|16} 17 D U
20 J21]22]23]24]25]26] 27
30 131 z DRP ARP
Uuju
50 161162153 |54[55]56] 57 e
60 |61 162]63/64|/65]66]67
70 71172173 74 [75 [76| 77 U

7-90

FUNCTION NAME CONINT
ADDRESS 44321
Converts real number in R60-67 to binary number in R76-77. TYPE Utility
|
REGISTER CONTENTS R12 STACK CONTENTS
[7)]
Z
o
5| R60 = Real #
&
(&)
-
z
z
2]
Z
o
5| R76 = Binary #
5
&)
[
po’
=
2
o
CPU CHANGES COMMENTS [romusB] N
0§ 1 2] 3] 4] 5] 6] 7]DCM E
1011]12]13|14[15[16] 17
20 |21 122123 24] 25 [26] 27 D;P — Performs SAD at entry.
3031132133 - Performs PAD at exit.
40 141 |42]143)144]145}46] 47 - -
’ : STATUS
FUNCTION NAME CVNUM
ADDRESS 71135
Formats a floating-point number into ASCII characters for TYPE Utility
printing.
REGISTER CONTENTS R12 STACK CONTENTS
[72]
8| R30 = Pointer to output buffer.
5| R40 = Floating-point # to be formatted.
3
[
2
z
2
o| R30 = Pointer to next available byte in
= output buffer.
&
Q
-
2
5
@]
CPU CHANGES COMMENTS | RomusBl Y

7-91

FUNCTION

NAME DRV12.
ADDRESS 5462

Fetches array variable value.

Vectors output to appropriate device, obeying CRT IS and TYPE Utility
PRINT IS commands.
REGISTER CONTENTS R12 STACK CONTENTS

wn

8| R26-27 = Pointer to beginning of buffer to

= be output.

g| R36-37 = Number of bytes to be output.

g

z

2|l If I/0 is hooked up, assume all CPU regis-

2| ter contents are altered; otherwise regis-

g| ter changes shown below are correct.

3

5

o

2

(@]

CPU CHANGES COMMENTS LromusB] Y |

DBM G Before DRV12. is called for the first time, an I/O rou-
TR W tine such as PRINT. or DISP. should be ca]]ed to ini-
ulu tialize SCTEMP to the desired device.

2231 52,58 S 2 2 STATGS DRV12. calls QUTSTR, PRDVRI, or IQOTRFC.

70 [71172173)74]|75]|761) 77 U

| FUNCTION

NAME FETAV
ADDRESS 44727
TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS
U, -
8 See FETAVA routine.
5
2
(@]
Q
-
]
a
z
g
o| R34 = Address of array variable element
5| R60 = Value of array variable element
5
(8]
-
o]
o
’_
o
(@]

CPU CHANGES

COMMENTS

[RoMJsB] N

7-92

FUNCTION | NAME FETAVA
ADDRESS 44734
Fetches array variable address. TYPE Utility
REGISTER CONTENTS R12 STACK CONTENTS
| & Pointer to variable area (2 bytes)
2 Row dimension (8 bytes)
S Column dimension (8 bytes)
8 (optional)
5 Dimension flag (1 byte)
z R12 + =—emccmmcm e
2
2| R34 = Address of array variable element R12 & memmmmm e el
2
Q
Q
—
2
5
(@]
COMMENTS LRoMJSB] N |

FUNCTION NAME FETST
ADDRESS 45206
Fetches the Tlength and absolute address of the first TYPE Utility
character of a string.
REGISTER CONTENTS R12 STACK CONTENTS
w)
] Address of name block (2 bytes)
£ (Relative if program mode,
z absolute if calculator mode.)
@]
5] R12 & memm e e
5
z
% Length of string (2 bytes)
= Address of string (2 bytes)
[a}
z R12 + ;e e e
o]
Q
=
2
2
2
(@]
CPU CHANGES ' COMMENTS , ' LRomuse N
0] 1 2 3] 4] 51 6] 72gDCMm -
10|11 (1213141151617 B U
20 {21122 [23|24]26[26] 27
301313233 36] 37 200 LARP
40 [41 [42 |43 aa] a5 ulu
50 151 STATUS |
60 |61 (62163]64] 65
7017117217374 75]76] 77 U

7-93

FUNCTION | ‘ NAME FETSY
ADDRESs 44535
Fetches the value of a simple numeric variable. Converts TYPE Utility
integer values into tagged integers and converts short
numbers to real numbers.

REGISTER CONTENTS R12 STACK CONTENTS
[22]
S| R66 = Address of variable
£ Relative if program mode.
Z Absolute if calculator mode.
s
a
z
2]
&l R34 = Absolute address of variable
£| R46 = Name block
Z| R60 = Variable value
2
o
&
o
o]

CPU CHANGES COMMENTS LRomJSB] N |

6| 7jDoCM E

16117

76 Uugu

FUNCTION NAME FETSVA

ADDRESS 44556
TYPE Utility

Returns the name block of a variable and ensures the address
is absolute.

REGISTER CONTENTS ' R12 STACK CONTENTS
(2]
S| R66 = Relative address if in program RUN
= mode; absolute address if in calcu-
Z lator mode.
(&)
[
o
[« N
z
m 3
Z] R46-7 = Name block of variable
E R34 = Absolute address of variable
5
(8]
-
o
a
[
2
(@]
CPU CHANGES COMMENTS ROMJSB] N
6| 7§DCM E N . .
18 ,:1§ ,3,2 l:,s 7lB |- If R16 is odd, the computer is in calculator mode and
20 [21 [22 |23 [24] 25 [76 [27 femmmmeomemees the address is absolute. If R16 is even, the computer
303132133 94 B U 1u is in RUN mode and FWCURR must be added to the address.
50 [51 52 [53 545556] 57 fsrares A check is also made for remote (common) variables.
60 |61 |62]63[64]65]66] 67 :
70171 172173]741 75 ?6 77 U

7-94

FUNCTION |

Performs binary integer multiplication.

NAME INTMUL
ADDRESS 53076
TYPE Utitity

FUNCTION

Converts a tagged BCD integer number in R60 to a real number

REGISTER CONTENTS R12 STACK CONTENTS

w
8| R66 = Multiplier
5| R76 = Multiplicand
g
(&
'_
2
z
[42]
8| R54 = Result (4 bytes. Answer is full
E 32-bit number; the sign bit may be
z set.)
©l R66 = Multiplier
2| R76 = Multiplicand
5
(o]

CPU CHANGES COMMENTS LRomMusB] N
O] 1} 2] 3] 4] 5] 6] 7)bcm™ E
R e et —1 - Performs SAD at entry, PAD at exit. o
30 [31]32 3334 35]36] 37 Does not destroy multiplier and multiplicand.
40 |41 |42 |43]44]45]46] 47 -
50
60
70

NAME INTORL
ADDRESS 56343
TYPE UtiTity

in R60.
REGISTER CONTENTS R12 STACK CONTENTS
2
S| R60 = Integer #
-
a
2
<}
(8]
(-
=)
a
Z
(2]
5
E| R60 = Converted real #
<
O
&
[
2
a
[
=
o
CPU CHANGES COMMENTS l ROMJSBl N
ol 1] 2] 3] 4] s] 6] 7Jocmf E
rofni2frafiafisfiel 7 fp |y
20 127122 [23 124 [251 26 | 77 frmsemmafmmes
30 [31]32733734]35
40141042 [43/44f45]46]47036 | 60
50 [5) 152 |53 | 54 | 55 | 56 | 57 Jr=grairmem——
70171 17217317475 76] 77 U

7-95

FUNCTION | NAME MOVDN
: ADDRESS 37324
Moves a block of memory, starting with the highest address TYPE Utility
and working down to the lowest address.

REGISTER CONTENTS R12 STACK CONTENTS
w
§ R22 = Byte count.
&gl R24 = First byte to be moved. (Highest
§ address.)
=| R26 = First byte of destination. (Highest
4 address.)
[4;]
P-4
o
E
o]
-4
3
[
2
S
o
CPU CHANGES COMMENTS ' LromJsB] N
5] 6 E
U
ARP Expects binary mode at entry.
U

50 |51 {62 [63][54 55]56] 57 pgmates
60 161162163|64}65}66]67
70171 172]173]74175176| 77 U
FUNCTION NAME MOVUP
: ADDRESS 37365
Moves a block of memory, starting at the lowest address and TYPE Utility
working up to the highest address.

REGISTER CONTENTS R12 STACK CONTENTS

R22 = Byte count.

R24 = First byte to be moved. (Lowest
address.)

First byte of destination. (Lowest
address.)

R26

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES COMMENTS IROMJSBI N
o] 1] 2] 3] af 5[6] 7QocmM] E
1011]12[13[14| 15]16] 17 U
20 | 21

30 [31 v 34[35]36} 37
40 |41 4243 [aa]asla6]a7] U
50 |51 152 |53]54]56|66] 57 F=sraro=
60 |61 62 [63[64]65]66]67
70 (7117273741751 76] 77 U

Expects binary mode at entry.

DRP § ARP

7-96

FUNCTION | NAME ONEB
ADDRESS 56113
Fetches one number from R12 stack and converts it to binary. |71vPe Utility
‘ REGISTER CONTENTS R12 STACK CONTENTS
172]
Z
o
5 Real or integer # to pop
5 R12 + =mem e
[&]
-
2
z
w
Z
Q
| R46-R47 = Binary # from stack
Z! R76-R77 = Binary # from stack (Copy)
t-) .
4
5
O
CPU CHANGES COMMENTS |Romuss] |
0] 1 2| 3] 4] 5] 6] 7)4DC™M E
1011 [12]13]14]15]16]17 B U
20 {21122 2324 25}26] 27
30 (31 33 DRP ARP
40 [41[42 |43]aa[as 761 46
STATUS |
70171172 [73174] 75 U .
ADDRESS 56154
Gets one number (off R12) as an integer. TYPE Utility
REGISTER CONTENTS R12 STACK CONTENTS
[72]
Z
)
£ Real or integer #
z R12 + ==mmmmmmmmmmimeee
(&
-
z
z
42}
]
E| R44-R47 = Tagged BCD integer R12 + —emmemmcemeeeee
&
(&
5
=
=2
(@]
CPU CHANGES COMMENTS LRoMusB] N
Ol 1 2] 3] 4} 5] 6] 73DCM E
10{11|12]13]14][16]16] 17 = s : :
- U - E=@ if valid integer.
§8 ;} = §§ e - I E=1 if real number converted to integer was too large
uju and overflowed. (In this case, R45-47 = 99999.)
STATUS
U

7-97

FUNCTION | NAME ONER
ADDRESS 56215
Fetches one real number from R12 stack. TYPE Utility
REGISTER CONTENTS R12 STACK CONTENTS
m .
8 Real or integer # (8 bytes)
= RI2 + =
Z
o
Q
(-
2
=
wn
P
o
5| R40 = Real #.
Z| R60 = Real #. (Copy.)
o
2
5
o
CPU CHANGES COMMENTS ‘ _ [Romyss] N |
,8 ,: ,§ ,3 ,: ,2 ,2 1; DBM 5 Expects DCM set to binary mode at entry.
20 [21 72 [23 174 25| 26| 27 e ONER+, address 56200, has the same function, but expects
a2 33 1341 35 50 | 20 real or integer number in R60-67 rather than on R12
50 [51 52 [53] 54| 55 [56| 57 f=zrabos stack. Output is the same.
70 171 172 [731741 75 76 77 U
FUNCTION NAME ONEROI
Gets one number (real or integer) from R12 stack and sets :‘S;RESS 3512?131:
E flag according to type of number. Number comes off Y
unchanged.
REGISTER CONTENTS R12 STACK CONTENTS
[2]
Z
2 Real or integer #
= R12 » cecmmmmmemmeee o
o
[8)
5
s
[72]
8| If real: R40-47 = #
E E=90
2| If integer: R44 = 377 ey
S R45-47 = #
g E=1
2D
o
CPU CHANGES COMMENTS L ROomusB] N |
0of 1 2] 3] 4] 5] 6] 7]OCM E
] 1 2}(13]|14]15]116]17 - = . . .
;o ;1 ;2 I E AL:P E=01f real, 1 if integer.
30 |31 |32 |33 34| 35]36] a7
44112
50 |51 [62 [63]54[55]56] 57 F=sratue
60 /61162 163]64]65]|66]67
70 1711721731741 751761 77 U

7-98

FUNCTION | NAME PAPER.
ADDRESS 76144

Causes internal printer to advance one line. TYPE Utility
REGISTER CONTENTS R12 STACK CONTENTS

wn

Z

o

-

3

4

Qo

Q

-

2

a

z

2]

2

Q

[

3

Z

(@]

(&)

-

2

a

-

2

@)

CPU CHANGES COMMENTS [rRomJsB] Y

O] 1} 2] 3] 4] 5] 6] 7JpcM R E

1011112113114 151161178 _ | [Expects binary mode at entry.

20]21]22]23124}25]26] 27
0131132133134 35) 361 37

50 161152 153154]55]56 57 F™cTATUS
60 161]162)63/64|65]66]67
70 1711721731741 75]176]77 U

FUNCTION NAME PRDVR1
ADDRESS 75767
Dumps a buffer to the internal printer. TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS

R26 = Address of buffer.
R36 = Number of bytes in buffer.

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES COMMENTS | ROMJSBI Y
1] 2] 3] 4] 5] 6] 7]JocM]) E
11[12]13[14]15[16]17
2122 123[24] 25 B v
33]34[35]

™
[o] [e] (o]

DRP | ARP

U
50 (5152 [53]|54]55]56] 57 ==rxvos
60]61 (62 [63]64]65]66]67
70171172173]74175[76 [77 U

7-99

FUNCTION

|

Releases temporary scratch-pad memory.

NAME RELMEM
ADDRESS 37534
TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS
w
Z
Q
=
(=)
2
o]
(&)
[
>
o
2
[%2]
Z
Q
E
a
Z
]
Q
-
>
Q.
=
o}
o
, CPU CHANGES COMMENTS [Romuss] N
ol 1] 2] 3] 4] s 6] 7Jocm K E
101]12113[14]15[16] 170 . -
20 [21122[23]24]25]26] 27
'30 3132133 - DRP ARP
40 |41 a2 a3 |asa]as]a6la7] UL U
50 [51 /52 |53]54] 65 ST
60 |61 62 |63]64]65]66167
70 171172173 |74175]176{ 77 U
FUNCTION NAME RESMEM
. ADDRESS 37442
Reserves a block of memory for scratch-pad use. Temporary TYPE Utility
only.
REGISTER CONTENTS R12 STACK CONTENTS
2 .
| R54-55 = Number of bytes to be reserved.
-
a
Z
]
(&)
[
=
a
Z
2
8| R26-27 = Address of 1st byte of reserved
= memory.
b
Q
(&)
[
)
a
e
2
@]
CPU CHANGES COMMENTS [rRomJsBIN
O] 11 2} 3] a] 5] 6] 7)1DCM
10111 [12]13]14]15]116]17 U
ARP
54
T'uS

7-100

FUNCTION |

ROM switching subroutine.

Selects the desired ROM and
executes a JSB to the desired routine in that ROM.

NAME ROMJSB
ADDRESS 4776
When TYPE Utility

control is returned, reselects the calling ROM and returns.

g ROMJSB calling sequence: During the call, ROMJSB saves R@-1 on
£ JSB=ROMJSB the R6 stack along with the ROM# of the
g Routine address (2 bytes) calling ROM. (This is a total of 3
3 ROM# (1 byte) bytes plus the RTN addresses.)
S| ARP, DRP, and status are not preserved
Z| during the call.
g Preserves the ARP, DRP, and status set by
£| the called routine, and restores the
S| original R@.
3
-
&
5
(o]
CPU CHANGES COMMENTS LromusB] - |
0] 2] 3] 41 5] 61 7]DCM E
ACREAREETRET AL L i HulUu ERTEMP (100674-100677) is destroyed.
30 |31 323334 35] 36 37 2o f-ARP
40 141142 [437aaia5]a6fa7] U U
50 16152 |53 |54 55 [56| 57 et
60 161 (62|63 |64]165]66] 67
70 1711721731741 75176] 77 U
FUNCTION NAME ROMRTN
ADDRESS 4762
Reselects system bank-selectable ROM (ROM @) and returns. TYPE Utility
REGISTER CONTENTS R12 STACK CONTENTS
o
Z
]
E
[a]
4
@]
(&
-
>
z
Z
Q
=
[=]
Z
o
(%]
=
2
=
2
(o}
CPU CHANGES COMMENTS ROMJSBI N

2] 3] 4] 5] 6] 7JocMY E

12113114]15116]17

22 123]2a125{26]27

32|33 34] 35 36] 37} AR routines.

4243u454647¢ -

52 [53 15455]56] 57 st

62163[164]65]66]67

72 173 74] 75| 76 77 U

An external ROM would perform a GTO ROMRTN after pérse

7-101

FUNCTION |

NAME RSMEM-~
ADDRESS 37453

FUNCTION

NAME
ADDRESS
TYPE

Reserves a block of memory for scratch-pad use. Temporary TYPE Utility
memory only.
REGISTER CONTENTS R12 STACK CONTENTS

[2]

2

©

5| R56 = Number of bytes to be reserved.

&

(&)

-

2

Q

z

(2]

s

E| R26-7 = Address of Ist byte of reserved

z memory.

[&]

-

>

[« 1

—

=2

O

CPU CHANGES COMMENTS LromusB] N

O 1] 2] 3| 4] 5| 6| 7}DCm E

1011 112]13]|14]15[16{17 : :

ot 123 T3a 32 = Not in global file. .
30 [31 35 E36] 37 |2° Executes a SAD at entry, a PAD at exit.
40 141 142]143]144145]146|47) -~ -

50 [51]52 [53 [54[56|56 [57 e

60 |61]62]163|64]65]166] 67
[70 171 172 |73 |74 75]76] 77 -

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES

COMMENTS

1] 2] 3] 4] 5] 6] 7pocM] E

1111211314 15{16] 17

21 122123}24125126] 27

31132133 34] 35] 36 37 Forog2RF

41142 143)44]145]46] 47

51152153]154|55]56]57 FcTATUS

61162 163/64]65]66]67

71172173174(75176]77

l ROMJSB'

7-102

FUNCTION | NAME RSUM#K
ADDRESS 37726

Calculates a checksum for memory. (Especially useful for TYPE Utility
ROMs.)
REGISTER CONTENTS R12 STACK CONTENTS
E
S| R32 = Start address
5| R34 = (# bytes/2) - 1
8
Q
[
2
o
z
w
2
o
=
]
-4
o]
(8]
-
>
a
[
>
o
CPU CHANGES COMMENTS : [romJsB] N
DCM E . . .
18 ,: ,§ ,j ,: ,: 12 ,; N Returns Z (zero flag) true if checksum is OK; otherwise
20 121172123 (74175 | 26| 27 e Z is not true. Expects last 4 bytes of memory checked
30 131 13 o 26 [32 to be checksum that is compared. Expects binary mode
50 {51 [52 [53 [54] 65| 56 57 Jrmrtmms at entry. ‘
60 161]62]163]164]65]66]67
70171172 U

FUNCTION NAME RSUM8K
ADDRESS 37722
Used by external ROMs to perform a checksum at power-on. TYPE Utility
(Checksum is for an entire 8K ROM.)
REGISTER CONTENTS R12 STACK CONTENTS
z
S| R32 = Start address
-
a
Z
(o]
(8]
-
3
a
z
%2]
Z
o
E
o
Z
o
(&
[
2
a
[
2
o . ,
CPU CHANGES COMMENTS ROMJSB
0] 1 2 3] 4] 5{ 6| 7}]D0CM E .
1011 [12|13]1a] 617 _ | _ Expects last 4 bytes of memory checked to be checksum
o e BN S U that is compared. Expects binary mode at entry.
46] 32 ’
50 |51)52 [53 [54]| 65]56] 57 F™eraToS
60 |61 162i63]64]165]/66]67
70 |71 17217378 7576 [77 U

7-103

FUNCTION | | NAME RTOIN
ADDRESS 44204
Converts a real number to a BCD tagged integer. TYPE Utility
REGISTER CONTENTS R12 STACK CONTENTS
2
S R60 = Real # to be converted
3
Z
@]
(8]
(-
2D
a
4
g
ol R65 = BCD integer
(™=
B
Z
@]
(8]
[~
>
a
[
2
o]
CPU CHANGES COMMENTS L romuse] N
Of 1] 21 3] 4] 5] 6] 7]DC™M E
1011112113]14]115]16] 17 D U
2012112223 {24]25[26] 27

FUNCTION NAME SCRAT+
Scratches binary program and BASIC program. Does not reset :‘S&RESS Sgﬁﬂ:
all pointers, however. Should be used only by external ROMs Y
that are stealing RAM at power-on.

REGISTER CONTENTS R12 STACK CONTENTS

[42]

P4

o

E

@]

=z

@]

Q

=

2

z

z

Qo

E

[=]

=

@]

Q

5

a

>

@]

CPU CHANGES COMMENTS ' [ROMJSB] N

7-104

- FUNCTION

|

Sets bits 7 and 5 (immediate break) in R17.

NAME SET240
ADDRESS 11243

TYPE Utility

REGISTER CONTENTS R12 STACK CONTENTS
(4]
<
o
E
a
Z
[@]
Q
’_
2
[N
z
[72]
4
ol
[
a
Z
Q
Q
-
)
a
[
2
O
CPU CHANGES COMMENTS LrRomJuse N
0 1 2] 3] 4 .
10111211314 . N . . . N .
20 (212212324 This routine is useful if it is desired that the
3013113213334 intepreter halt when a return to it is performed.
40 (4114214344
50 151152 |53]|54
60 [61]62]63 |64
70171 172173174
FUNCTION NAME STOST
ADDRESS 45603
Stores a string into a string variable area; handles variable | Tyee Utility

tracing if TRACE mode is active.

REGISTER CONTENTS R12 STACK CONTENTS
2 Pointer to variable area (2 bytes)
2 Maximum storage length (2 bytes)
Q Pointer to 1st char. of storage
8 (2 bytes)
5 String Tength (to store) (2 bytes)
< String address (to store) (2 bytes)
R12 + = mmme e e e ee]
2
o
E
S
O R12 » = e e e
[&]
-
2
5
o
CPU CHANGES COMMENTS LROMJUSB] Y |
4 5 6 7 | DCM E
1011 |12]13 16| 17 U U
DRP ARP
Ul u
STATUS
U

7-105

FUNCTION |

Stores a value into a simple numeric or an array variable in
the proper format; handles tracing if TRACE mode is active.

NAME STOSY
ADDRESS 45254
TYPE Utility

10 (11112]13]14]15[16]}17 B

¢! R12 STACK CONTENTS IF SIMPLE NUMERIC: IF ARRAY:
S Address of variable (2 bytes) Address of variable (2 bytes)
5 Name block (2 bytes) Column (If tracing) (2 bytes)
P Value (8 bytes) Row (If tracing) (2 bytes)
o R12 » == el Dimension flag (If tracing) (1 byte)
§ Name block (2 bytes)
= Value (8 bytes)
[72]
Z
o
E
[=]
=
3
= R1Z2 » = mmmm e e
(=
2
o
CPU CHANGES COMMENTS LromusB] Y
ol L tahealel] - 1] Performs SAD at entry and PAD at exit.
. = i1 [or [~] Tokens 21 and 22 push all of the address and name block
- | - | information onto the R12 stack, so an external routine needs
! STATUS to push only the value before calling STOSV.
FUNCTION NAME TWOB
ADDRESS 56176
Fetches two numbers from R12 stack and converts them to TYPE Utility
binary integers.
REGISTER CONTENTS R12 STACK CONTENTS
2]
5| #A (8 bytes)
£ #8 (8 bytes)
g R12 + wememmmeee -
Q
5
g
w
&| R26-27 = #B in binary R12 » —memmmeeeeea
£| R46-47 = #B in binary
Z| R56-57 = #A in binary
5
[
2
o
CPU CHANGES COMMENTS [rROMJSB]N |
0f 1 2] 3] 4] 5] 6] 7]DOC™M E .

7-106

FUNCTION | NAME TWOR
ADDRESS 56236
Fetches two real numbers from R12 stack. If a number on] TvPe Utility
stack is an integer, it is converted to a real.
REGISTER CONTENTS R12 STACK CONTENTS
%3]
P-4
2 #A (8 bytes)
S #B (8 bytes)
3 R12 » ==mmmemmmemo
-
2
z
(2]
b4
o
=
2] R40-47 = Real #B} R12 » —-=-memeee-
S| R50-57 = Real #A
5
s
2
Q
CPU CHANGES COMMENTS LRomusB] N
0] 1 2] 3] 4] 51 6] 7]0CM E
10111 [12]13]14]15(16] 17 D ﬂ
20121]122123]24]25]26] 27 -
30 |31 [32133]34] 35 J2RP | ARP
FEECPRYERDTE 601 4
- = STATUS
A-7O 71172 75 74175176 | 77 U
‘ FUNCTION NAME TWOROI
Fetches two real or integer numbers off R12 stack. Converts | ADDRESS 82???t
either or both as necessary to make them both integer or both TYPE J
real. Status of E-register at exit indicates whether the two
numbers are integer or real.
REGISTER CONTENTS R12 STACK CONTENTS
[%2]
2
2 #A (Real or integer.)
g #8 (Real or integer.)
S R1I2 » —mmmmmmmemm e -
'_
2
Z
2]
2
Q
5| R40-47 = #B :
§ R50-57 ='#A}’ Both real or both integer. R12 + —=—=crememmmccrmmenn e
[
2
[
2
O
CPU CHANGES COMMENTS |RomJUsB] N
0] 1 21 3] 4] 5] 6] 7]0c™M E
YRR TS QTR R LA RN ujqu If E=p at exit, both numbers are real.
If E=1 at exit, both numbers are integer.

7-107

HP-83/85 System Routines

CRT CONTROL AND ROUTINES
CRT CONTROL

The memory that controls the CRT display is completely separate from the comput-
er's main memory. This CRT memory is addressed through I/0 addresses in the
main memory.

Main Memory CRT Memory

e

There are four I/0 addresses in RAM that are used to address the CRT. Each
address requires a two-byte quantity to specify a CRT memory address. The I/0
addresses are:

110
Addresses

Address Name Function
177404 CRTSAD Write only. Two bytes set current display start address

(i.e., home address).

177405 CRTBAD Write only. Two bytes set current byte address (i.e.,
cursor location). The contents of this address do not
cause a cursor to appear on the CRT at that location;
they merely specify the CRT location to which the next
character will be output or from which the next charac-
ter will be read.

7-108

HP-83/85 System Routines

177406 CRTSTS This byte defines CRT status, as shown here:
WRITE: Bit 9 1
0 No read request Read request
1 Un-wipe Wipeout
2 Power-up Power-down
3 Not used -
4 Not used -_
5 Not used -
6 Not used . -
7 Alpha Graphics
READ: O Data not ready Data ready to read
1 Retrace time Display time
2 Not used —_
3 Not used —_
L} Not used -
5. Not used -
6 Not used -
7 Not busy Busy
177407 CRTDAT This byte contains the data output to or read from the

CRT, as shown below:

WRITE: Bit

o A

1

2

3 b ASCH code for one hyie of data

4

5

6 J

7 =1 causes underline (cursor)
READ: 0 A

1

2

3 b ASCII code for one byte of data

4

5

6 /

7 =1 is underlined or cursor

7-109

HP-83/85 System Routines

To underline a character, the MSB of the character is set when it is output to

the CRT; the character then appears on the CRT screen as if the cursor were set
beneath it. A blank cursor is created by outputting a blank character with its
MSB set.

Each time CRTDAT is read from or written to, the controller in CRT memory auto-
matically increments by two the CRTBAD address. However CRTBYT (in system RAM)
is not automatically updated by the CRT controller.

Because the user cannot read from I/0 addresses CRTSAD or CRTBAD, and because
reading from CRTSTS does not yield exactly what was written, the system normally
keeps copies of the contents of these three I/0 addresses elsewhere in system
RAM (where they may be read). The copies are maintained in the locations shown
here:

I1/0 Name RAM Location Name RAM Address
CRTSAD CRTRAM 100200
CRTBAD CRTBYT 100176
CRTSTS CRTWRS 101016

CRT ADDRESSING

The CRT memory employs "nibble addressing"--each address in the CRT memory con-
tains only four bits. Such an addressing scheme provides greater resolution and
control over the CRT display.

When sending information to CRT memory, the system must output the contents of a
complete eight-bit byte. Thus, each byte shipped is stored at two consecutive
addresses in CRT memory. The most significant four bits are stored at the lower-
numbered CRT memory address, and the least significant four bits are stored at
the higher-numbered address in CRT memory.

7-110

HP-83/85 System Routines

CRT memory is partitioned into alpha and graphics areas.

| 100, »|

I 8 |
T
0 1
L~

Va pages of alpha
T
10000, I
L - Jd
1 page of graphics

T
400005 1 1
L-d

!: 6410 '

Alpha Display: Alpha addresses in CRT memory are from 0 to 77778' In alpha
mode the display shows 1610 lines of 32]0 characters per line. The scrolling
keys permit the user to view an additional 48]0 lines of alphanumeric data.
Thus, only 1/4 of the information in the alpha area of CRT memory fits on the
CRT screen at any one time.

Each ASCII character occupies eight bits. Because of its nibble addressing, two
address locations in CRT memory are required to store one ASCII character.

In alpha mode, one character occupies a space on the CRT of 8]0 dots by 12]0 dots.

In alpha mode, the screen can contain 16]0 rows, with 32 (i.e., 408) characters
per row.

7-111

HP-83/85 System Routines

For example, the following section of code will output a character to the 2nd
row down, 4th character in the row, of the CRT screen:

LDM 34, = 106, P Loads desired CRT memory address.
JSB = BYTCRT Sets CRTBYT and CRTBAD to specified address.
LDB R32, = 101 Loads character (A) to ship out.
JSB = CHKSTS

When CRT controlier not busy, byte is output.
STBD 32, = CRTDAT

An alternate method of executing the last two instructions (JSB = CHKSTS and
STBD 32, = CRTDAT) would be JSB = QOUTCHR. This method may be preferable, since
QUTCHR automatically updates CRTBYT and CRTBAD to the next consecutive location.

Graphics Display: Graphics addresses in CRT memory are from 10000 to 377778.
The graphics display mode, which is entered when the user presses the [GRAPH]
key or executes a graphics statement, shows all information in the graphics area
of CRT memory at one time. In graphics mode, the screen has a resolution of
256]0 dots wide by]92]O dots high. Any consecutive pair of four-bit nibble
addresses in CRT memory can be specified. The address of the first nibble is
specified by CRTBAD. Thus, each byte of information output from the CPU to CRT
memory controls eight dots (i.e., two four-bit nibbles) on the CRT.

For example, the following section of code outputs one byte to addresses 10224
and 10225 of CRT graphics memory.

LDM R34, = 224, 20
Set CRTBAD and CRTBYT to 10224.

JSB = BYTCRT
LDB R32, = 27 Byte to be output.
JSB = CHKSTS

STBD R32, = CRTDAT

In the CRT, the byte shipped out affects address 10224. This is the third row
from the top of the graphics CRT, the 80th through the 87th dots from the left.

7-112

CRT ROUTINES

HP-83/85 System Routines

System routines useful in CRT control follow.

FUNCTION

J

NAME ALPHA.
ADDRESS 36105

Forces CRT to alpha mode, if alpha mode is not already TYPE CRT
active.
REGISTER CONTENTS R12 STACK CONTENTS
192 .
<
Q
-
3
Z
Q
Q
-
>
a
z
w
2
o
-
3
Z
o
[&]
[
o]
o
=
2
@]
CPU CHANGES COMMENTS |rRomusB] N
0] 1 2 3] 4] 51 6 7]0C™ E
1011]12]13]14] 1516117 . . .
TR FIR P AFER ST N LE PR FL) _D_EP = CRT is in alpha mode at exit.
32]33[34|35]36] 37
40 141142143144]145146] 47 3] U
50 {51152 |53[54]|55]56]57 STATUS
60 |61]62]63]64165166]67
70171172173]74]175]176] 77 ”

7-113

FUNCTION | NAME BLKLIN
Extends blanks (carriage returns) to remainder of line on ﬁzzﬁess ggizo
CRT. Does not update CRTBYT, but cursor is at start of next
line insofar as CRT controller is concerned.
REGISTER CONTENTS R12 STACK CONTENTS
w
4
o
E
% R34 = Current cursor location (CRTBYT)
et
>
Q.
z
[42]
=z
o
E
[a]
4
o
[&]
-
2
Q.
[
=2
(@]
CPU-CHANGES COMMENTS LRomusB] N
Of 1 2} 3] 4] 5] 6} 7j0Cwm E
101112113]14]|18]|16}17
T RVIREPARE = yiawia B Use CLREOL if updating of CRTBYT is desired. Z is
33 36| 37 R L ARP true at exit.
40 14142]43]44]45146] 47 U U
50 |51 162 (6354 55]56] 57 st
60 61162 163164]165}166]67
70171]172173174]175]176] 77 U
FUNCTION NAME BPLOT.
ADDRESS 34365
Executes the BPLOT statement. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
2 p
S Length of string (2 bytes)
5 Address of string (2 bytes)
g # Bytes/1ine (8 bytes)
::) R12 + memmmmmmmee e ——————
]
a
z
[72]
Z
o
E
[a]
z R12 » memmmme e o
[&]
[
2
a
[
2
@]
CPU CHANGES COMMENTS RomusB] |
ol 1 2] 3| 4f 5] 6] 7)DCM E
10§11 [12(13|14]15][16]17 B U
20 121{22]23]24|25]{26] 27
32 133 DRP ARP
40 [41]42]a3 | U U
STATUS
U

7-114

FUNCTION

|

!

NAME BPLOT+
ADDRESS 34405

Same as BPLOT statement, but with parameters in registers TYPE CRT
rather than on stack.
REGISTER CONTENTS R12 STACK CONTENTS

2
2| R22-3 = Length of string
S| R34-5 = Address of string
9| R44-5 = # Bytes/line
5| R46-7 = # Bytes/Tine (copy)
2
(2]
-4
o
-
3
4
Q
Q
’_
=2
a
[
2
(o]
, CPU CHANGES COMMENTS LrRomJsB] N
0l 1 2] 3] 4] 5] 6] 7jDCM E
10(11]12|13]114]| 1565|1617 B U .
20 121 122 |73 24175 [26| 27 fmmmomerem. Not in global file.

311 32 {33 |3 3 1 3
aotet Tealas] Ul u Does not switch to graphics mode if not already there.

' STATUS
U
FUNCTION NAME
ADDRESS
TYPE
REGISTER CONTENTS R12 STACK CONTENTS
(2}
2
Q
E
[a]
Z
o}
&)
[
o
a
z
2]
Z
o
[
=
<
(@]
Q
—
o
a.
-
o
O
CPU CHANGES COMMENTS | RomusB]

0] 1 2] 3] 4] 5] 6] 7]DC™M E
10§11]12]13}14]15116|17
20 [21]22]23[24]25([26] 27 YT
30 |31]3233]34 35 36] 37 j2o0
40 141 (42|43 [44]145]146] 47
50 |51]52]53|54|55]|56]567 STATUS
60 |61 162 |63 [64] 65]66] 67
70171172173 74| 75176} 77

7-115

FUNCTION

] .

Moves cursor to position specified by the register pair

NAME BYTCRT
ADDRESS - 35423

TYPE CRT
specified by the DRP setting at entry.
REGISTER CONTENTS R12 STACK CONTENTS
[£2)
2
Q
=
2| DRP register pair = Address to which to
3 move cursor
5
a
z
w
2
Q
[
3
Z
]
(&)
[
o
o
oy
2
o
CPU CHANGES COMMENTS [romusB] N
0} 1] 2] 3] 4] 5| 6] 7|oc™m E
0 12713[naasfel17] g - L.
22 [23 17825 26| 27 feawmedree DRP at exit is the same as at entry.
32]33[34135]136]37 :
A0 |41 |42 143 [44]465]461 47 - -
50 {61152 |53]5a[56]56] 57 st
60 |61 162 |63]64]165]66]867
0191 {72173174]75]176] 77 -
FUNCTION | NAME BYTCR!
ADDRESS 35422
Moves cursor to the specified position, but does not TYPE CRT
generate cursor on CRT screen.
REGISTER CONTENTS R12 STACK CONTENTS
° v
P
Q
5| R34-35 = Address to which cursor is to be
g moved
W
[
>
a
z
22}
2
1]
=1
3
2
Q
O
[
>
a
-
o
(e}
CPU CHANGES COMMENTS | rRoMusB] N
21 3] a] 5] 6] 7]DCwm E
12[1311a]15]16] 174 p _
22 231242526} 27
32331341 35 |36 | 37 Joor - ARP
40 42[d43]4a]a5/46{47]1 34] -
50 |51 152 |53 154155]56] 57 fememmtoms
60 |61 162163]|64]165]166467
70171172173 {74175]176] 77 U

7-116

FUNCTION

(carriage returns), and homes the cursor.

FUNCTION | NAME CHKSTS
ADDRESS 36335
Loops until CRT is not busy. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
2}
2
]
=
[a]
Z
o
[&]
-
2
o
z
2]
Z
o
5| R30 = CRTSTS
8
Q
._
]
o
-
2
o
CPU CHANGES - COMMENTS LroMUsB] N
of 1] 2| 3|1 4} 5| 6] 7]DCM E
1011]12[13]14]16{16]17 B - . .)
20 [27 122 (23124 | 2526 27 foefmnee At exit, CRT is ready to accept an address or a byte
31132133}134{35]36] 37 Of data
40 [41 4243 aa as]a6]a7] 30} -)
50 |51 /62|53 |54 55]56 | 57 prpmtms
60 61 |62 163|64|65]66]67
70 |71172173]74]175]76] 727 U

NAME CLEAR.
ADDRESS 35021
Forces CRT screen to -alpha mode, clears screen to blanks TYPE CRT

REGISTER CONTENTS ‘R12 STACK CONTENTS

w

2

o

[

&)

Z

]
10

[

2

[

=

w

Z

o

=

(=)

=

o

Q

[

=

[N

[os

=1

to)

CPU CHANGES COMMENTS | ROMJSBl N

0] 1] 2] 3] 4] 5] 6] 7JDCM L _E
Q1011]12]113]14]15116]17 B -
X730 (21 [22 |23 76 [77 st
40 [a1]42fa3faafas[aclaz] Uy | U
50 [51[52 [63 [54| 55 [56] 57 p==vxros
60 |61 62 [63]64]65]66] 67

720 [71[72 737475 [76] 77 U

7-117

FUNCTION

Extends blanks (carriage returns) to end of line, but leaves] TYPE CRT
cursor at its current position at entry.

NAME CLREOL
ADDRESS 35535

REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
=
a
Z
@]
[S]
[
>
a
z
2]
Z
o
5| R32 = 15
§| R66-67 = CRTBYT
-
=
o
[y
2
o
CPU CHANGES COMMENTS [romJsB] N
0] 1 2] 3] 4| 5| 6] 7p0cM E
13114 17
27 —B U
37 DRP ARP
3 471 34
50 |51 |52 [63 |54 57 P STATUS
60 161 162]63|64 il
70 [71 172 (73] 74 77 U
FUNCTION NAME CNTRTR
ADDRESS 36002
Counts CRT retraces (the number in R31 at entry) and returns. | TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
; ,
P-4
o
=| R31 = Number of retraces to count
&
(8]
-
>
a.
z
w
2
Q
= —
£l R31 =@
2
o
Q
-
po]
a
-
2
o
CPU CHANGES COMMENTS [RoMUSB] N
3} 4] 5| 6] 7}DCM E
13|14[15]16]|17 B _
it ey LGS N3 Z =1 (true) at exit.
aslealssTasTez] 311 - There are 60 retraces per second.
5354]55]56] 57 f=emim
63[64|65166|67 :
73|74 75[76][77 U

7-118

FUNCTION | NAME COPY.
ADDRESS 75360
Executes COPY command. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
2]
P4
o
™
S
P4
@]
Q
-
=
a
z
[%2]
2
Q
o
=)
Z
(@]
Q
[
2
a
=
D
o
CPU CHANGES COMMENTS LRoMJsB] Y
2 3] 4} 5] 6] 7jD0C™M E
12113 |14 15]16] 17
22 123 DEP AEP
33[34]35
A U
50 1511652153]54] 55 STATUS
60 |61]62163]64]|65]66]67 U
FUNCTION NAME CRTBL+
ADDRESS 36255
Initializes portion of CRT alpha to blanks (carriage TYPE CRT
returns).
REGISTER CONTENTS R12 STACK CONTENTS
[72]
2
Q
5| R34-35 = Starting address (1st byte to
3 blank)
2| R36-37 = Number of bytes to blank
z
z
172]
<
o
E
@]
4
o
(8]
-
2
a
-
>
o
CPU CHANGES COMMENTS [ROMJSB] N
Of 11 2] 3] 4] 5§ 6] 7]DOCcm E
10111112113 [14]15}16{ 17 B -
20]21(22[23]24]25]26] 27
33 DRP ARP
40 141142 ;43]44]145]46]470 36 U
650 [51]52 |53 |54]55]56]57 STA US‘
60 |61 /62]63[64]65]66] 67
70 (71 (7217317475 (76 [77 U

7-119

FUNCTION [- ' NAME CRTBLK
ADDRESS 36247

Blanks all four pages of alpha screen with carriage returns, [TYPE CRT
and homes cursor. ‘

REGISTER CONTENTS R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES COMMENTS IROMJSBI N
of 1] 2[3V a4l 5f 6] 7]JocMI E ,

o[t [12]3af1sTi6l17] B
2021222324 25[26] 27

DRP § ARP

40 |41 [42]a3]4a[a5]46]a7]1 361 U
50 {51152 [653 |54]55[56] 57 f=mratems
60 |61]62 [63]64]65]|66]67
70171172 (73] 74| 725 [76 [77 Y

FUNCTION ’ NAME CRTINT
ADDRESS 36177
Initializes CRT: clears all of alpha and graphics, and TYPE CRT
homes cursor in alpha mode.
REGISTER CONTENTS R12 STACK CONTENTS
[%2]
Z
Q
E
=]
<
(o]
Q
—
>
o
z
w
Z
Q
=
=
Z
o
Q
[
2
a
-
2
o
CPU CHANGES COMMENTS [RomusB] N
0 3] 4 DCM E
10 1314 B _
DRP] ARP
311 U
STATUS
U

7-120

FUNCTION | ‘ NAME CRTPOF
ADDRESS 35703

Powers down the CRT. (Must be performed before driving TYPE CRT
the printer or tape.) ‘

REGISTER CONTENTS R12 STACK CONTENTS

w
=z
)
E
@)
Z
o]
[&]
’_
]
a
z
[72]
2
o
E
[m]
Z
@]
Q
[
o]
a
[
o
3 ;
CPU CHANGES COMMENTS [romuse] N
0 1 2 3| 4 51 6| 7}DCM E
1011 1121131141151 16]| 17 : .
T FIAAVRFAFFE B LSB is even at exit.

32 |33]34} 35 36] 37 p2RR L ARP

40 [41[a2[a3]aaas[a6]a7] 30 | 31
50 [51 |52 |63 [54[55| 56| 57 s
60 [61 |62 163 64] 65]66] 67
73] 74 U

FUNCTION NAME CRTPUP

ADDRESS 35716
Powers up CRT. (Also powers down tape transport and waits TYPE CRT
for printer to be not busy.)
REGISTER CONTENTS R12 STACK CONTENTS
w
P-4
e
E
Q
4
@]
(&
[
>
a
z
| [72)
=2
o
E
[a]
Z
@]
(8]
(-
2
a
-
2D
o . .
CPU CHANGES COMMENTS LRomJsBlY

3] 4] 5] 6] 7JocM] E
131411516117 B
23 (24125126 27

33134]35]36] 37
a3a4]45]a6laz| 31| -
535455 56 57 prtemm
63|64 65]66] 67
73 |74] 75| 76| 77 U

DRP § ARP

7-121

FUNCTION

|

Un-wipes CRT.

(See CRTWPO.)

NAME CRTUNW
ADDRESs 36067
TYPE CRT

REGISTER CONTENTS

R12 STACK. CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES

COMMENTS

3

4

5

6

7

DCM

13

14

15

16

17

23

24

25

26

27

33

34

35

36

37

DRP

ARP

l ROMJSBI N

40141142043]4a45[46]47] 31] -
650 (5152|653 [54[55|656]57 STATUS
60 |61]|62]63|64]|65]66]67
70171 172173|74|75]76] 77 U
FUNCTION NAME CRTWPO
Wipes out CRT display. Does not cause power-down, and no ﬁazﬁEss gg$61
data is lost from screen. (Often used to eliminate screen
flashes and to speed up transfer of data.)
REGISTER CONTENTS R12 STACK CONTENTS
2]
2
)
-
=)
<
(@]
Q
-
D
a
z
/2]
P-4
Q
E
[a]
Z
o
(&
=
>
a
[
>
@)
CPU CHANGES COMMENTS [ROomUsB] N
0] 1] 2} 3] af s] 6] 7jocmM] E :
10{11(12(13]14]15]16[17 B -
20121 122123124125]26] 27 LSB is even at exit.
BT (32 (3334 35]36] 37 JRP JARP
40 141 [42 143144]45]46]47] 301 31
50161152 153|564 65[56] 57 s
60 /61|62 |63[/64[/65]{66]67
70 (71172 [73 |74 75 {76 [77 U

7-122

FUNCTION | ‘ ' NAME' CURS !
ADDRESS 35055

Generates a cursor at current CRTBYT address. TYPE CRT
R12 STACK CONTENTS
w
=
o
= .
g CRTBYT (RAM location) = Current cursor
S location
[
2
Q.
z
[72]
P-4
o
&| Cursor generated on CRT at CRTBYT address
5
(8]
[
2
a
-
o]
@]
CPU CHANGES COMMENTS LRomusB] N
0 1 2 3 4 5 6 7 | DCM E
10111112113 [14]115]16]| 17 B -
6127 DRP ARP
6137
46|47} U U
50 |51 5354155 (56| 57 F=TaTos
60 |61 63]164]165]66]67
70 [71 73174175176 77 U
FUNCTION NAME DECUR?
| ADDRESS 35547
Removes two cursors from the CRT. ' TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
w
P-4
o
E
(a]
2
(o]
(8]
’_
2
a
z
(7]
=z
o
=
[m)
P-4
(@}
[S]
-
juo
o
-
po]
3l
CPU CHANGES COMMENTS ' [ROMJSB] N
0 1 2 3 4] 5|1 6] 7)DCM E
§10{11]12113|14]15]16]17 B -
20121]22]23 26] 27
3 36137 DRP ARP
4041424344454647U U
50 51152 {5354 56157

60 |61 162 63|64
70 (721 [72[73] 74 u A

7-123

FUNCTION

]

Moves cursor down one line.

If cursor would move off

NAME DNCUR.,
ADDRESS 35306 '

. X TYPE
bottom, it wraps around to the top line of the current CRT
screen. ‘
REGISTER CONTENTS R12 STACK CONTENTS
w
pd
Q
E
[m}
2
@]
Q
—
2
o
z
w
2
1]
—
5
Z
Q
Q
[
2
o
-
e]
o
CPU CHANGES COMMENTS LromusB] N
0] 1 2t 3] 4] 5f 6] 7]DC™ E
10 (11 [12]13}114)115}16[17 B -
20 [21][22 26| 27 jommmafrees Does not generate cursor on screen.
3132 1135136] 37
40 [41 42 [43]aalaslac[a7] 34| 24
50 |61 |52 5354|5556] 57 e
60 |61 162 |63[64]65]66] 67
7071172173741 75|76} 77 U
FUNCTION NAME DNCURS
‘s ADDRESS
Moves cursor down one position. Does not wrap around on 35370
TYPE CRT
current page, but does wrap from bottom of alpha to top of
alpha.
REGISTER CONTENTS R12 STACK CONTENTS
) -
2
Q
=
Q
=
o
o
-
2
o
2
{
[2]
Z
Q
=
@]
2
Q
(8]
[
2
[« 9
[
2
o
CPU CHANGES COMMENTS LROMJUSB] N
of 1 2{ 3] 4] 5{ 6] 7)DCM E
10 (11 [12]13[14]15]|16]17 B -
20 12) 122123134 | 23126 | 27 peses—prms Does not generate cursor on screen.
(31 {32 33| 3413813637
40141142]143144)45]46] 47 34 24
50 |51 |52 |53 164 65 [56| 57 rtmamrees
60 [61]62|63/64]65]166]67
70 |71 (721731741 7576 [77 U

7-124

FUNCTION

] NAME DRAW.
ADDRESS 33015
Draws a line from the current pen position to the specified TYPE CRT
point. (For CRT only.)
REGISTER CONTENTS R12 STACK CONTENTS
1]
Z
Q
5 X-coordinate (8 bytes)
5 Y-coordinate (8 bytes)
Q
- 5 R
2
z
z
Q
E
o
5 R12 + memmmc e
o
-
2
S
2
o
COMMENTS LRomJsB] N
E
1]
ARP
_U
STATUS

FUNCTION NAME E0J2

Clears keyboard interrupt bit in SVCWRD, and clears break ¢$:ERESS 3%7_72

bit in R17 if no other interrupts are pending. Also sets

key repeat counter.

REGISTER CONTENTS R12 STACK CONTENTS
w
Z
Q
=
[m]
Z
@}
Q
[
2
z
z
o
=
ol R32 = KRPETI
S| R33 = SVCWRD
5
o
5
(@)
CPU CHANGES COMMENTS [RoMmJSBI N

o[1] 2] 3] 4f s] 6] 7Jocm] E .
10]11]12]13]14]15]6]70 _ | _ If an external routine takes over CHIDLE to handle a
e i B T e A key itself, the routine must call E0J2 before popping
a0 [a1laz [43laalasa6a7] 32 | 32 off two returns and returning; otherwise, it appears to
50 [51 |52 |53 [54] 55] 56| 57 frmrtvems the system as though the key has not been handled yet,
60 161162 163164165166167 U and the system will keep looping back.
70 1211721731741 75]76177

7-125

11112]13f14]15]16]17 B
22 123241 25[26] 27

ORP § ARP

tional parameter on the stack.

FUNCTION | NAME FLIP.
ADDRESS 35011
Performs a keyboard FLIP. TYPE CRT
- REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
E
[a]
Z
o
(&3
’_
2
a
z
w
Z
o
=
2] R36 = 200
o
[&)
[
]
a.
-
2
(@)
CPU CHANGES COMMENTS LRomusBI N
0f 1 2] 3j 4§ 5] 6] 7}bcMm E .
10111]12]13]14115]16|17
20 [21]22[23[24] 2526 27 fowenn -
30 |3132 [33]34] 35 37 |2RP L ARP
40141142143 [a4[4546] 47 36 -
50 16152 [63]|64[665]56] 57 ot
60 [61]62|63|64]65]66] 67
70171 172173|74|75]76] 77
FUNCTION NAME GCLR.
i ADDRESS 36013
' Forces graphics mode and clears graphics screen. Can have TvPe CRT
one optional parameter on R12 stack.
REGISTER CONTENTS R12 STACK CONTENTS
[22]
Z
o
[
=
Z
Q
(&)
[~
]
a
z
w
Z
o
-
a
Z
o
QO
-
2
o
[
2
o
CPU CHANGES COMMENTS WARNING [ROMJSB] N
0| 1 2[3] a] 51 6] 7JoecMI E . . iy .
70 Checks R12 against TOS to determine if there is an op-

So if something else

31l u (not intended for GCLR.) is on.the R12 stack, save T0S
—r— on the R6 stack and set TOS = R12 before calling GCLR.
U Then recover TOS from the R6 stack.

7-126

FUNCTION

NAME GRAPH.
ADDRESS 36147

Forces CRT to graphics display mode. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
o)
<
)
(™=
S
2
Q
Q
'—
2
a
z
2]
-4
o
5| R34 =0
&l R35 = 20
Q
-
)
Q.
oy
2
S} ‘
CPU CHANGES COMMENTS [RomusB] N
0] 1 2{ 3] a4t 5] 6] 7)]ocwm E
10|11 121314151617B -
20]21]22{23]24]25]26] 27 AﬁP—'
32[33 36 37 } 200

40 {41 142143144]45]/46[47] 31 | 31
50 151162 [53 [54] 56|56 57 f=gmmres
60 [61162]63]|64]|65)66] 67
70 171172173174 75 76] 77 U_

FUNCTION NAME GRINIT

v ADDRESS 36220
Clears graphics screen to appropriate pen condition. (Will TYPE CRT
cause flash if CRT is not wiped out.)
REGISTER CONTENTS ' 'R12 STACK CONTENTS
2]
2z
Q
=
[a]
Z
(@]
(&)
[~
2
o
z
172]
=
o
E
[a]
<
o
(&)
[
>
a
g
2
o i .
CPU CHANGES COMMENTS LRomJsB] N

0] 1 2] 3] 4f 5] 6] 7pbDcwm E
1011|1213 (14| 16]16] 17 B -
e R Brr | ARE Expects binary mode at entry.
40 }41 (42 [43]a4]45]a6]a7] U | U
50 {51 /652 |53 [54] 55| 56] 57 frpwmm=
60 |61 162163|64]65]66]67 U

7-127

FUNCTION | NAME HLFLIN
ADDRESS 35121
Outputs a string to the CRT without performing a carriage TYPE CRT
return. (Does not fill with blanks to the end of the Tine.)

REGISTER CONTENTS ’ R12 STACK CONTENTS

w
8| R26-27 = Pointer to 1st character of
5 buffer ,
§ R36-37 = Number of bytes in buffer
;D-:
z
g R24 = 2
=| R25 =0
21 R30 = CRTSTS
8| R32 = Last byte output
5| R34-35 = CRTBYT (New cursor location)
| R36 = ¢
Ol R37 = ¢

CPU CHANGES COMMENTS ' [rRomusB] N
[+ X ! 2 3] 4} 5| 6| 7jocm E

10]11 12113 [14]16]16]17 B

FUNCTION NAME HMCURS
ADDRESS 35527

‘Moves cursor to home position on current CRT page, but does TYPE CRT
not generate cursor on CRT.

) REGISTER CONTENTS R12 STACK CONTENTS

[72]

2

o

E

[=]

Z

(o]

(8]

’_

>

a

Z

w

4

o

=

o

Z

ol.

Q

[

2

o

[

po

o .

CPU CHANGES COMMENTS A [ROMJSB] N

2] 3] 4] 5] 6] 7JocM] . E
1213141516] 17 B -
22 23] 24| 25] 26| 27
3233 36] 37
a2 |43]44]a5]a6la7) 34§ -
5216354] 55| 56 | 57 et
62 163 64] 65| 66167
72173174 75| 76 | 77 U

DRP § ARP

7-128

FUNCTION |

NAME IDRAW.
ADDRESS 32752

Performs an incremental draw from the current pen position. TYPE CRT
(CRT only.)
REGISTER CONTENTS R12 STACK CONTENTS
2
o X-increment (8 bytes)
S Y-increment (8 bytes)
o R12 » el
Q
[
oo
a
z
(2]
4
Q
E
o
8 R12 + =
Q
[
>
a
-
p)
o
CPU CHANGES COMMENTS [romusB] N
4| 5] 6] 7J0CM E
1011 [12}13 16117 U U
DRP ARP
Uju
STATUS
U
FUNCTION NAME IMOVE.
ADDRESS 31675
Executes the IMOVE statement. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
[72]
P-4
Q
5 X-coordinate (8 bytes)
& Y-coordinate (8 bytes)
e R12 + =mmmmm e
)
a
z
[72]
4
o
-
2
S R]Z F e ————————— - —
Q
-
p)
a.
'—
=2
(@]
CPU CHANGES COMMENTS LRomJsB] N
4} 51 6] 7j0OC™M
10111213 16| 17 U U
DRP 1 ARP |
Uupu
STATUS
]

7-129

NAME INCHR

FUNCTION |
ADDRESS 35244
Inputs one character from current byte address of CRT. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
w
P4
1)
[
a
8 .
[@]
(&)
[~
2
a
z
[72]
<
o
§ R32 = Character from CRT
(@]
(8]
-
=2
a.
[
=2
O.
CPU CHANGES COMMENTS [romusB] N
01 2] 3} 4] 5] 6] 7j0C™M E
1011112113114} 15]16]17 B -
20121]22(23|24]25]26] 27
3 33343536 37 J2RE 4 ARP
40 141142 [43]44]45146[47F 321 -
50 |51 |52 153 |54]55]56]57 TAfUS
60 |61]62163164]165]|66]67
70 171172 {73 7475 [76 [77 U
FUNCTION NAME INCHR-~
ADDRESS 35220
Same function as INCHR if CRT is wiped out. (INCHR- saves TYPE CRT
time, but should not be used unless it is guaranteed that the
CRT is wiped out.)
REGISTER CONTENTS R12 STACK CONTENTS
[72]
P4
Q
E
a
P4
@]
Q
—
D
a
z
[72]
P-4
o
=
[a]
Z
(o]
(8]
’_
>
a
._
2
O .
CPU CHANGES COMMENTS | RomusB] N
4| 5} 6] 7]DCM E
1aT1s]16[17] B -
24125]26] 27
3413536 37 ponr L ARP
40 [41]42 [a3]aa]a5]a6] a7 321 -
50 |51 52 [53]|64] 665156] 57 P=grare=
60 161]62]63]64]165|66]67
70 {71172 |73|74175]176/} 77 U

7-130

FUNCTION | NAME LABEL.
ADDRESS 34044
Executes a LABEL statement to the CRT. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
[7p]
§ Length of string (2 bytes)
= Address of string (2 bytes)
5 R12 + —cmemm e
[&]
[
&
z
w
=
9]
=
(o]
g R1Z » memmmmmm e e e e e
(8]
5
a
o]
(@]
CPU CHANGES COMMENTS [rRomuse] Y

M

STATUS

FUNCTION

NAME LDIR.
ADDRESS 34020

Sets label direction for CRT graphics. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
w
Z
o
£ LDIR angle (8 bytes)
3 R12 +» ——cmmmmmemee o
(&)
2
z
n
Z
o
=
2 g S —
(&)
—
2
5
@]

CPU CHANGES COMMENTS

1] 2] 3] 4] 5§ 6] 7JocM] E

11[12(13]14]15[16]17 1} U

2112223124 25]26] 27

3 33 DRP § ARP

451 47

STATUS

[Romuse]

7-131

FUNCTION | NAME LTCUR.
Moves cursor left one position on current display. If ';‘SF?ERESS 83332
cursor moves off left end of top line, it wraps around to
right of bottom line.
REGISTER CONTENTS R12 STACK CONTENTS
w
<
1]
[y
3
4
Q
(&
F
2
a.
Z N
w
P-4
o
-
S
<
O
(&
[
2
a
[
2
o
CPU CHANGES COMMENTS Lromuse] N |
0] 1 2] 3| 4] 5] 6] 7jocM E ’
1011 [12]13]14]15]16]17 B -
20 121122 123 26 27 femert—rr] Does not generate cursor on CRT screen.
3132133 36| 37
40|41 142 (4314445461478 34 24
50 {51 [52 |53 [54] 55156 57 F™=raTus
60 |61 /62163 {64]65]66]|67
70j71172173|74|75]176] 77 U
FUNCTION | NAME LTCURS
ADDRESS 35376
Moves cursar left one position. Cursor does not wrap TYPE CRT
around on current page.
REGISTER CONTENTS R12 STACK CONTENTS
w
-4
e
[
8
2
Q
©
'_
2
Q.
z
[%2]
Z
Q
[
a
P4
Q
Q
-
=2
a.
-
2
o
CPU CHANGES COMMENTS [RomJsB] N
Oof 1| 2] 3] 4} 5} 6f{ 7jDCM E
10-J11 §12(13}14]16]16f 17
77 B —
37 DRP ARP
411 34] 24
57 F=STATUS
67
77 U

7-132

FUNCTION | NAME MOVCRS
ADDRess 35410

Moves cursor an incremental number of positions from its

current position. Cursor does not wrap around on current TYPE CRT
page, but does remain on alpha screen.
REGISTER CONTENTS R12 STACK CONTENTS
w
z ,
£| R24-25 = Twice (2*) the number of posi-
g tions to move. (Two's complement
8 for a negative value.)
5
[+ N
z
[%2]
Z
)
E
o]
P-4
[®]
(8]
[
>
a
-
2
o
CPU CHANGES COMMENTS LrRomuse] N

2] 3] 4] 5] 6] 7J0cM] E
2 [13]1af s [6[17} o
22 (23124 251261 27
3233 35[36] 37
42[a3]aalas[a6a7] 34| 24
52 5316415566 57 =rrte=
62 |63 |64]65]66]67
72 |73 {74 751 76| 77 U

DRP | ARP

FUNCTION NAME MOVE.
ADDRESS 31703
Executes the MOVE statement. TYPE CRT
REGISTER CONTENTS ‘ R12 STACK CONTENTS
2
S X-coordinate (8 bytes)
5 Y-coordinate (8 bytes)
g R12 + =
(5]
-
g
z
[75]
2
o
=
g
e} R] 2 i e it ket
Q
[
-
e
2
(e}
CPU CHANGES COMMENTS |ROMJUSBI N

7-133

"FUNCTION |

Outputs a single character to the CRT at the current alpha | TYPE CRT
- cursor position, then advances the cursor position.

NAME OUTCHR
ADDRESS 35114

REGISTER CONTENTS R12 STACK CONTENTS
2
o
5| R32 = Byte to be output
S
-
2
z
Z
S| R24-25 = 2
a| R30 = CRTSTS
8| R32 = Byte that was output
|E| R34-35 = CRTBYT (New cursor location)
=
2
@)
~ CPU CHANGES COMMENTS [romuse] N

3] 4] 5] 6] 7JocmM | E

13]14] 15

a1

16[117] R
6] 27 B

23

33 6137 DRP § ARP

43 4546147 341 24

51

44
535455]56] 57 ==raros
64

61

63 65]166] 67

70171172 |73174]175{76] 77 U
FUNCTION NAME OUTSTR
ADDRESS 35052
Outputs a buffer to the CRT and executes a carriage return. TYPE CRT
Also blank fills to the end of the output line.
: REGISTER CONTENTS R12 STACK CONTENTS
S R26-27 = Pointer to Ist character
5l R36-37 = Number (in binary) of characters
§ to be output.
=
o)
a
z
[2]
P-4
)
E
o
2
Qo
(8]
-
2
a
[
2
o
CPU CHANGES ~ COMMENTS |ROoMJSB] N
0 1 2] 3] 41 5] 6] 7j0c™Mm E
1011]12§13|14| 151617 - . .
EREIREEREE B Sets binary mode before exit.
33 36| 37 DRP ARP
40|41]42]43]aa]a5]a6]a7] U] U
50 |51 [52 [53]54]55]56] 57 J=rabees
60 161162]163]64]65{66] 67

71

72

731741751761 77 U

7-134

NAME PEN.

FUNCTION |
ADDRESS 66416
Selects graphics pen. (CRT only.) TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
w
P-4
o
5 Pen # (8 bytes)
5 R12 & =mmmmmmemcomeee
(8]
[
o }
a.
z
w
2
o
=
(a]
S R12 =mmcmmmceeeeee
Q
-
=2
a
-
=2
o -
CPU CHANGES COMMENTS LRomuse] v,
0 1 2 3 4 5 6 7 1 DCM E
10|11 |12{13|14]15]|16] 17 B U
202112212324 25]26] 27 =
30 |31 13233134 35 DRP
47 | 40
50 151152 |53 154] 56 | 56] 57 frmgmntmem=—
201711727374 75 [76 [77 U
FUNCTION NAME PENUP.
ADDRESS 66440
Executes the PENUP statement. (For CRT only.) TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
[72]
P4
o
s
o
2
o
[&]
[
]
a
2
wn
2
o
-
&
P-4
@]
Q
-
=)
a
[
o]
o .
CPU CHANGES COMMENTS LRomJsB] Y.
2] 31 4] 5] 6] 7)Dc™m E
1213 |14f16]16} 17 - _
22123]24|25]26] 27
3233134 35] 36] 37 J2AE L ARP
42a3[aaas]a6Ta7] 301 -
52 [53 |54 56 [56] 57 p=srxros
62163({64]/65]|66] 67
7217317475 78] 77 j

7-135

FUNCTION _ | NAME PLOT.
ADDRESS 32642
Executes the PLOT statement. TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
o
<
o
| o
5 X-coordinate (8 bytes)
5 Y-coordinate (8 bytes)
= R12 + mem e -
>
a
z
[2]
2
Q
-
o]
£
3
. R]Z S e meer e ——————
2
o
[
>
o :
CPU CHANGES COMMENTS LromusB] N
4] 5} 6] 7jDCM E .
10117]12113 16{17 U U
DRP ARP
Ut u
STATUS
U
FUNCTION NAME RTCUR.
ADDRESS 35351
Moves cursor right one position on current CRT page. From TYPE CRT
extreme bottom right, cursor wraps around to top left.
REGISTER CONTENTS R12 STACK CONTENTS
w
P-4
Q
=
[a}
<
[w
Q
-
o }
Q.
z
w
<
Q
[
8
Z
o
(8]
[
o}
a
[
2
(@]
CPU CHANGES COMMENTS [romJsB] N
Q] 1] 2] 31 4] 5] 6} 7]jDCM E
10j11}12113114]15[16]17 B -
20 [21 |22 23 261 27 o Does not generate cursor on CRT screen.
31132]33 i 36] 37
4041 |4z |a3]4a4]4a5]4a61a7) 34 | 24
50 |51]52[53]54]55156] 657 STATUS
60 161[62]63]64]65166]67
70 {71172 |73j74}175]76} 77 U

7-136

FUNCTION __ | NAME RTCURS
ADDRESS 35404
Moves cursor right one position. Cursor does not wrap TYPE CRT

around on current CRT page.

REGISTER CONTENTS R12 STACK CONTENTS
[72]
Z
o
-
=
Z
o
(&
-
>
Qa
z
[72]
P-4
Qo
e
=
Z
o
(8]
(-
2
a
ju
2
o v _
CPU CHANGES COMMENTS [rRomusBI N
2] 3] 4] 5] 6] 7p0CcM™m E
s tEmetsete1.B | - Does not generate cursor on CRT screen.
371331 37 DRP ARP
42 |43 a7] 341 24
52 [53] 64 57 =sTatos
62 {6364 67
7217374 77 U ;
FUNCTION NAME SCALE.
: » ADDRESS 66247
Executes the SCALE statement. (For CRT only.) TYPE CRT
REGISTER CONTENTS f R12 STACK CONTENTS
2
5 X-minimum (8 bytes)
£ X-maximum (8 bytes)
g Y-minimum (8 bytes)
© Y-maximum (8 bytes)
2 R12 » —ecmmmmmmmee e
2
[72]
2
Q
E
S
z R12Z + —=memeecmcccmmeee
[$]
[
o]
a
g
2
d , ;
CPU CHANGES COMMENTS [RomusB] Y
0] 1 2} 3] 4] 5] 6] 730CM E
1011|1213 141151617 U
24| 25)26] 27
30 |31 DRP ARP
U
STATUS
70 [71 [7217317475 [76] 77 U

7-137

FUNCTION _ | NAME SCRDN
: ADDRESS 35625
Scrolls CRT down one line, leaving cursor in same relative TYPE CRT
position on CRT.
REGISTER CONTENTS R12 STACK CONTENTS
2]
Z
o
=
[a}
Z
o
@
—-
&)
z
2]
Z
o
£
S| R34-35 = CRTRAM
3
[
>
a
[
2D
O
~ CPU CHANGES COMMENTS | Romuse] N |
0] 1 2 DCM E]
1011112 -
22 B
32 DRP ARP
40 |41 |42 341 24
50 151152 STATUS
60 |61 |62
70 171 |72 U
FUNCTION NAME SCRUP
ADDRESS 35654
Scrolls CRT up one line, leaving cursor in same relative TYPE CRT
position on CRT. :
REGISTER CONTENTS R12 STACK CONTENTS
. ,
<
o
E
[a}
Z
[@]
Q
—
>
a
z
w
Z
Q
| R34-35 = CRTRAM
&
Q
[
2
0.
'_
2
(@]
CPU CHANGES COMMENTS [RomusB] N
2] 3]4] 5] 6] 7jocM] E
12 13[14]115}16] 17 B -
2223 261 27 —
3233 36 37 po00
42[43]a4]as]46]47] 341 24
52 153 [54] 55|56 57 g
62163|/64|65]66] 67
72173]174]75176]77 U

7-138

FUNCTION |

NAME UPCUR.
ADDRESS 35264

Moves cursor up one line on current page. From top line of TYPE CRT

page, cursor wraps around to bottom line..

REGISTER CONTENTS R12 STACK CONTENTS
w
4
Qo
=
o
P-4
(o]
(&
—
>
a.
z
[92]
Z
Q
=
o
Z
(@]
(&
-
2
[«
—
2
o ; ,
CPU CHANGES COMMENTS ~ [rRomusB N |
0] 11 2] 3} 4] 5] 6] 7)DCM
10|11 [12]13[14]115]|16}17 B -
20127 [22[23 %27 Does not generate cursor on screen.
313233 36] 37 JoRP L ARP
40 [a1[a2 43 [aa] 45 a6]a7] 34] 24
50 |51 52 [53]6a]65[66] 57 P=zrmros
60 {61 |62 |63[64]65]66] 67 U
70171172173 174175176] 77 .
FUNCTION NAME UPCURS
Moves cursor up one position. Cursor does not wrap around ?33?535 gg?sz
on current page, but does wrap around from top of alpha to
bottom of alpha.
REGISTER CONTENTS R12 STACK CONTENTS
[72]
2
o
-
s
<
O
Q
—
]
[
z
[%2]
Z
)
-
5
4
(o]
Q
—
2
o
—
2
(@] ,
CPU CHANGES COMMENTS . [RoMusB] N

2/ 3] 4] 5] 6] 7JocME E

1213]14]15{16]17 B

22 123 26| 27

3233 36| 37 pone L ARE

42 |a3]aa]as]a6la7] 34] 24

52 [53[54] 56 [56 [57 fgraiom

62163/64]65)66] 67

72 173174175176] 77 U

Does not generate cursor on CRT screen.

7-139

FUNCTION | NAME XAXIS.
ADDRESs 32303
Executes the XAXIS statement. (For CRT only.) TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS
w
8
= Y-intercept (8 bytes)
g Tic spacing (8 bytes)
3 X-minimum (8 bytes)
5 X-maximum (8 bytes)
z R12 + —-—mmmmcmmecme e
192]
2
<)
=
Q
2 2
(&
-
&
5
o
CPU CHANGES COMMENTS LrRomuse] |\
4) 5] 6] 7jDCM E
1011 [12]13 w7l yl u . . .
' TR TR Only the Y-intercept is required. The other three
vl u parameters are optional.
STATUS]
U
FUNCTION NAME YAXIS.
ADDRESS 32347
Executes the YAXIS statement. (For CRT only.) TYPE CRT
REGISTER CONTENTS R12 STACK CONTENTS

w
3 X-intercept (8 bytes)
= Tic spacing (8 bytes)
Z Y-minimum (8 bytes)
2 Y-maximum (8 bytes)
2 R12 + mmmmmmm e
z
wn
2
)
E] N —
-4
O
[&]
-
2
a
o}
(o}

CPU CHANGES

COMMENTS

Only X-intercept is required. The other three
parameters are optional.

l ROMJSBl N

7-140

HP-83/85 System Routines

TAPE CONTROL ROUTINES

Routines which provide the major entry points for control of a tape cartridge

follow. In general, each of these routines expects an argument to be on the RI2
stack when the routine is called.

7-141

FUNCTION | NAME ASIGN.
ADDRESS 27056
Assigns a buffer to a data file. TYPE Tape
REGISTER CONTENTS R12 STACK CONTENTS
g Buffer # (8 bytes)
e File name length (2 bytes)
g File name address (2 bytes)
3 2 [
-
2
z
w
z
Qo
=
a
Z R12 » s el
(8]
’—
-
o
2
@]
CPU CHANGES COMMENTS | Romuss] Y
FUNCTION NAME CREAT.
ADDRESS 26561
Creates a data file. TYPE Tape
REGISTER CONTENTS R12 STACK CONTENTS
W
5 File name length (2 bytes)
S File name address (2 bytes)
Z # Records (8 bytes)
; # Bytes/record (8 bytes)
z R1I2Z » == =—mmmmem e
[72]
Z
o
=
2 R12 > mmemmmm;cmcecmccmcmmmem e
Q
-
2
g
o
O
CPU CHANGES COMMENTS rROMJSB] Y

7-142

FUNCTION | NAME P#ARAY
ADDRESS 57642
Prints an entire array to a tape data file. TYPE Tape
REGISTER CONTENTS R12 STACK CONTENTS
% Address of array (2 bytes)
E Name block (2 bytes)
S 2
O
Q
5
2
w
prd
Q
=
2 R12 » =me e
@]
(&
-
2
5
o
CPU CHANGES COMMENTS [rRomusB] Y
1 4] 5| 6] 7]OCM E
‘10 11) 1213 16117 B U
DRP ARP
Uuju
STATUS
U
FUNCTION NAME PRNT#.
, ADDRESS 30055
Move the print pointers in the buffer. Executes the PRINT#1, | Tyre Tape
or PRINT#1,1, portion of a serial or random PRINT to a data
file on tape cartridge.
REGISTER CONTENTS R12 STACK CONTENTS
[%2) .
8 Assign buffer # (8 bytes)
= Record # if random (8 bytes)
3 RIZ & —mmmmmmmmmmnt optional) _____
[
2
2
w
2
Q
£ R12 » =—mmmm e
2
(@}
(&)
—
2
S
2
(@)

- CPU CHANGES COMMENTS

[RoMusBTY

7-143

FUNCTION | NAME PURGE.
ADDRESS 26013
Purge a file. TYPE Tape
REGISTER CONTENTS R12 STACK CONTENTS
@ File name length (2 bytes)
S File name address (2 bytes)
5 ALL flag (8 bytes)
F R12 » —m—mmmmcmm e -
ht (ALL flag is optional. See PURGE
; command in computer owner's
= handbook.)
w
2
o
=
o
Z
3
-
2
5
O .
CPU CHANGES COMMENTS LRomJsB] Y |

|C§ =|m
;A=

STATUS

FUNCTION NAME R#ARAY
ADDRESS 77602
Reads an entire array from a tape data file. TYPE Tape
REGISTER CONTENTS R12 STACK CONTENTS
w
& Address of array (2 bytes)
5 Name block (2 bytes)
z R12 & —mmmm oo
Q
-
2
z
w
2
o
=
% R12 » ————mmemmm e m—————————-
(&)
-
2
5
o
CPU CHANGES COMMENTS {rRomuss] ¥

7-144

FUNCTION | NAME READ#.
ADDRESS 30055
Executes the READ#1, or READ#1,1, portion of a serial or TYPE Tape
random READ from a data file on a tape cartridge.
REGISTER CONTENTS R12 STACK CONTENTS
w
§ Assign buffer # (8 bytes)
5 Record # (8 bytes) (optional)
P4
o R12 » = mmm e e
Q
=
&
2 :
[72]
Z
)
E
(=]
5 RI2 » ~===mmmmmmm e
(8]
[
2
e
D
o
CPU CHANGES COMMENTS [Romuss] ¥

See READN. and READS.

E—
STATUS

U

FUNCTION

NAME
ADDRESS
TYPE

REGISTER CONTENTS

R12 STACK CONTENTS

INPUT CONDITIONS

OUTPUT CONDITIONS

CPU CHANGES COMMENTS

11 2] 3] 4] 5] 6] 7)ocM]y E

11}12]13]14]15]16}17

21122123124]25]26] 27

m—
ORP § ARP

31132133[34135]36]37

41 142143144145]46] 47

5152]53154]55]56]57 FcTATUS

6116263[/64/65/66]67

71172173]174]175]76177

| ROMJSBI

7-145

HP-83/85 System Routines

DECOMPILING

Decompiling is a two-stack operation. The increasing stack pointed to by CPU
register R12 is used as the expression stack, while the increasing stack
addressed by R30 is used as the output buffer.

Decompiling uses system routines, especially utility routines such as for fetch-
ing variable addresses, that will be found in other areas of this section.

7-146

SECTION 8

SAMPLE BINARY PROGRAMS

This section is made up of six prewritten binary programs. In addition to being
listed here, these programs are available on the tape cartridge and disc that
accompany the Assembler ROM. On the cartridge and disc, source code file names
end in "S," while those of object code files end in "B."

Each of these programs is designed to illustrate a facet of assembly-language
programming on the HP-83/85, and each provides a function or keyword that is
itself useful to the HP-83/85 operating system.

Each program listing contains at the end a table of addresses of HP-83/85 system
routines that are used by the program. Inserting the Assembler Global File tape
cartridge or disc and placing a GLO GLOBAL pseudo-op near the beginning of the
program obviates the need for this 1list of addresses in some of the example
programs. (Certain example programs, however, call system routines whose ad-
dresses are not available on the Assembler Global File tape cartridge or disc.)

FAHRENHEIT TO CELSIUS FTOC BINARY
Source File: FTOCS

Object File: FTOCB
This program provides a single system function, FTOC, that converts values of

temperatures in degrees Fahrenheit to degrees Celsius. Its source code and object
code may be found listed in section 6 of this manual.

8-1

Sample Binary Programs

SOFT KEYS AS TYPING AIDS SOFTKEY BINARY

Source File: SOFTKS
Object File: SOFTKB

This program permits each special function, or "soft," key ([K1], [K2], etc.) to
contain a string of up to 95 characters; the characters are all output when the
key is pressed.

The program implements a single BASIC statement:

Format:

Description:

SOFTKEY key #, endline code, "text"

Key # is a one-digit code (1-8) that selects the special function
key. Endline code can be either p, to indicate text is followed
by an [END LINE]; or 1, to indicate text is not followed by an
[END LINE]. Text can be a string of up to 95 characters.

If text is followed by an [END LINE] (i.e., an endline code of P is
specified) the text must be an expression, BASIC statement, program
line, etc., that can be understood and parsed by the HP-83/85. The
expression, statement, etc. will be executed immediately when the
specified special function key is pressed.

The program takes over the character idle hook CHIDLE, and it also contains its
own error messages.

8-2

IS 28233033233 3¢32233¢8332333383
2 'x% SOFTEEY BINARY X
I '% (c) Hewlett-Fackard Co. X
4 tx 1980 X
AP 332233033833 3333 333282

10 ! FORMAT OF COMMAND IS:

20 SOFTEEY <NUMEXF >, <NUMEXFx,
30 CSTREXF
40 THE FIRST NUMEXF SELECTS
S0 THE KEY, AND THE SECOND

70 FOLLOWED BY AN ENDLINE (O)
80 OR NOT (NOT=1). THE STRING
0 I8 THE TEXT ON THE KEY.
100 NAM SOFTEY

110 DEF RUNTIM

120 DEF ABCIIS

130 DEF PARSE

140 DEF ERMSG

150 DEF INIT

160 FARSE RBYT 0,0

170 DEF SOFTK,

180 RUNMTIM EBRYT OQ,0

196 DEF S0FTE.
200 BYT 377,377

210 50FTE, FUBD R43,+Ré
220 JSEB =NUMVA+

30 JSE =GETCMA

240 JSE =NUMVAL

250 JSB =6ETCMA
260 JSE =8TREXF

270 FOBD R47,~Ré

280 LDEB R45,=371

290 FPUMD R4S, +R12
F00 RTN

310 ASCIIS ASF "SOFTEEY"

320 BYT 277

330 ERMSG BYT 200,200,200, 200,200,200, 200, 200, 200
340 ASF "SOFTHEY NUMBER OUT OF RANGE *
350 ASF "SOFTEEY STRING TOQO LONG ¢
360 BYT 377
F70 INIT LLDBD RO, =ROMFL

380 CMR RO,=1
390 JZR INITAL
400 CME RO, =5

410 JZIR RTNRTN

420 CME RO,=2

30 JZR RTNRTN

440 CME RO, =3
450 JZIR INITAL

460 RTN
470 INITAL LDM R34,=KEYHAT

480 ADMD RZ4,=BINTAER
490 I.DEB R74,=316

S00 STM R34,R7S
S10 LDB R77,=236

520 STMD R74,=CHIDLE
530 RTN

540 RTNRTN LDEBE R34,=234
550 STBD R34,=CHIDLE

1
1
[}
!
60 ! SELECTS WHETHER THE TEXT IS
t
1
t

8-3

Sample Binary Programs

Sample Binary Programs

560
8570
580
47
590
&00
610
&20
AH30
640
&S50
66O
&70
&80
&0
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
F00
910
920
2E0
940
990
960
70
£
280
990
1000
1010
1020
10320
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
11460

! GET BINARY KEY# OFF STACK
CORRECT RANGE,

! CHECK

KEY#

ERROR1

ERRORZ

SOFTE.

CHNGEY

AROUND

LOOF

FEYRTN
KEYHAT

RTN

FOR

JSE
CMM
JNC
MM

=0NEE
R46,=1,0
ERROR1
R46,=11,0
JCY ERROR1

LLM R46

ADMD R46,=BINTAE

LDMD R4&, X46,HEYTEL

ADMD R44,=BINTAE
RTN

JSB =ERROR+
BYT 266

J5B =ERROR+
BYT 365

BYT 241

BIN

FOMD R32,-R12
FOMD R30,-R12
CMM R30,=1,0

JCY CHNGEY

FOMD R40,-R12
LDM R36,=KEY#
ADMD R3é4,=BINTAE
JSE X36, ZERD

CLE R45

STED R45,R44

RTN
CMM
Jcy
JSE

30,=140,0
ERRORZ

=0ONER

LDM R26,R44

LDM R3é,=KEY#
ADMD R36,=BINTAE
JSE X36, ZERO

CMM R24,=0,0

JINZ AROUND

LDE R31,=200

ORE R30,R31

FUED R30,+R4b

ANM R30,=177,0
FOED R26,+R32
FUED R2&,+R4&
DCB R3O

INZ LOOF

RTN

BIN

CLM R26&

LDED R26,=KEYHIT
CME R26,=200

JINC KEYRTN

CME R26,=210

JCY EEYRTN

SEM R26,=177,0
LLM R26

ADMD R24,=BINTAE

LDMD RZ6, X246, KEYTEL

ADMD R26,=BINTAE
FOBD R36,+R2

RETURN ABSOLUTE ADDRESS OF KEY

VIS KEY#<1L7?
'JIF YES
VIS KEYH:=97
'JIF YES

'DOUBLE FOR TABLE

'MAKE KEY# ABSOLUTE

'L.OAD ADDRESS OF KEY STORAGE
'MAKE IT ABRSOLUTE

'EEY NUMBER OUT OF RANGE

!STRING TOO LONG

'BASIC COMMAND ATTRIBUTE

'GET STRING ADDRESS

'GET STRING LENGTH

YIS IT A NULL OR O-LENGTH STRING?

'JIF NO

!TRASH IMMEDIATE EXECUTION FARAMETER

'GET ADDRESS 0OF SUBROUTINE

'MAKE 1T ABSOLUTE

YJUMF TO IT

'ELEAR LENGTH OF KEY STRING=*NOTHING THERE

! DONE

1S LENGTH =967

YJIF YES

'GET IMMEDIATE KEY-EXECUTION VALUE FROM STACK
!SAVE IN R26

'GET ADDRESS OF SUBROUTINE

'MAKE 1T ARSOLUTE

YJUMF TO 1T
'SHOULD IT BE IMMED. EXEC.?
'JIF NO

'SET PARITY BIT

'SET PARITY BIT=>IMMED. EXEC.

'SAVE LENGTH AND FOINT TO START OF STRING STORAG

'CLEAR OFF IMMED. EXEC. IF ANY
'GET BYTE OF STRING

'BAVE IT

!DONE YET?

'JIF NO

' DONE

BIT,

'LOAD KEEY CODE
YIS IT < 2007
'JIF YES
‘I8 IT
'JIF YES
'GET TO KEY#

'DOUBLE # FOR TABLE

'MAKE IT ABSOLUTE

'GET ADDRESS OF KEY STORAGE
'MAKE IT ABRSOLUTE

'GET LENGTH

=2107

8-4

STORAGE IN R46,RK

1170
1180
1190
1200
1210
1220
12370
1240
1250
1260
1270
1280
1290
1700
1310
1320
13730
1340
1350
1360
1370
13280
13290
1400
1410
1420
1430
1440
1450
14460
147¢
1480
1490
1500
1510
1520
1830
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
14660
1470
14680
1690
1700
1710
1720
1730
1740
1750
1760
1770

NEXT

OUTCR

KEYTEL

k.4

K6

K7

K8

CURS
CHIDLE
KEYHIT
BINTAB
HLFLIN
EOQJ2
ROMFL
OUTCHK
NUMVA+
GETCMA
NUMVAL
STREXF

CME
JINZ
RTN
STE
ANM
JSE
JSB
TSR
JING
CLE
JSE

R36, =0
NEXT

R36,R77
36,=177,0

=HLFLIN

=CURS

R77

OUTCR

=E0J2

FOMD R74,-Ré

RTN
LDE

STED R26,

RTN
BYT
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
BYT
ASC
BSZ
BYT
ASC
BSZ
BYT
ASC
BSZ
BYT
ASC
B&Z
BYT
ASC
BSZ
BYT
ASC
BGZ
BYT
ASC
BSZ
BYT
ASC
BSZ
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD
DAD

R26,=2

0,0
k1
K2
K3
k4

|]
K.é&
K7
8
Mpsg
140
2
2l
140
2

L Pl
140

2

"H4 n
140
2

n k:f‘,"
140
2
"Kb"
140

2

llk::?ll
140

2

" F:B "
140
F5055
102416
100671
101233
35121
34772
101231
35114
12407
13414
12412
13626

32
=KEYHIT

Sample Binary Programs

'1I8 IT EMPTY?

'JIF NO

'LET SYSTEM HANDLE IT
!SAVE FOR LATER

TMASK. OFF IMMED. EXEC. BIT

'OUTFUT EEY STRING

'SPIT OUT CURSOR

'18 IMMED. EXEC BIT SET?
'JIF YES

'DONE WITH KEY

'CLEAN UF

'TRASH 2 RETURNS

'LOAD ENDL.INE

'FUT ENDLINE IN KEYHIT
'LET SYSTEM HANDLE IT

8-5

Sample Binary Programs

1780 ONEER DAD 56113
1790 ERROR+ DAD &611
1800 ZERO EGU O
1810 FIN

Sample Binary Programs

STRING UNDERLINE STRING UNDERLINE BINARY PROGRAM
Source File: UDL$S
Object File: UDL$B

When passed one string parameter, this program returns the same string with all
characters underlined. It implements a BASIC string function with one string
parameter.

Format: UDL$ ("string expression")

Description: Returns the same string expression with all characters underlined.

Sample Binary Programs

10
20
30
40
S0
60
70
80
90
100
110
120
X
130
140
150
160
170

180
190
200

210
220
230

240
250
260

270
R)

280
290
Z00
310
320
330
340
350
60
F70
380
90
400
410
420
430
440

PRKKKKKKKKKKKKKKKRRKKKK KKK KKK

[STRING UNDERLINE X
'% (¢) Hewlett-Packard Co. %
vX 1980 X
IR 2233333333333 33¢833333¢833 %3
NAM UDLEIN 'SET UF FPROGRAM CONTROL. BLOCK
DEF RUNTIM 'PTR TO RUNTIME ADDRESS TABRLE
DEF ASCIIS 'PTR TO KEYWORD TARLE
DEF FARSE 'PTR TO FARSE ADDRESS TAEBLE
DEF ERMSG 'PTR TO ERROR MESSAGE TABLE
DEF INIT 'PTR O TO INIT ROUTINE FOR SYSTEM
RS 22222202202ttt e s ettt e it it e it et it s e essisssssisieestssses:
FARSE BYT 0,0 'DUMMY TOK #0 PARSE FTR
RUNTIM BYT O,0 'DUMMY TOE, #0 RINTIME
DEF UDL.%$. 'TOE. #1 RUNTIME
BYT 377,377 'TERMINATE RELOCATABLES
PRRKRRRKAKRK KKK KK KKK KK KE KKK KKK KR XK KK KRR KR KRR KRR KKK KR KKK KRR KAk ROk kR Kk
ABCIIS ASF "UDLs$" 'KEYWORD #1
BYT 377 'TERMINATE ASBCIIS TABRLE

AOKK KR ACKOK KK KKK K KKK KKK K KOK OKOK KK KK oK K K KK K 0K 0K 30K Kk KK 30K 0K KKK 30K 3k 3K 3K 30K 0K 30K 30K ok 0k X0k X ok kK

ERMEG BSZ O
BYT 377 'NO ERROR MESSAGES
$RHOKOK 0K KKK KK KOK K 0K KKK KKK 30K 0K 30K KK KK KKK KR KOR KKK KK KRR OK KKK KKk Kk KRRk KKk Kk kK kK

INIT BSZ © 'NO INITIALIZATION TO BE DONE
RTN ' DONE
ORORK KK OKOKKOKR KK 3K K K K 3K 33Kk 30K 3K KKK 30K KK K KOK 3K KK KKK OKK KK KK KK R KKK KK K KKK kK KKk KOk KOk K XKk
BYT 30,56 ! ATTRIBUTES (S8TRING FUNCTION, 1 STRING FPARAMETE
UDL$%. PFOMD R36,-R12 'FOF STRING ADDRESS OFF OF R12 STACK
FOMD R30,-R12 'FPOF STRING LENGTH OFF OF R12 STACEK
85TM R30,R36 'LENGTH NEEDS TO BE IN 54 FOR °RSMEM-T
JSBB =RGMEM~— 'G0 GET SOME TEMFPORARY MEMORY
FUMD RZ0,+R12 'FPUSH LENGTH BACKE ONTO THE R12 STACEK
PUMD R26,+R12 'FUSH ADDRESS RETURNED BY °RSMEM-" ON R12 STACK
BIN 'SET MATH MODE FOR LOOF COUNTER
LDEB R34, =200 'SET UFP MASK
MORE DCM R3O0 'DECREMENT LOOF COUNTER
JNC DONE 'JIF NO CHARACTERS LEFT
FOBD R20,+R34 'GET NEXT CHARACTER
ORB R20,R34 'SET MSB OF CURRENT CHARACTER
FUBD R20,+R26 'FUSH UNDERLINED CHARACTER BACK
JMF MORE 'G0 GET SOME MORE
DONE RTN ! DONE
RSMEM~ DAD 37453
FIN

Sample Binary Programs

GRAPHICS CURSOR | GCURS BINARY

Source File: GCURS
Object File: GCURB

This binary program implements a graphics cursor and allows the four cursor keys
on the computer to control the cursor. There are five new keywords implemented
by the program:

Format:

Description:

Format:

Description:

Format:

Description:

Format:

Description:

Format:

Description:

GCURSOR x-location, y-Tocation [, slow-step distance, fast-step

distance]

A BASIC statement; x,y is location where cursor is placed on the
CRT graphics screen initially. Slow-step distance (optional) is
the distance the graphics cursor moves with each press of a cursor
control key. Fast-step distance (optional) is the distance the
cursor moves with each press of a shifted cursor control key.
Default step distances are 1 and 4, respectively.

The cursor keys control the graphics cursor only when a program is
running.

GCURSOR OFF

A BASIC statement; turns cursor control keys off and removes the
graphics cursor from the CRT screen.

GCURSOR X

A numeric function with no parameters; returns the current x-
location of the graphics cursor.

GCURSOR Y

A numeric function with no parameters; returns the current y-
location of the graphics cursor.

REV DATE

A string function with no parameters; returns the revision date of
the program.

8-9

Sample Binary Programs

1 D RAOKKR KK KOKOKOK HOKOK K 0ROk KK Kok K Kk K X

2 ' GCURS BINARY X

3 !'% () Hewlett-Fackard Co. X

4 'x 1980 X

R 2222223333823 33 FETTELTTE 2

10 NAM GCURS

20 DEF RUNTIM 'FTR TO RUNTIME ROUTINES TAEBLE
30 DEF TOKS 'FTR TO ASCII TABLE

40 DEF FARSES 'FTR TO PARSE ROUTINES TABLE
50 DEF ERMSG 'PTR TO ERMSG TABLE

60 DEF INIT 'FPTR TO INIT ROUTINE

70 RUNTIM BSZ 2 'TOE. © RUNTIME FTR (DUMMY)

80 DEF GCOFF. 'TOK 1 RUNTIME FTR

90 DEF GCURX. 'TOK 2 RUNTIME PTR

100 DEF GCURY. 'TOK 3 RUNTIME PTR

110 DEF GCURS. 'TOE. 4 RUNTIME PTR

120 DEF REV. 'TOK. 8 RUNTIME FTR

130 FARSES BSZ 2 'TOK O PARSE ROUTINE (DUMMY)
140 DEF GCOFFF ! TOK 1 PARSE ROUTINE FTR

150 BSZ 2 'TOK. 2 PARSE ROUTINE (DUMMY)
160 BSZ 2 'TORK 3 PARSE ROUTINE (DUMMY)
170 DEF GCFAR 'TOK. 4 FARSE ROUTINE PTR

180 ERMSG BYT 377,377 'END OF RELOCATARBLE ADDRESSES % ERMSG™S
190 TOKS ASF "GCURSOR OFF" 'ASCII FOR KEYWORD 1

200 ASF "GCURSOR X" 'ASCII FOR EEYWORD 2

210 ASF "GCURSOR Y" 'ASCII FOR KEYWORD 3

220 ASF "GCURSOR" 'ASCII FOR KEYWORD 4

230 ASF "REV DATE" 'ASCII FOR KEYWORD 5

240 BYT 377 'END OF EKEYWORD TARLE

250 RO KK KR AOK KK KKK KKK KKK OK KKK KK K KKKk kK KRR KRR R KKKk KKK KKK KKK KKK KKKk X
260 INIT EBIN 'FOR EBINARY COMFARE

280 LDBD R34, =ROMFL. 'GET ROMFL (REASON FOR INIT)
290 CMEB RI4,=2 'SCRATCH?

300 JINZ LOAD? YJIF NO

310 SCRAT! LDM R44,=236,2346,236,234 'LOAD RTNS

320 STMD R44,=CHIDLE 'STORE TO CHIDLE (RETURN HOOKE TO SYSTEM)
330 RTN

340 LOADT? CMEB R#,=5 'LOAD?

350 JZR SCRAT! 'JIF YES, WE'RE GETTING SCRATCHED
360 RTN RTN 'DONE, ONLY CASES WE CARE AROUT
S70 P RORRICKKOK K KK 30K KKK K 0K KK 30K KK K 30K 0K K K K KK 0K K 30Kk K 0K 3K KK KKK KK oK K K KK 30K oK ok K K KK X
380 LEFT LDMD R40,X14,5TEF 'LOAD SLOW STEF OFFSET

JI90 JMF COMLEF '60 MOVE CURSOR LEFT

400 RIGHT LDMD R40,X14,STEF HLOAD SLOW STEF OFFSET

410 JMF COMRIT 160 MOVE CURSOR RIGHT

420 KEY LDMD R14,=BINTAR 'RASE ADDRESS OF EBIN FPRGM

30 BIN 'FOR COMFARE
440 CMB R14,=2 'IN RUN MODE?

450 JNZ RTN 'JIF NO, DON’T DO
460 LDMD R22,=KEYHIT 'GET KEYCODE OF FPRESSED KEY

470 CMB R22,=211 'SHIFTED RIGHT CURSOR KEY?
480 JZR FRIGHT 'JIF YES
490 CMRB R22,=223 'SHIFTED LEFT CURSOR KEY?
S00 JZR FLEFT 'JIF YES

510 CMB RZZ2,=24%5 VSHIFTED UF CURSOR KEY?
520 JZR FUF 'JIF YES

20 CME R22,=242 'DOWN CURSOR KEY?
540 JZIR DOWN 'JIF YES

590 CMB R22,=234 HLEFT CURSOR KEY?
560 JZIR LEFT 'JIF YES

Sample Binary Programs

570 CMB R22, =235 'RIGHT CURSOR KEY?

580 JZR RIGHT 'JIF YES

590 CMB R22,=241 'UF CURSOR KEY?

&HO0 JIR UF 'JIF YES

610 CME R22,=2%54 'SHIFTED DOWN CURSOR KEY?
620 JZR FDOWN 'JIF YES

&30 RTN 'ELSE LET SYSTEM HANDLE THE KEY
&40 DOWN LDMD R40,X14,8TEF 'LOAD SLOW STEF CONSTANT
650 JMF COMDOW 'G0 MOGVE DOWN

&60 UF LDMD R40,X14,8TEF 'LOAD SLOW STEF CONSTANT
670 JMF COMUF ‘G0 MOVE upP

480 FRIGHT LDMD R40,X14,FSTEF 'LOAD FAST STEF CONSTANT
&920 COMRIT FUMD R#,+R12 'FUSH STEF VALUE ON R12
700 LDMD R50,X14,CURS-X !BET CURRENT X FOR ADD
710 FUMD RSO, +R12 YFUSH 7O R12

720 JSE =ADDROI1 'ADD STEF TO CURRENT X
730 COM-X LDMD R40,X14,CURS-Y !'GET CURRENT Y

740 FUMD R40,+R12 'FUSH TO R12 STACE

730 JMP COMKEY 'G0 MOVE CURSOR

760 FLEFT LDMD R40,X14,FSTEF 'LOAD FABT STEF CONSTANT
770 COMLEF LDMD RSO, X14,CURS-X 'GET CURRENT X

780 FUMD RS0O,+R12 'FUSH FOR SUBTRACT

790 FUMD R40,+R12 'FUSH STEF VALUE FOR SUBTRACT
800 JSEB =8URROI 'SUBTRACT STEF FROM CURRENT X
810 JMF COM-X 'G0 FUSH Y AND FINISH
820 FuF L.DMD R40,X14,FSTEF 'LOAD FAST STEF CONSTANT
830 COMUF LDMD RS0,X14,CURS-X 'GET CURRENT X LOCATION
840 FUMD RS0,+R1Z2 'FUSH TO R12 STACK

850 FUMD R40,+R12 'FUSH Y-STEF TO R12 STACK
860 LDMD R40,X14,CURS-Y !GET CURRENT Y LOCATION
870 FUMD R40,+R12 'FUSH TO R12

a8 JSEBE =ADDROI 'ADD STEF TO CURRENT LOCATION
890 JMF COMKEY 'MOVE CURSOR ON SCREEN
00 FDOWN LDMD R40,X14,FSTEF 'LOAD FAST STEF CONSTANT
710 COMDOW LDMD RS0, X14,CURS-X !'BET CURRENT X 1LLOCATION
P20 FUMD RS0, +R12 'FUSH TO R12 STACK

30 LDMD RS5O, X14,CURS~-Y !'GET CURRENT Y LOCATION
240 FUMD RS0, +R12 'PUSH TO R12 STACK

TS0 FUMD R40,+R12 'PUSH STEF VALUE TO R12
960 JBEB =SUBRDI 'SUBTRACT STEF VALUE

970 COMEEY JSE X14,FPLOT 'ERASE OLD CURSOR

780 CLM RSO 'FOR COMPARE

990 FOMD R40,-R12 'GET NEW Y

1000 FUMD R40,+R12 'SAVE IT

1010 JSE =COMFLT '18 Ye=ZERO 7

1020 FOMD R40,-R12 'RECOVER Y

1030 JEN TEST-X 'JIF NO

1040 FUMD R40,+R12 'SAVE Y

1050 LDM R50,=2,0,0,0,0,0,20C,19C 'REAL 192

1060 JBE =COMFLT 'I5 Y192

1070 FOMD R40,-R12 'RECOVER Y

1080 JEZ TEST-X

1090 STMD R40,X14,CURS~Y !'STORE IT AWAY

1100 TEST-X CLM RSO 'FOR COMFARE

1110 FOMD R40,-R12 'GET NEW X

1120 FUMD R40,+R12 'SAVE X

1130 JSB =COMFLT !X 3=0

1140 FOMD R40,~R12 'RECOVER X

1150 JEN MOVCUR YJIF NO

1160 FUMD R40, +R12 '6AVE X

1170 LDM R50,=2,0,0,0,0,0,60C,25C 'REAL 254

Sample Binary Programs

1180
1190
1200
1210
1220
123
1240
1250
1260
1270
1280
1290
1300
1210
1320
I30
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
14460
1470
1480
1490
1900
1510
1520
1530
1540
1950
1560
1570
1580
1S90
1600
1610
1620
1430
1640
1650
1660
14670
1680
1690
1700
1710
1720
1730
1740
1730
1760
1770
1780

JSEB =COMFLT

BIN
FOMD R40,-R1Z
JEZ MOVCUR

STMD R40, X 14, CURS—X
MOVCUR JSE X14,FLOT
CLE
JSB =E0J2
LDED R31,X14,KEYCON
LOOFKE LDED R30,=KEYSTS
LRE R3O0
JEV EOJ
LDED R30,=CRTSTS
LRB R3O0
JEV LOOFKE
LOOFKZ LDED R3I0,=KEYSTS
LRE R3O0
JEV EOJ
LDED R30,=GVCWRD
Jop EOJ
LDED R30,=CRTSTS
LRE R3O
JOD LOOFKZ
DCE R31
JNZ LOOFKE
LDE R31,=KYRFT2
STED R31,X14,KEYCON
LDM R20,=KEY
ADM R20,R14
DCM R20
LDM R4,R20
E0J LDE R31,=KYRFT1
STED RE1,X14,KEYCON
FOMD K44, -Ré
CLE
RTN

IX<256 7
'COMFLT RETURNS IN ECD MODE
'RECOVER X

'STORE IT AWAY

ISFIT OQUT NEW CURSOR

'FLAG KEEY HANDLED

'RESET R17 % SVCWRD

'L.OAD KEY REFEAT SFEED

'GET KEYBOARD STATUS

'KEY STILL DOWN?

'JIF NO

'GET CRT STATUS

'AT RETRACE?

'JIF YES

'GET KEYROARD STATUS

'KEY DEFRESSED?

'JIF NO

'ANOTHER EEY?

'JIF YES

'GET CRT STATUS

'RETRACE?

'WJIF NO

'DECREMENT WAIT COUNT

'JIF NOT DONE WAITING

'GET FAST REFEAT COUNT

ISET IN KEYCON FOR FAST REFEAT
'!GET ADDRESS OF KEY ROUTINE
'MAKE ABSOLUTE (ADD BINTAR)
'DECREMENT FOR LOAD INTO FC
'LOAD FC WITH ADDRESS (DOES A GTO)
'RESET KEY REFEAT TO SLOW WAIT
'STORE IT

'THROW AWAY TWO RETURNS
'FLAG KEY HANDLED

' DONE

D3R KK K KK KKK 3K K K K 0K K K 0K K KK KK KKK KR KK R KKK KKK KK KKK K K K K K K KKK OK 3OK R KOk X0k X K

GCFAR FUBD RA43,+Ré
JSE =NUMVA+
JEN OK

ERR JSB =ERROR+
EYT 81D

Ok J5B =GETCMA
JSB =NUMVAL
JEZ ERR
CME R14,=54
JNZ DONE
JSE =NUMVA+
JEZ ERK
JSB =GETCMA
JSB =NUMVAL
JEZ ERK

DONE FOBED R47,~Ré
LDE R4S,=371
FUMD R4S, +R12
RTN

GCOFFF FUBD RA4T,+Ré
JSE =SCAN
JMF DONE

'SAVE INCOMING TOREN

'GET A NUMERIC EXFRESSION
'JIF GOT ONE

'ELSE ERROR

'BAD EXFRESSION

'DEMAND A COMMA

'GET ANDTHER NUMERIC VALUE
'JIF NOT THERE

'ANOTHER COMMAT?

'JIF NO, THAT®S ALL

'ELLSE GET ANOTHER NUMEER
'JIF NOT THERE

'DEMAND ANOTHER COMMA
'GET YET ANOTHER VALUE
'JIF NOT THERE

'RECOVER INCOMING TOKEN
LOAD RBIN FRGM TOEEN FLAG
'FUSH THEM OUT

' DONE

'SAVE INCOMING TOKEN
'NEED TO DO A SCAN FOR SYSTEM
160 FINISH, NO FARAMETERS

E oK 3K KK K OKOK KKK KKK K 300K K K KK KKK KOk KK 0K 30K KKK 0K K O 30K Ak KK KOk KoKk KoKk ok kK K

BYT 241

'ATTRIBUTE (RASIC STAT.,LEGAL AFTER THEMN)

1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
19290
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
21040
2110
2120
2130
2140
2150
21460
2170
2180
2190
2200
2210
pegedelyl

e a

2230
2240
2250
22460
2270
2280
2290
2300
2310
2720
el e

DRIIZO
2340
2350
2360
2370
2380
2390

GCOFF.

LDMD R14,=BINTAR
JEE X14,85CRAT!
JSE X14,FLOT

RTN

Sample Binary Programs

'LOAD BASE ADDRESS
'RELEASE CHIDLE HOOK
'ERASE CURSOR

! DONE

FACRORROR KKK KKK OKAOKKOK 30K KKK K K KK 0K KK KK KK KKK 33K 30K KKK 30K 0K 30K 30K K K 3K KK Kok Ok o

GCURX.

GFUSH

BYT 0,55
LDMD R14,=RINTAE

LDMD RS0, X14,CURS-X

FUMD RS0, +R12
RTN

'GET BASE ADDRESS OF EBFGM
'GET CURRENT X LOCATION
'PUSH TO R12 STACK

! DONE

RO ROK KKK KK KK 3K K KK K KK KKK KKK KR A OKOK KKK K K KKK KKK KKK KOk KKK AR KR KKK KK Kk

GCURY.

BYT 0,55
LDMD R14,=BINTAE

LDMD RS0, X14,CURS-Y

JMF GFUSH

'GET BASE ADDRESS
'GET CURRENT Y LOCATION
'FUSH TO R12

KRR AOKOK O K 30K KKK KKK KK K KKK 30K K K KOKOK K K KKK K 30K KK OOK K KKK JOK K K KK KKK K KK K KOk K K X

GCURS.

NOSTEF

BYT 241
BIN
LDMD R14,=RINTAR

LDM R40,=0,0,0,0,0,0,0, 10C

STMD R40,X14,STEF
LDB R47,=40C

STMD R40,X14,FSTEF
LDM R20,R12

SEM R20,=40,0

CMMD R20,=T0S

JINZ NOSTEPR

JSB =0ONER

BIN

STMD R#,X14,FSTEF
JSE =0NER

BIN

STMD R#,X14,STEF
JSB =0ONER

EIN

STMD R#,X14, CURS~Y
JSE =0NER

BIN

STMD R#,X14, CURS-X
JSE X14,FLOT

LDM R46,=KEY

ADM R46,R14

STM R46,R45

LDB R47,=236

LDE R44,=316

STMD R44,=CHIDLE
RTN

'ATTRIBUTE(BASIC STAT.,LEGAL AFTER THEN)
'FOR BINARY MATH

'GET BASE ADDRESS

'DEFAULT STEF VALUE (1)
'DEFAULT FAST STEF VALUE
'STORE IT AWAY

'!GET END OF R1Z2 STACE ADDRESS
'TRY 4 NUMBERS ON STACE

IYEST

'JIF NO STEF VALLES

'ELBE GET FAST STEF VALUE

'ONER REQUIRES RIN MODE AT ENTRY
'STORE IT AWAY
'GET SLOW STEF
'ONER REQUIRES
'STORE IT AWAY
'GET Y VALUE
'ONER REQUIRES
'SET CURRENT Y
'GET X

'ONER RETURNS IN EBCD MODE

'SET CURRENT X

HQUTPUT CURSOR

'GET ADDRESS OF EEY HANDLER ROUTINE
'!ADD BASE ADDRESS FOR ABSOLUTE ADDRESS
'SET FOR STORE

'LOAD A RTN AFTER IT

'LOAD A JSBR IN FRONT

'STORE TO CHARCTER IDLE

' DONE

4)

VAL UE
EIN MODE AT ENTRY

EBIN MODE AT ENTRY

£ KKK KK KKK KKK KKK K 0KOK KK OR300 KKK KK CKOK KKK 30K K K KK HOK KR KKK KK KKKk K K

FLOT

NXTROM

JGB X14,GCURX.
JSEB X14,GCURY.
LDM RZ0,=ROMTAR
FOMD RZ4,+R20
CMB R24,=377
JZR SYSTEM

CME R24,=FPFROM#
JINZ NXTROM

JSB =ROMJISE

DEF FMOVE.

VAL PFROM#

L.DMD Ri4,=RINTAEB
JME PLOT++

'PUSH CURRENT X

'FUSH CURRENT Y

'GET BASE ADDRESS OF ROM TAELE
'GET NEXT ROM # FROM TABLE
'END OF TABLE?

'JIF YES, DO SYSTEM MOVE
'PLOTTER/FPRINTER ROM #7

YJIF NO, TRY NEXT ENTRY
'SELECT PLOTTER/FRINTER ROM #
WJSB TO ITS MOVE ROUTINE
'FLOTTER/FRINTER ROM #
'RE~-LOAD BFGM BASE ADDRESS
DO COMMON QUT-CURSOR STUFF

Sample Binary Programs

2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2380
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2730
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2930
29460
2970
2980
2990
3000

SYSTEM JSEB =MOVE. 'DO A SYSTEM MOVE

FLOT++ LDM R20,=CURSES 'LOAD REL.. BASE ADDRESS OF CURSORS
ADM R20,R14 'ADD BFGM BASE FOR ABSOLUTE ADDRESS
LDED RZ2,=XMAF 'GET LOWER BYTE OF CRT BIT MAF
ANM R22,=3,0 'FEEF ONLY LOWER TWO RITS
LDM RZ4,RE2 'COFY
LLM R34 'TIMES 2
LLM R34 'TIMES 4
ADM R3I4,R22 'TIMES S(EACH CURSOR IS 5 BYTES)
ADM R34,R20 'BASE ADDRESS + OFFSET=CURS0OR ADDRESS
LDM R22,=5,0 'LOAD LENGTH OF "STRING"
LDM R44,=1,0,1,0 'LOAD # OF BYTES/LINE AND A COFY
JEB =BFLOT+ 'JUMF INTO BFLOT
RTN 'DONE

0K 0K K 3K KKK OK 0K K KKK 3K KK 0K K 300K KK K 3K KKK KK K Kk KoKk Kok ko kKoK KoK K KOKoK KoK kKoK Kok X
CURSES BYT 360,300,240,220,10 !FOUR DIFFERENT CURSORS BECAUSE
BYT 170,140,120,110,4 'BFLOT CAN ONLY WORK TO A FOUR-BIT

BYT 74,60,50,44,2 'RESOLUTION. TO GET 1 BIT RESOLUTION
BYT 36,30,24,22,1 'WE NEED TO USE FOUR DIFFERENT CURSORS
KEYCON RBRSZ 1 'TEMFORARY KEY REFEAT SFEED
CURS—X BSZ 10 'CURRENT X LOCATION
CURS~Y BSZ 10 'CURRENT. ¥ LOCATION
FOSTEF BSZ 10 'FAST STEF INCREMENT VALUE
STEF BSZ 10 'SLOW STEF INCREMENT VALUE
13K KOK KK KKK KK KKK KKK KK 3K KK J0K0K 3K 0K KKK KKK KKK K K IOK K KOKKOKOR KO KOR K KOk K KKKk kX
BYT 0,56 'ATTRIBUTES (NO FARAM. (% SYSTEM FUNCTION)
REV. EIN 'FOR ADD
LDM R44,=11D,0 'LOAD LEN OF STRING
DEF DATE ' AND THE RELATIVE ADDRESS
ADMD R464,=BINTAR 'ADD BASE FOR ABSOLUTE ADDRESS
FUMD R44,+R12 TPUSH TO OFERATING STACK
RTN ' DONE
DATE ASC "AUG 14,1980" 'DATE STRING
BFLOT+ DAD F44005 'NOTE:
MOVE. DAD 31703 'MOST OF THESE DEFINITIONS COULD
FMOVE. DAD 64400 'BE REFLACED BY A CALL TO
ROMJISE DAD 4776 'THE GLOEBAL FILE

FFROM# EQU 360
ROMTAE DAD 101235
KYRFTZ EQU 1
EYRFT1 EQU 30
CRTSTS DAD 177406
FEYSTS DAD 177402
CHIDLE DAD 102416
ROMFL. DAD 101231
FEEYHIT DAD 1004671
EQJZ2 DAD 34772
ADDROI DAD 52150
SUBRDOI DAD S2127
BINTAER DAD 101233
NUMVAL DAD 12412
NUMVA+ DAD 12407
SCAN DAD 112462
GETCMA DAD 13414
SVCWRD DAD 100151
TOS DAD 101132
ERROR+ DAD &611
ONER DAD S6215
XMAF DAD 100262
COMFLT DAD 32621
FIN 'END OF SOURCE FROGRAM

8-14

Sample Binary Programs

RECTANGULAR/POLAR CONVERSIONS RECT/POLAR CONVERSIONS BINARY PROGRAM
Source File: RECPLS

Object File: RECPLB

This program can be used to convert between polar and rectangular coordinates.
It implements four BASIC statements:

Format: RECTANGULAR x-variable, y-variable, radius, angle

Description: Sets x- and y-variables equal to the rectangular coordinates that
correspond to the specified polar coordinates (radius and angle).

Format: POLAR radius variable, angle variable, x-coordinate, y-coordinate

Description: Sets radius and angle variables equal to the polar coordinates that
correspond to the specified x- and y-coordinates.

Format: REV DATE

Description: A string function with no parameters; returns the revision date of
the program.

Format: SCRATCHBIN

Description: Scratches the current binary program from computer memory, without
affecting anything else.

Sample Binary Programs

40

50

&0

70

a0

0

100
110
120
130
140
180
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
280
290
400
410
420
430
440
450
460
470
480
490
S00
510
D20
530
540
S50

X

NAM
DEF
DEF
DEF
DEF
DEF

1980

R&F
RUNTIM
ASCIIS
FARSE
ERMSGE
INIT

R 23232223333 303833333 33333 333
'¥ RECT/FOLAR CONVERSIONS
¥ () Hewlett-Fackard Co.

X
X
X

Paekokokokokookkok ioKkk R ok kokokokok kokokk kK Kk

'B8ET UF FROGRAM CONTROL BLOCK
'PTR TO RUNTIME ADDRESS TABLE
'PTR TO EKEYWORD TABLE

'FTR TO FPARSE ADDRESS TABLE
'FTR TO ERROR MESSAGE TABLE
'FTR TO INIT ROUTINE FOR SYSTEM

PREERKKRK KRR KKK KKK KKK IOK K KKK K KRR KK KKK R KK KKK KKK R KRR KKK RK KKK R KKK KK

FARSE BYT
DEF

DEF

DEF

RUNTIM BYT
DEF

DEF

DEF

DEF

BYT

0,0

RTFF
RTFF
UNLODF
0,0
RTF.
FTR.
SCRE.
REV.
377377

'DUMMY TOK #0 PARSE FTR
'TOK #1 FARSE FTR

'TOR #2 FARSE FPTR

'TOK #3 FARSE FTR
!DUMMY TOE #0 RUNTIME
'TOK #1 RUNTIME

'TOK. #2 RUNTIME

'TOR #3 RUNTIME

'TOK. #4 RUNTIME
'TERMINATE RELOCATABLES

IR2222 8202280002202 8223323333333 ¢ 0020ttt 2232233233232333233 33233330

ABCIIS ASF
ASF
ASF
ASF
BYT

"FOLAR"

"RECTANGULAR"
"SCRATCHEIN"
"REYV DATE"

377

'FEYWORD #1
'KEYWORD #2
'EEYWORD #3
'EEYWORD #4
'TERMINATE ASCIIS TARLE

KKK KK K AOK K ok kK K KK KK K KK K KO KK KKK K K K KKK KK KKK K KOk KKK R R R KKk kR kR Rk kKK K

UNLODF LDE

LDE R45,=371
FUMD R4S, +R12

J5B
RTN

R47,R43

=5CAN

'COPY BFGM TOKEN

'LOAD SYSTEM BFGM TOREN
'FUSH THE CODE TO THE STACE
'SCAN BEFORE RETURNING

' DONE

B 2322220008 8002222822222 222 e ettt st e it e e e e ey

RTFF FUBD R43Z, +Ré6

JSE
JSE
JEZ
JSE
JSE
JEZ
ISk
JSB
JEZ
JEB
JSEB
JEZ

FOED R47,-Ré
LDE R4S,=371

=8CAN
=REFMUM
ERR
=GETCMA
=REFMNUM
ERR
=GETCMA
=NUMVAL
ERR
=GETCMA
=NUMVAL
ERR

'SAVE INCOMING TOKEN

'SCAN FOR REFNUM

'GET THE 1st VARIABLE REFERENCE
'JIF NOT THERE

'DEMAND A COMMA

'GET THE 2nd VARIABLE REFERENCE
'JIF NOT THERE

'DEMAND A COMMA

'GET THE X VALUE

'JIF NOT THERE

'DEMAND A COMMA

'GET THE Y VALUE

'JIF NOT THERE

'RECOVER THE INCOMING TOKEN
'LOAD THE SYSTEM BFGM TOKEN
'FUSH THE PARSED CODE

' DONE

b ook ok ok ok Kk ok koK ok sk ke skoROKOKOK 30K K ok KOk 0k kKK Rk okokokokokolook Kok Kook ok Rk kR Xk kkk Rk k k

'CLEAN UF Ré&6 (REMOVE TOKEN)
'REFORT ERROR
'BAD EXFRESSION

Dok oK sk oK K K oK KK KK KKK KOK KOKOK KK K K0K K 3K ok oK sk ok sk kK K kKKK K KoKk KooK Rk kokokok kokokokokskokokokok ok k X

FUMD R4S, +R12
RTN

ERR FOBD R47,-Ré
JSB =ERROR+
BYT 81D

ERMSEG BSZ O
BYT 377

'NO ERROR MESSAGES

E K KK KKK KKK KR KOK KOK K K 3K 3K 3K KK K KK KK KKKk KOK ROK K KKKk 0Kk ook ok sk ok ook ok ok ko ok ok sk sk kok ko k

560
570
580
590
b00
610
620
&30
&40
&50
660
&70
680
490
700
710
720
730
740
750
760
770
780
790
800
810
820
30
840
850
860
870
880
890
00
910
920
0
940
950
960
970
980
950
1000
1010
1020
1030
1040
1050
1060
1070
1080
1690
1100
1110
1120
1130
1140
1150
1160

INIT

BSZ O
RTN

Sample Binary Programs

'NO INITIALIZATION TO BE DONE
'DONE

PRRERKKKKIOKK K AR KKK KK KKK K KKK KKK KR KK KEK KKK KKK KKK KKK KK KRR KRR RKK KKK KK

XVAL
RVAL
YVAL
AVAL

BGZ O
BSZ 10
BSZ O
BSZ 10

!TEMFORARY STORAGE

!TEMFORARY STORAGE

£ OKKOKOK A0OK 30K K KOKOKOK 30K OKCK K 0K 30K 30K 0K KK 30K KKK 30K KK KK JOR K K KKK KKK K KKK KK R Rk koK Rk ok Rk X

RTF.

EBYT 241
JSE =0ONER

LDMD R22,=BINTAB
STMD R40, X272, YVAL
JSE =0ONER

STMD R40, X232, XVAL
FUMD R40,+R12
FUMD R40,+R12

JSE =MFYROI

LDMD R4Q, X22, YVAL
PUMD R40,+R12
FUMD R40,+R12

JSE =MPYROI

JSB =ADDROI

JSE =8ORS

FOMD R40,-R12
FUMD R40,+Ré

LDMD R40, X22, YVAL
FUMD R40,+R12
LDMD R40, X22, XVAL
FUMD R40,+R12

JSE =ATNZ.

JSE =5TOSV

FOMD R40,-Ré

FUMD R40,+R12

JSE =8STOSV

RTN

'ATTRIBUTE FOR RECTANGULAR
'GET Y VALUE TO R40

'LOAD BASE ADDRESS

'SAVE Y VALUE

'GET X~VALUE TO R40

'SAVE X VALUE

'FUSH FOR MULTIFLY

HPFUSH FOR MULTIFLY

'GET X2 (LEAVE ON R12)

'GET Y VALUE

'FUSH FOR MULTIPLY

'FUSH FOR MULTIFLY

'GET Y™2 (LEAVE ON R12)

'GET X"2+Y"2 (LEAVE ON R12)
'GET SOR{X™2+Y"2) RADIUS
'RECOVER ANSWER

!SAVE RESULT FOR LATER

'GET Y VALUE

'FUSH FOR ATN

'GET X VALUE

'FUSH FOR ATNZ

'FIND ATNZ2(Y, X) AND LEAVE ON R12
'STORE RESULT TO ANGLE VARIABLE
'RECOVER RADIUS RESULT

'FUSH FOR STORE

'STORE TO THE RADIUS VARIAELE
' DONE

KKK KKK 0K KK K KKK K KK KK K K K KK KK KKK oK K K KKK K KOk 0Kk Kk R KKK R R 0K KOk Kok Kok Kok KOk K K

FTR.

EBYT 241

JSE =0NER
LDMD R22,=BINTAB
STMD R40, X22, AVAL
JSE =0ONER

STMD KR40, X22, RVAL
LDMD R40, X22, AVAL
FUMD R40,+R12

JSE =COS10

LDMD R22,=BINTAB
LDMD R40, X22, RVAL
FUMD R40,+R12

JSE =MFYROI

FOMD R40,-R12
FUMD R40,+Ré

LDMD R40, X22, AVAL
FUMD KR40, +R12

JSE =5IN10

I.DMD R22,=BINTAE
LDMD RS0, X22, RVAL
FUMD RSO0, +R12

JGB =MPYROI

JSB =STOSV

FOMD R40,-Ré

FUMD R40,+R12

'ATTRIBUTES FOR FOLAR
'GET ANGLE VALUE

'LOAD EBASE ADDRESS
!STORE FOR LATER

'GET RADIUS VALUE
'STORE FOR LATER

'GET ANGLE VALUE

'FUSH FOR COS FUNCTION
'TAKE COS¢(ANGLE)
'LOAD BASE ADDRESS
'GET RADIUS VALUE
'FUSH FOR MULTIFLY
'GET R¥COS (ANGLE)
'GET ANSWER

'SAVE FOR LATER
'GET ANGLE VALUE
'FPUSH FOR SIN FUNCTION
'TAKE SIN(ANGLE)

'LOAD BASE ADDRESS

'GET RADIUS

'FUSH FOR MULTIPLY

'GET RXSIN(ANGLE) Y VALUE
'STORE TO Y VARIABRLE
'RECOVER X VALUE

'FUSH FOR STORE

X VALUE

Sample Binary Programs

1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
14460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
18630
1640
1650
1660
1870
1680
1690
1700
1710
1720
1730
1740
1750
17460
1770

JSB
RTN

=8TOSV

'S8TORE TO X VARIABLE
! DONE

PXRIOKKKACRRKARR KKK KRR KRR KRR KKK KRR R KKK IR KR MAOR KRR IORR KK KKK KRR KKK KKK KK X

SCRB.

UNLD1

UNLDZ2

BYT 241
STBD R#,=GINTDS
LDMD RZ24,=BINTAR
DCM R24

LDMD RZ6,=LWAMEM
STM R24,R22

SEM R22,R24

LDE RZ0,=4

LDM R32,=LAVAIL
LDMD R36,R32

ADM R36,R22

FUMD R36,+R32
DCB R20

JINZ UNLD1

LDMD R36&,R32
CMMD R36, =LWAMEM
JZR UNLDZ

ADM R3I6,R22

STMD R36,R32

CLM R#

STMD R#,=BINTAE
LDM R#,R12

LDM R41,=316

DEF MOVDN

STED R#,=GINTEN
RTN

STMD R41,R36

DCM RI6

LDM R4,R36

'ATTRIBUTES FOR SCRATCHEIN
'DISABLE INTERRUFTS

'LOAD EBASE ADDRESS

'MOVE TO LAST BYTE TO KEEF
'GET END OF MEMORY (AND BFRGM)
'COFY

'GET DISTANCE TO MOVE

'LOAD COUNTER FOR PTR ADJUST
!GET ADDRESS OF 1st FTR TO MOVE
'GET NEXT PTR

'ADD DISTANCE TO MOVE
'RESTORE FOINTER

!DECREMENT COUNT

'JIF NOT DONE

'GET FWEIN

'SAME AS LWAMEM?

'JIF YES

'ELSE ADJUST

! AND REFLACE

'ZERO OUT BINTAE (NO BFGM)

'COPY R1Z PTR

'LOAD INTO R41-R47 THIS CODE:

! JS5B=MOVDN

! STED R#,=GINTEN

! RTN

'STORE AT END OF R12 STACK

'DCM ADDR. BECAUSE LDM WILL ICM R4 AFTER LOAD

'MOVE FROGRAM EXECUTION TO MOVDN CODE

£ 3K AOKKOKR KKK KK KKK KO 0K K KKK K KK KKK R 0K KK 30K 30K 0K K KKK 0Kk KK X0K 0K KKK Kk K K 0K KK X

'ATTRIBUTES FOR REV DATE

'LOAD LENGTH OF STRING

! AND RELATIVE ADDRESS OF STRING
'MAKE ADDRESS ABSOLUTE

'PUSH TO STACK

'DONE

PRRRKRRRKRIOOK R R KKK IR KKK KKK KRR R R KRR KKK IK KKK KK A KKK KA KRR KRR KKK KKKk

BYT 0,56
REV. LDM R44,=8D,0

DEF DATE

ADMD R4&,=BINTAR

FUMD R44,+R12

RTN
DATE ASC "0S5/05/80"
COS10 DAD 53556
MFYROI DAD 52722
ADDROI DAD 52150
SIN1O DAD 53546
SQRS DAD 52442
ATN2. DAD 76455
ONER DAD 56215
ERROR+ DAD 0611
NUMVAL DAD 12412
GETCMA DAD 13414
REFNUM DAD 17025
SCAN DAD 11262
STOSV DAD 45254
EINTAE DAD 101233
GINTDS DAD 177401
LWAMEM DAD 100022
LAVAIL DAD 100010
MOVDN DAD 3732
GINTEN DAD 177400

FIN

'DEFINE ADDRESSES

Sample Binary Programs

RECTANGULAR/POLAR CONVERSIONS (ROM) RECT/POLAR CONVERSIONS
ROM VERSION

Source File: ROMPRS
Object File: ROMPRB

This program is the same as the RECT/POLAR CONVERSIONS binary program, except
that it is written for a ROM.

Sample Binary Programs

INEREL 22122222 ITIIITTTILTLEL LI
Zu 'x KeEULI/POLAR CONVERSIONS x

YT KUFi VEKD LUN %

40 'x (c) Hewlett-Packard Co, ¥

HU 1% 1980 ¥

AR I I ETITIIEIEI L LT L EE S

70 ARS ROM 60000

80 RYT 100 IROM # MUST RE FIRST RBYTE

20 BYT 277 IROM COMPLEMENT # MUST EE SECOND BRYTE
1uy DEF RUNTIM IPTR TO RUNTIME ADDRESS TABLE

110 DEF ASCIIS IPTR TO KEYWORD TARLE

1240 DEF PARSE IPTR TO PARSE ADDRESS TABLE

130 DEF ERMSG IPTR TO ERROR MESSAGE TARLE

140 DEF INIT IPTR TO INIT ROUTINE FOR SYSTEM
TR I T2 ¥ I XTI LI IIELSELEEEIEFIEIITEITIIITTELITIEIIFIEFITIESTIEITIPEEIEEEEE L
160 PARSE RYT 0,0 IDUMMY TOK #0 PARSE PTR

170 DEF RTPP 1TOK #1 PARSE PTR

180 DEF RTPP ITOK #2 PARSE PTR

190 DEF UNLQDP ITOK #3 PARSE PTR

2UU0 RUNTIM BYT 0,0 'DUMMY TOK #0 RUNTIME

210 DEF RTP, ITOK #1 RUNTIME

220 DEF PTR, 1TOK #2 RUNTIME

230 DEF GCRE, ITOK #3 RUNTIME

240 DEF REV, 'TOK #4 RUNTIME

L 23232233233 T YT TILIT T IR ETILYTITIEFTEIIITEEIIE T EEIEELLEEELEEEEEE T
260 ASCIIS ASP "POLAR" TKEYWORD #1

270 ASP "RECTANGUI.AR" VKEYWORD #2

280 ASP "SCRATCHRINY TKEYWORD #3

290 ASP "REV DATE" FKEYWORD #4

300 BRYT 377 ITERMINATE ASCIIS TARLE

KSR I3 ITIITIIT IS ITFIFETI I FILT LI TIPIEEIEIIFITIIIRE LD LEEFERSE LS DL EE L
320 UNLODP LDM R46,=370,100 TSYSTEM EXTERNAL ROM TOKEN & ROM #
330 PUMD R44,+R12 IPUSH THEM TO THE STACK

340 PUEBD R43,+R12 TPUSH INCOMING TOKEN TO THE STACK
350 JSE =ROMISR IMUST CALL THROUGH ROMISE

360 DEF SCAN 1CALL SCAN FOR SYSTEM

370 RYT 0 1I7T/8 IN ROM O

Suu RTN IDONE

BP0 IXRRHNRKRNNRTNNHII0 KK 23K 6K 363360633363 563656 36360630 3 9 262600 26 0630 6 3 3 36 30 6 0 06 6 K X
400 RTPP PURD RA43,+R6 FSAVE INCOMING TOKEN

410 JSB =ROMJISR 19CAN SELECTS OTHER ROMS

420 DEF SCaN IDO A SCAN FOR REFNUM

430 BYT O 'SELECT ROM 0

4410 JER =ROMIGR

454 DEF REFNUM TGET THE 1rst VARIARLE REFERENCE
460 BYT O IROM #0

470 JEZ ERR VIIF NQT THERE

480 JGR =ROMJSR

490 DEF GETCMA FDEMAND A COMMA

500 BRYT 0 FROM 40

oiu JSE =ROMISR

520 DEF REFNUM IGET THE 2nd VARIARBLE REFERENCE
530 RYT O

540 JEZ ERR VJIF NOT THERE

G90 JOR =ROMJISE

Tyl DEF GETCMA FDEMAND A COMMA

570 BYT 0

1] 1] JGR =ROMISE

WAl DEF NUMVAL IGET THE X VALUE

8-20

oud
61y
620
65U
640
60U
66U
670
680
690
700
710
720
730
740
750
760
770
V4-1"
E
790
d00
Y1y
820
830
840
850
860
g7u
880
890
{00
910
70
730
Y44y
Yol
v60
Y7y
780
990
1000
1010
1020
1030
1640
1050
1060
1070
1480
10v0
1100
1110
1120
1130
1140
11350
1160
1170
1180

EYT 0

JEZ ERR

JSE =ROMJISE
DEF GETCMA
BYT 0

IJSE =ROMJISE
DEF NUMVAL
BYT 0

JEZ ERR

PORD R47,-Ré
LDE R46,=100
LDE R45,=370
PUMD RA45,+R12
IMP GTOROM

JIF NOT THERE

IDEMAND A COMMA

IGET THE Y VALUE
VJIF NOT THERE

Sample Binary Programs

TRECOVER THE INCOMING TOKEN

'L0AD THE ROM #

1L.0AD THE SYSTEM RPGM TOKEN

'PUSH THE PARSED CODE

IDONE

B30 3636 3006 626 06 36 3006 36 3606 06 36 36 6 320 06 3630 00 36 6 08 36 30 36 26 36 26 36 326 36 3 6 3026 26 36 0 06 36 06 3036 36 36 2696 36 96 06 36 26 326 326 96 36 36 6 % 3%
ICLEAN UP Ré6 (REMOVE TOKEN)

ERR

PORD R47,-Ré6

JEE =ERROR
RYT 81D

GIUROM GTO ROMRTN

'REPORT ERROR
'RAD EXPRESSION

THAVE TO RESELECT ROM 0 WHEN RETURNING FROM PARS

D030 36 36 3 36 36 3 2636 3006 06 396 36 336 06 2696 06 3006 226 96 36 26 56 3 36 96 36 3 36 56 06 3696 96 36 96 3 3636 3 2 36 K K36 K 6 3 6 56 3 36 96 36 06 6 X 6 36 e %
ERMSG RBSZ 0

RYT 377

INO ERROR MESSAGES

£330 36 36 36 36 36 2 36 3 36 3 56 36 36 36 336 K056 3636 36 36 36 36 %6 36 06 36 96 96 36 36 396 3 26 306 36 36 336 3 6 2656 36 3626 369696 36 06 36 X 36 36 26 3 20 36 36 6 96 6

INIT

BSZ 0

BRIN

LDED R34,=ROMFL
INZ INIRTN

LDMD R34,=FWUSER
STHMD R34,=UNRAS1
ADM R34,=20,0
STMD R34,=FWUSER
JSB =ROMIGE

DEF SCRAT+

RYT O

INIRTN RTN
TR0 KT 3K 00 3 000 30 0360036006006 K00 00 006 00 20 3K 000 30036 006 96 36 36 36 06 06 06 96 % 06 6 36 26 3 X6 36 X 36 % 3 %

XVAL
RVAL.
YVAL
AVAL.

RTP.

EQU 0
EQU 0
EQU 10
EQU 10

BYT 241

JE =0NER

L.LDMD R22,=UNEAS1
STMD R40,X22,YVAL
JEHE =(NER

S5TMD R40,X22,XvAl
PUMD R40,+R12
PUMD R40,+R12

J&B =MPYROI

LDMD RA40,X22,YVAL
PUMD R40,+R12
PUMD R40,+R12

JEB =MPYROI
JS8E =ADDROI
JSB =5QRS

POMD R40,-R12
PUMD R40,+R6
LDMD R40,X22,YVAL

TGET REASON FOR INIT

PTIF NOT POWER ON

IGET FIRST AVAILAELE WORD

ISAVE RASE ADDRESS
IPLUS % OF

BYTES NEEDED

TRESET FIRST WORD AVAILABLE PTR

IRE~-SET UP THE BRASIC

PROGRAM

PINDEX INTO STOLEN RAM

FTINDEX INTO STOLEN RAM
156 06 56 336 36 6 06 36 6 36 6 0636 330 0636 06 6 06 3 36 0 36 36 36 06 36 06 96 36 36 36 96 06 56 3 36 06 36 36 26 36 36 36 266 2 36 30 30 36 36 3636 6 36 K506 36 9606 36 36 X6 %
IATTRIRUTE FOR RECTANGULAR

IGET Y VALUE
1LOAD BASE ADDRESS
1SAVE Y VALUE

I1GET X-VALUE TO RAQ

18AVE. X VALUE
'PUSH FOR MULTIPLY
IPUSH FOR MULTIPLY

TO RA40

IGET X2 (LEAVE ON R12)

TGET Y VALUE

'PUSH FOR MULTIPLY
'PUSH FOR MULTIPLY
IGET

Y~2 (LEAVE ON R12)

IGET X~2+Y*2 (LEAVE ON R12)
IGET SQR(X"2+Y*2) RADIUS

IRECOVER ANSWER

IGAVE RESULT FOR LATER

IGET Y VALUE

8-21

STRUCTURE AND PTRS

Sample Binary Programs

1190 PUMD R40,+R12
1200 LDMD R40,X22,XVAL
1210 PUMD R40,+R12
1220 JSE =ROMJISE

1 DEF ATNZ,

1224 EYT 0

1230 JSB =ROMJISE

1232 DEF STOSV

1284 BYT ©

1240 POMD R40,-Ré&

1250 PUMD RA40,+R12
1260 JSE =ROMJSE

1262 DEF STOSV

1264 BYT 0

1270 RTN

1280

1290 BYT 241

1300 PTR., JSE =0ONER

1310 LDMD R22,=UNEAS1
1320 STMD R40,X22,AVAL
1330 JSE =0ONER

1340 STMD R40,X22,RVAL
1350 LLDMD R40,X22,AVAL
1360 PUMD R40,+R12
1870 JSE =(0810

1380 LLDMD R22,=UNBAS1
1390 LDMD R40,X22,RVAL
1400 PUMD R40,+R12
1410 JSE =MPYROI

1420 POMD R40,-R12
1430 PUMD R40,+Ré&

1440 L.DMD R40,X22,AVAL
1450 PUMD R40,+R12
1460 JSE =SIN10

1470 LDMD R22,=UNEAS1
1480 LDMD RS0,X22,RVAL
1490 PUMD R50,+R12
1500 JSR =MPYROI

151U JSE =ROMJISE

1512 DEF STOSV

1514 BYT 0

10 POMD R40,-R&

1530 PUMD R40,+R12
1540 ISR =ROMJSE

1542 DEF STOSV

1544 EYT ©

1550 RTN

1560

1570 BYT 241

1580 SCRE. LDMD R24,=RINTAR
1o JZR SCRTN

1590 STED R24,=GINTDS
1599 BIN

1600 DCM R24

1610 LDMD R26,=LWANEM
1620 STM R26,R22

1630 SEM R22,R24

1640 LDE R20,=4

1650 LDM R32,=LAVAIL
1660 UNLD1 LDMD R36,R32

SPUSH FOR ATN

PGET X VALUE

IPUSH FOR ATNZ

IFIND ATN2(Y,X) AND LEAVE ON R12

ISTORE RESULT TO ANGLE VARIARLE

IRECOVER RADIUS RESULT
IPUSH FOR STORE

ISTORE TO THE RADIUS VARIARLE

I DONE

§ 330 0 000606 06360630 6 36 6 30 00 000 3630 00 3036 K 36 6 36 6 36 0636 96 36 06 36 36 56 36 36 36 56 36 36 36 K 96 30 306 36 636 3 36 36 3636 6 36 30 X6 2 %

PATTRIRUTES FOR POLAR
IGET ANGLE VALUE

'L.OAD EASE ADDRESS
ISTORE FOR LATER

IGET RADIUS VALUE
ISTORE FOR LATER

TGET ANGLE VALUE

{PUSH FOR COS FUNCTION
ITAKE COS(ANGLE)
1.0AD BASE ADDRESS
{GET RADIUS VALUE
IPUSH FOR MULTIPLY
IGET RxCOS(ANGLE)
IGET ANSUWER

'SAVE FOR LATER
TGET ANGLE VALUE
'PUSH FOR SIN FUNCTION
ITAKE SINCANGLE)

1LOAD BASE ADDRESS

IGET RADIUS

IPUSH FOR MULTIPLY

IGET RxSIN(ANGLE) Y VALUE
ISTORE TO Y VARIABLE

X VALUE

IRECOVER X VALUE
1PUSH FOR STORE
ISTORE TO X VARIAELE

' DONE

150600 3696 30 36 36 26 36 30 6.3 36 36 36 336 36 36 3696 3636 36 36 6 36 06 2 36 %36 36 9636 30 %6 6 36 % 36 366 96 3 36 36 36 363 36 34636 36 36 36 36 3 36 20 36 26 R 20 % 6 XM

'ATTRIBUTES FOR SCRATCHRIN
IGET RASE ADDRESS OF RINARY
1JIF NONE PRESENT

IDISARLE GLORAL INTERRUPTS

IMOVE TO LAST BYTE TO KEEP

IGET END OF MEMORY (AND BPGM)
1COPY

IGET DISTANCE TO MOVE

1LOAD COUNTER FOR PTR ADJUST
IGET ADDRESS OF 1rst PTR TO MOVE
TGET NEXT PTR

8-22

1670
160U
1690
1700
1710
1740
1730
1740
17548
1760
1774
1780
1790
1800
1610
1820
1840
1840
1850
1860
187y
186y
1890
1vul
1910
1vz2u
1930
1940
1950
1960
1970
14U
1990
Luuy
010
2U20
2030
2040
2050
2060
2070
2080
2090
2100
21140
2120
2130
2140

ADM R36,R22
PUMD R36,+R32

DCE
INZ

LLDMD R36,R32
CHMD R36, =_WAMEM

JZR

ADM R36,R22
STMD R36,R32

R20
UNLD1

UNL.D2

Sample Binary Programs

YADD DISTANCE TGO MOVE
'RESTORE POINTER
IDECREMENT COUNT

PJTIF NOT DONE

IGET FURIN

ISAME AS LWAMEM?

1JIF YES

TELSE ADJUST

! AND REPLACE

TZERQ OQUT RBINTAR (NO BPGM)
IMOVE MEMORY TO HIGHER ADDRESS
IRE~ENARLLE INTERRUPTS

I DONE

F36 06 0600 0 26 263 06 2 006 36 K 050 06 00066 0600 06 0 36 00 6000 06 096 0606 36 6 26 36 06 06 336 06 K 26 36 % 6 36 36 36 36 26 06 36 36 36 % 6 K % 2 % X K

"oEsa5/80"

TATTRIRUTES FOR REV DATE
HLOAD LENGTH OF STRING

! AND ADDRESS OF STRING
'PUSH TO STACK

' DONE

B0 K06 36 36 30 3606 0036 96 0 36 06 3626 00 36 96 06 36 06 36 3636 36 2696 2 06 26 2 3K 0 3036 3 06 3 36 00 06 6 6 36 06 6 36 06 96 36 36 96 36 3 % 6 %6 0 %6 % 6

UNLD2 CLM R#

STMD R#,=RINTAR

JSE =MOVDN

STED R#,=GINTEN
SCRTN RTN

RYT 0,56
L1 -AVN L.DM R44,=8D,0

DEF DATE

PUMD R44,+R12

RTN
pAalk ASC
COS10 DAD 53556
MK YROIL DAD 52722
ADDROI DAD 52130
BIN10 DAD 53546
SARS DAD 52442
ATNZ DAD 76455
ONER DAD 56215
ERROR DAD 06615
NUMVAL DAD 12412
GETCHA DAD 13414
REFNUM DAD 17025
HSCAN DAD 11262
STOGV DAD 45254
BINTAR DAD 101233
GINTDS DAD 177401
LWAMEM DAD 100022
LAVAIL DAD 1000610
MOVDN DAD 37324
GINTEN DAD 177400
ROMISR DAD 4776
FWUSER DAD 100000
UNEAST DAD 1025%54
ROMRTN DAD 4762
SCRAT+ DAD 4344
ROMFL DAD 101231

FIN

IDEFINE ADDRESSES

8-23

NOTES

8-24

SecTionN 9

THE HP-82928A SYSTEM MONITOR

The HP-82928A System Monitor is an optional plug-in module for use with the HP-83/
85 Assembler ROM. The System Monitor:

--Permits the user to set two breakpoints in any portion of memory. Any time
either of these two addresses is referenced in any manner, an interrupt is
caused. The user can use this interrupt to examine CPU registers, status bits,
and memory locations, and to make changes, if desired.

--Permits the user to single-step and trace through the operation of code at any
point in memory.

The System Monitor may be used only in conjunction with the HP-83/85 Assembler
ROM.

SETTING AND CLEARING BREAKPOINTS

Two System Monitor commands, BKP and CLR, permit the user to set and clear
breakpoints.

9-1

The HP-82928A System Monitor

BKP System Monitor Command
Set Breakpoint

Format: BKP octal address [, select code for output]

Description: Sets breakpoint (BP) #1 or #2 at the specified address in HP-83/85
memory. If no breakpoints are set, the command sets BP1. If BPI]
is already set, the command sets BP2. If BP1 and BP2 are both set,
the command resets BP2 to the new octal address; BP1 remains set at
its original address. Breakpoints can be set at any address in
HP-83/85 system RAM or ROM. Breakpoints can be cleared only by
the CLR command.

When execution is halted at a breakpoint, the B key is a typing
aid for BKP.

When the address at which a breakpoint is set is encountered during
execution of a program or a calculator mode statement, execution
halts and a block of status information is output to the device
specified by the select code. If no select code is specified, the
default is 1 (CRT IS device) at power-on, or the last select code
specified by a breakpoint.

The information output comprises the following:

Memory Contents: The contents of a specified number of RAM or ROM
locations are output. The output is based on the specifications in
the last MEM statement or command, if one was previously executed.
Output begins with the octal address specified in the last-executed
MEM and continues for the number of bytes specified by that last MEM.

If no MEM was executed, the default address is 0; default number of
bytes is]008.

Output can be generated from a ROM, as specified by the ROM# in the
MEM last executed. Default ROM# is 0.

9-2

The HP-82928A System Monitor

Like MEM, the output first shows the octal values of the quantities
in the block of memory, eight bytes to a line of output, then shows
the ASCII representation of the quantities.

CPU Status Indicators: This output includes the following:

PC: The setting of the program counter (i.e., the contents of CPU
registers R4 and R5). When execution is resumed, it will begin at
the address specified by PC.

AR: Contents of the address register pointer (i.e., the current
AR).

DR: Contents of the data register pointer (i.e., the current DR).
BKPS: Addresses of breakpoints BP1 and BP2. An address of 000000
can mean no breakpoint is set or a breakpoint is set at address
000000.

OV: Status of overflow flag.

CY: Status of carry flag.

NG: Status of MSB (most significant bit), used to indicate a nega-
tive quantity.

LZ: Status of LDZ (left digit zero) flag.
ZR: Status of Z (zero) flag.
RZ: Status of RDZ (right digit zero) flag.

OD: Status of LSB (least significant bit), used to indicate an odd
quantity.

DC: Setting of DCM (decimal) flag.

The HP-82928A System Monitor

E: Contents of E (extend) register.

between 0 and 178.

This will be a quantity

CPU Registers: Octal contents of all CPU registers, eight bytes to

a line of output.

Once a breakpoint has been encountered and execution is halted, the
following keys on the keyboard are active for the uses shown:

Key

QD U = O w

T
[STEP]
[ROLL a]
[ROLL v]
[RUN]
[BACK SPACE]

LCOPY]

[PAPER ADVANCE]

Typing aid for
Typing aid for
Typing aid for
Typing aid for
Typing aid for
Typing aid for

use

BKP command.
CLR command.
MEM command.
PC
REG command.

TRACE command.

command.

Single-step execution.
Rol1 up display.
Ro1l down display.

Resume normal program execution.

Most other keys on the keyboard are inactive at a breakpoint,
although once the entry of a system monitor command has been begun,
all alphanumeric keys are once again active to allow the full com-

mand to be entered.

Example:

The HP-82928A System Monitor

Here is a sample of a breakpoint output.

MEM O

026 000 112 205 155 071 112
345 074 106 073 065 075 044
070 205 123 205 123 205 106
300 202 230 136 262 001 F77
340 Q37 262 030 377 321 000
Jb6b6 012 262 231 202 261 014

036 I06 000 000 316 I2Z 007

055 072 230 316 034 205 117
J m9J e<F=S=%=

8S5SFad ~2)

20 v2 1

F NR N-: N O

MEM O

PC DR AR BEFS

QOZ160 74 20 003157 000000
OV CY NG LZ ZR RZ OD DC E

o Q0 O 1 0 0 i i 00

REG

OO0 QOO0 227 141
FI20 211 325 211 015 001 Q01
157 006 231 251 321 211 316
321 212 040 000 107 211 Q01
015 000 OO0 QOO0 OO0 231 2581
114 QOO0 040 OO0 200 OO OO0
040 040 Q40 040 040 Q40 176
OO1 Q04 OO0 OO0 OO0 OO0 OO0

160 006 304

§ B

205
073
251
251
140
140
Il

Lan Bor Tt
sald

202
Q01
211
000
Q02
Q00
QO3
QOO0

Memory Contents (octal)

Memory Contents (ASCII)

PC and Breakpoint Status

CPU Register Contents

The contents of memory and CPU registers are shown with eight
succeeding registers per row; thus, the top row of the CPU register
output shows registers RP-R7, the second row R10-R17, etc.

9-5

The HP-82928A System Monitor

CLR System Monitor Command
Clear Breakpoint

Format: ~ CLR 1 Clears BP1
CLR 2 Clears BP2
CLR [any number except 1 or 2] Clears BP1 and BP2

Description: Clears breakpoint #1, breakpoint #2, or both breakpoints.
After a breakpoint has halted execution, C is a typing aid for CLR.

After CLR is displayed, the user can type 1 [END LINE] to clear
BP1 or 2 [END LINE] to clear BP2. After CLR is displayed, simply
pressing [END LINE] or entering any number except 1 or 2, then
pressing [END LINE], clears both BP1 and BP2.

CLR may be used any time execution has been halted, whether or not
it has been halted by a breakpoint.

OPERATIONS AT A BREAKPOINT

After execution has halted after a breakpoint, the user can:

--Generate an output of the contents of a specified number of bytes of memory.

--Change the program counter.

--Change contents of any CPU register.

--Perform single-step and TRACE execution.

--Use [ROLL] or [SHIFT] [ROLL] to examine the CRT screen.

--Use [RUN] to resume normal execution, beginning with the memory byte currently
addressed by the program counter (PC).

9-6

The HP-82928A System Monitor

MEM System Monitor Command
Memory Dump to CRT

Format: MEM address [: ROM#] [, # of bytes] [= #, #, ...]

Description: Acts like Assembler-provided BASIC statement MEM, except that at a
breakpoint M acts as a typing aid for MEM.

PC= System Monitor Command
Program Counter Is

Format: PC= address between 0 and 177377

Description: Changes contents of program counter (CPU registers R4 and R5) to
the specified address, and dumps CPU status and memory contents
exactly as when a breakpoint (BKP) is executed.

After a breakpoint has been executed, P acts as a typing aid for
PC=.

When execution is resumed, it will begin at the address now spec-
ified by the contents of the program counter.

This command is active only after execution has been halted by a
breakpoint.

Example: PC = 3477 Sets the PC to resume execution with byte 003477.

9-7

The HP-82928A System Monitor

REG System Monitor Command
CPU Register Is

Format: REG number of CPU register = value between 0 and octal 377

Description: Changes contents of specified CPU register to specified value, and
dumps CPU status and memory contents exactly as when a breakpoint
(BKP) is executed. Value may be specified as octal, decimal, or
BCD quantity. This command is active only after execution has been
halted by a breakpoint. R acts as a typing aid for REG.

Example: REG 35 = 31 Changes contents of register R34 to 318.
REG 36 = 19C Changes contents of register R36 to BCD 19.
REG 37 = 25D Changes contents of register R37 to 2510.
STEP System Monitor Command

Single-Step Execution
Format: This command is executed with the [STEP] key.

Description: Executes the next complete machine code instruction (not merely the
next byte), beginning with the location currently addressed by the
PC, then halts and dumps CPU status and memory contents exactly as
when a breakpoint (BKP) is executed. Active only after execution
has been halted by a breakpoint.

9-8

TRACE

The HP-82928A System Monitor

System Monitor Command

Trace Execution

Format:

Description:

TRACE octal, decimal or BCD value

Resumes execution with the next machine code instruction, and con-
tinues for the number of instructions (not bytes) specified by the
octal, decimal or BCD value.

After each instruction is executed, CPU breakpoint and partial CPU
status is output to the current CRT IS device. When execution
halts, the CPU status and memory contents are output as at a
breakpoint.

The information output after each instruction comprises the
following:

PC: The current setting of the program counter (i.e., the contents
of CPU registers R4 and R5).

DR: Current data register.

AR: Current address register.

BKPS: Addresses of breakpoints BP1 and BP2. (Because of the
internal coding of the System Monitor, the address of BP1 appears
to increase as each instruction is traced and status is output.
However, when trace execution halts, both breakpoints are reset to
their original addresses when the TRACE command was executed.)

The information output when execution halts after tracing is
exactly the same as that output at a breakpoint: that is, the
contents of the memory block specified by the last MEM statement
or command, complete CPU status, and the contents of all CPU
registers. See System Monitor command BKP for details.

The HP-82928A System Monitor

Example:

TRACE 10

003161
003162
DO3163
003164
DOZ165
Q031646
Q03167
MEM O
026 QOO
3435 074
070 205
300 202
340 037
3646 012
036 306
085 072

m9J
S F
Q ©
F NR
MEM O

FC

8

AR B

Generates an output similar to the following:

74
74
36
26
26
36
76

12
12
12
76
76
76

112
106

12

i
L]

230
262
262
QOO0
230

e F=S=¢=

)@
v

OOX160
003161
QO3162
Q031673
Q051464
Q03165
Q03166

205
075
205
136
Q030
231
000
314

155
065
123
262
377
202
316
034

2

1 €

DR AR BKFS
Q03170 76 76 003157 O0O0000

oV CY NG LZ

0O O 0O
REG
000
T20
157
32

015
116
040
001

Q00
211
004
212
QOO0
QOO0
Q40
004

077
321

23

1

040
QOO0
040
Q040
QOO

......

QOO0
QOOOO0

071
075
205
001
321
261
322

205

112
044
1046
377
Q00
014
QO7
117

IR RZ OD DC E

1 1 ¢

211
211
251
QOO0
QOO0
OO0
Q40
QOO0

170
015
321
107
Q00
200
Q40
00l

1 00

Q04
001
211
211
231
003
040
QOO0

304
Q01
316
160
251
000
176
OO0

9-10

2005
073
251
251
140
140
316

220

202
Q01
211
000
[T W
000
00z
QOQ

Tracing PC, DR, AR, BP1,
BP2

Memory Contents (octal)

Memory Contents (ASCII)

CPU and Breakpoint
Status

CPU Register Contents
(octal)

APPENDIX A

GLOSSARY OF TERMS

Allocated program. Form of program where variable space has been allocated, vari-
able names are addresses, and line references have become addresses. An allocated
program is ready to run, and cannot be edited.

BASIC reserved word. Entry in an ASCII table. From the user's point of view, a
BASIC reserved word is an entry that has meaning for the system: it can be entered
as a command, statement, or function. From the system point of view, a BASIC
reserved word is the decompiled form of a token.

Binary program. Assembly-language program which can be loaded into the HP-83 or
HP-85 and run. A binary program should be relocatable.

Calculator mode statement. Contains BASIC statements as well as numeric or string
operations. Compare to expression.

Command. Non-programmable language element. Commands are executed immediately;
they cannot be used in a program. With the Assembler ROM installed there are two
types of commands:

--System command. Available in normal BASIC mode; these commands may or may not
be available in Assembler mode (e.g., COPY, SCRATCH).

--Assembler command. Available only in Assembler mode (e.g., BASIC, ALOAD).

Deallocated program. Form of input text rendered into tokens. Deallocated pro-
gram contains actual variable names and immediate data, and can be edited.

Effective address. Location of the ultimate, fully-computed address or destina-

tion of an instruction.

Expression. Contains purely numeric or string operations. Compare to calculator
mode statement.

A-1

Glossary of Terms

Function. Programmable BASIC language element that can be used as part of a
statement. A function, such as PI, SIN, ABS, etc., always returns a value.

HP-83/85. Applies to either HP-83 or HP-85 Personal Computer.

Instruction. Programmable assembly language element. These are of two types:

--CPU_instruction. Instructions for the machine central processing unit.

--Pseudo-instruction. Instructions to the Assembler ROM at assembly time.

Label. Identifier that corresponds to an address or value.

Object code. The assembled machine code for a binary or ROM program. Object
code is ready to be run.

PC. Program counter in computer CPU hardware.

PCR. System program counter, controlled by software.

ROM program. Assembly-language program which can be burned into a ROM package
for later connection to and running on the HP-83/85. A ROM program is not

relocatable.

Source code. Instructions and pseudo-instructions before assembly, as they are
entered from the keyboard.

Statement. Programmable BASIC Tlanguage element. A statement does not return a
value and cannot be used in an expression.

Token: A one-byte numeric quantity representing a keyword. A token indicates
to the machine the addresses of the ASCII entry, runtime routine, and parse
routine (possibly implied) associated with the keyword. Each token also has
associated methods of allocation, deallocation, parsing, and decompiling.

A-2

Glossary of Terms

Variable. A numeric value which may be assigned to a label. Variables can be
simple numeric, array, or string; if numeric, they can be real, short, or integer.

A-3

NOTES

A-4

APPENDIX B

SYSTEM HARDWARE DIAGRAM

CPU
A
INTERNAL BUS
Y Y Y Y Y Y \
4 KEYBOARD
CRT PRINTER INTERNAL 1/0 8K X 8 cammEse | [conTrRoLLER | speaker
CONTROLLER| [CONTROLLER| |.onrnm cn BUFFER SYSTEM ovllyior s &
ROMS TIMERS
A A A A
Y y y Y Y
8
CARTRIDGE
PRINTER 16K X 1
CRT MECHANISM DYNAMIC ansroar | | KEveoaRD
RAMS
EXTERNAL BUS
 J Y y
EXTERNAL 8K X 8 /0
RAM EXTERNAL INTERFACE
CONTROLLER v ROMS CARDS
1 OTHER
170
Y
8
16K X 1
DYNAMIC
RAMS

B-1

NOTES

AppPenDIX C

ASSEMBLER INSTRUCTION SET

On the following pages is a Tist of all CPU instructions available on the
Assembler ROM.

LEGEND

DR Data register. Can be register number (e.g., R32), R* or R#.

AR Address register. Can be register number (e.g., R32), R* or
R#.

Literal Literal value, up to 108 bytes in length. Can be BCD constant
(e.g., 99C), octal constant (e.g., 12), or decimal constant
(e.g., 20D). Can also be specified by a label, where the
Titeral quantity is a one- or two-byte value or address
assigned to the label.

Label Address of 1iteral quantity. Label name must begin with an
alphabetic character, can use any combination of alphanumeric
characters, and can be 1-6 characters in length.

Clock Cycle 1.6 usec.

B Number of bytes.

T Add one clock cycle if true (i.e., the jump occurs).

R(x) CPU register addressed by (x).

M(x) Memory location addressed by (x). (x) must be a 16-bit
address.

PC Program Counter. CPU registers R4 and R5. Used to address

the instruction being executed.

Assembler Instruction Set

SP

EA

ADR

JIF

Subroutine Stack Pointer. CPU registers R6 and R7. Used to
point to the next available location on the subroutine return
address stack.

Effective Address. The location from which data is read for
load-type instructions or the location where data is placed
for store-type instructions.

Address. The two-byte quantity directly following an instruc-
tion that uses the literal direct, literal indirect, index
direct or index indirect addressing mode. This quantity is
always an address.

Literal value.

Is transferred to.

Contents of.

Complement (e.g., x is complement of x). This is one's com-
plement if DCM=0 and nine's complement if DCM=1.

Logical AND.

Inclusive OR.
Exclusive OR.

Jump if.

Status bit is set.
Status bit is cleared.

Status bit is affected.

C-2

Assembler Instruction Set

- Status bit is not affected.

Y This option is available to this instruction.

The complete 1ist of CPU instructions begins on the next page.

C-3

Assembler Instruction Set

Status
Binary/
Instruction Description Addressing | OpCode | Clock Operation DCM=@ DCM=1 Bcp
format Mode Cycles RDZ e, puet e, | Option
LSB MSB LDZ Z ODCM E CY OVF E CY OVF
ADB DR, AR]Add byte Reg. imm. 302 5 DR<DR+AR X X X X - - X X 0 Y
ADB DR, = Add byte Lit. imm. 312 5 DR<DR+M(PC+1 X X X X - - X X 0 Y
Titeral
ADBD DR, AR |Add byte Reg. dir. 332 6 DR«DR+M(AR) X X X X - <« X X 0 Y
ADBD DR, = |Add byte Lit. dir. 322 5 DR<DR+M{ADR) X X X X - - X X 0 Y
label
ADM DR, AR |Add multi- Reg. imm. 303 4+B DR«DR+AR X. X X X - - X X 0 Y
byte
ADM DR, = Add multi- Lit. imm. 313 4+8 DR<DR+M(PC+1) X X X X - - X X 0 Y
Titeral byte
ADMD DR, AR |Add multi- Reg. dir. 333 5+B DR<DR+M{AR) X X X X - - X X 0 Y
byte
ADMD DR, = |Add multi- Lit. dir. 323 448 DR«DR+M(ADR) X X X X - - X X 0 Y
label byte
ANM DR, AR |Logical AND Reg. imm. 307 448 DR<DR-AR X X X X - -0 0 0
(multi-byte)
ANM DR, = Logical AND Lit. imm. 317 4+B DR<DR*M(PC+1) X X X X - -0 0 0
Titeral |(multi-byte)
ANMD DR, AR |Logical AND Reg. Dir. 337 5+B DR<DR-M(AR) X X X X - -0 0 0
(multi-byte)
ANMD DR, = {JLogical AND Lit. dir 327 5+B DR<DR°M{ADR) X X X X - -0 0 0
literal [(multi-byte)
ARP AR Load ARP 000-077] 2 ARP+n - - e e e e - -
(#001)
ARP * Load ARP with 001 3 ARP<R@ - - - - - - - - -
contents
of R@
BCD Set BCD mode 231 4 DCM«1 - - - - 1 - - - -
WBIN Set binary 230 4 DCM<0 - - - - 0 - - - -
mode
CLB DR Clear byte Reg. imm. 222 5 DR<0 X X X X - -0 0 0
CLM DR Clear multi- |Reg. imm. 223 4+B DR<0 X X X X - -0 0 0
byte
CLE Clear E 235 2 E<0 - - -« - - 0 - - -
CMB DR, AR |compare byte |Reg. imm. 300 5 DR+AR+1 X X X X - - X X 0 Y

C-4

Assembler Instruction Set

Status
Binary/
Instruction | Description | Addressing | OpCode | Clock Operation DCM=¢ DCM=1 BCD
Format Mode Cycles RDZ et rmns, et e, | Qption
LSB MSB LDZ Z DCM E CY OVF E CY OVF
CMB DR, = Compare byte | Lit. imm. 310 5 DRM{PC+1)+1 X X X X - - X X - X 0 Y
Titeral
CMBD DR, AR | Compare byte | Reg. dir. 330 6 DR (AR} +1 X X X %X - - X X - X 0 Y
CMBD DR, =]Compare byte | Lit. dir. 320 6 DR+M{ADR}+1 X X X X - - X X - X 0 Y
label
CMM DR, AR | Compare Reg. imm. 301 4+B DR+AR+1 X X X X - - X X - X 0 \
multi-byte
CMM DR, = Compare Lit. dimm. 311 4+B DR+M{PC+1)+1 X X X X - - X X - X 0 Y
literal |multi-byte
CMMD DR, AR | Compare Reg. dir. 331 5+B DR+M{AR}+1 X X X X - - X X - X 0 Y
multi-byte
CMMD DR, = | Compare Lit. dir. 321 548 DR+M{ADR}+1 X X X X - - X X - X 0 Y
label multi-byte
DCB DR Decrement Reg. imm. 212 5 DR+DR-1 X X X X - - X X - X 0 Y
byte
DCM DR Decrement Reg. imm. 213 448 OR<DR-1 X X X X - - X X - X 0 Y
mutti-byte
DCE Decrement E 233 2 E<E-1 - - - - - X - - X - -
DRP DR Load DRP 100-177 2 DRPn - L T - - - -
(#101)
ORP 1 Load DRP with 101 3 DRP<R@ - - - - - - - - - - -
contents
of R@
ELB DR Extended left] Reg. imm. 200 5 Circulate DR X X X X - - X X X 0 0 Y
byte left once
ELM DR Extended Teft| Reg. imm. 201 4+8 Circulate DR X X X X - - X X X0 0 Y
multi-byte left once
ERB DR Extended Reg. imm. 202 5 Circulate DR X X X X - - X 0 X 0 0 Y
right byte right once
ERM DR Extended Reg. imm. 203 448 Circulate DR X X X X - - X 0 X0 0 Y
right right once
multi-byte
ICB DR Increment Reg. imm. 210 5 DR+DR+1 X X X X - - X X - X 0 Y
byte
ICM DR Increment Reg. imm. 211 448 DR+DR+1 X X X X - - X X - X 0 Y
multi-byte

C-5

Assembler Instruction Set

Status
Binary/
Instruction Description Addressing [OpCode | Clock Operation DCM=p DCM=1 8CD
format Mode Cycles RDZ e, e, | Option
LSB MSB LDZ Z OCM E CY OVF E CY OVF

ICE Increment E 234 2 E«E+1 - L e X -

JCY label Jump on carry 373 447 JIF<CY=1 - - - - - - - - -

JEN label Jump on E 370 a+T JIF E#0000 - L - -
non-zero

JEV label Jump on even 363 44T JIF LSB=0 - - - - - - - - -

JEZ label Jump on E 371 44T JIF E=0000 - - - - - - - - -
zero

JLN label Jump on left 375 44T JIF LDZ#1 - - - - - - - - -
digit
non-zero

JLZ label Jump on left 374 44T JIF LDZ=1 - - - - e - - - -

digit zero

JMP Tabel Unconditional 360 44T Jump always - - - - - - . - -
Jump

JNC label Jump on no 372 44T JIF CY=0 - - - - e - . - -
carry

JNG label Jump on 364 44T JIF MSB#OVF - - - - - - - - -
negative

JNO 1abel Jump on no 361 44T JIF OVF=0 - - - - = - - - -
overflow

JINZ label Jump on 366 44T JIF Z#1 - - - - - - - - -
non-zero

JOD label Jump on odd 362 44T JIF LSB=1 - R - -

JPS label Jump on 365 44T JIF MSB=0VF - - -« - - - - - -
positive

JRN labetl Jump on right 377 44T JIF RDZ#1 - - - - - - - - -
digit
non-zero

JRZ label Jump on right 376 44T JIF RDZ=1 - - - = - - - - -

digit zereo

JSB=1label Jump Literal 316 9 Jump - - - - - - - - -
subroutine] direct subroutine|

JSB XR, Jump Indexed 306 11 Rump - - - - e e e e -

label subroutine subroutine
indexed

C-6

Assembler Instruction Set

Status
Binary/
Instruction Description Addressing { OpCode | Clock Operation DCM=@ DCM=1 BCD
Format Mode Cycles RDZ e, et e, | Option

LSB MSB LDZ Z DCM E CY OVF E CY OVF

JZR label Jump on zero 367 447 Jd1F Z=1 - - - - - - - - - - -

LDB DR, AR | Load byte Reg. imm. 240 5 DR<AR X X X X - -0 0 -0 0

LDB DR, = Load byte Lit. imm. 250 5 DR<M(PC+1} X X X X - -0 0 -0 1]
literal

LDBD DR, AR | Load byte Reg. dir. 244 6 DRM(AR) X X X X - -0 0 -0 0

LDBD DR, = | Load byte Lit, dir. 260 6 DR<M({ADR) X X X X - -0 0 -0 0
label

LDBD DR, Load byte Index dir. 264 8 DR«M(ADR+AR) X X X X - -0 0o -0 [
XAR,
label

LDBI DR, AR] Load byte Reg-indir. 254 8 DR<M(M(AR}) X X X X - -0 0 -0 0

LDBI DR, = | Load byte Lit. indir. 270 8 DR<«M(M{ADR)) X X X X - -0 0 -0 0
label

LDBI DR, Load byte Index indir] 274 10 DReM(M(ADR+ X X X x - -0 0 -0 0
XAR, AR))
label

LDM DR, AR | Load Reg. imm. 241 4+B DR<AR X X X X - -0 0 -0 0

multi-byte
LDM DR, = Load Lit. imm. 251 448 DR<M{PC+1) X X X X - -0 0 -0 0

literal |multi-byte

LDMD DR, AR| Load Reg. dir. 245 5+B DR<M(AR) X X X X - -0 0o -0 o]
multi-byte
LDMD DR, = | Load Lit. dir. 261 5+B DR<M(ADR) X X x x - -0 o -0 0

label multi-byte

LDMD DR, Load Index dir. 265 74B DRM(ADR+AR) X X X X - -0 6 -0 0
XAR, multi-byte
label
LDMI DR, AR| Load Reg. indir.| 255 748 | DReM(M(AR)) X X X X - -0 0 -0 0
multi-byte
LDMI DR, = | Load Ltit. indir.] 271 74B DR+M{M(ADR)) X X X X - -0 0o -0 0

label multi-byte

LDMI DR, Load Index indiv] 275 948 DReM(M(ADR+ X X X X - -0 0 -0 0
XAR, multi-byte AR))
label

Assembler Instruction Set

Status
Binary/
Instruction Description Addressing | OpCode | Clock Operation DCM=p DCM=1 BCP
Format Mode Cycles RDZ — e, e, Option
LSB MS8 LDZ Z DCM E CY OVF E CY OVF
LLB DR Logical left |Reg. imm. 204 5 Logical Teft X X X X - - X 0 0 Y
byte shift DR
LLM DR Logical left |Reg. imm. 205 44B Logical left X X X X - - X 0 0 Y
multi-byte shift DR
LRB DR Logical right | Reg. imm. 206 5 Logical righy X X X X - - X 0 0 Y
byte shift DR
LRM DR Logical right | Re. imm. 207 4+B Logical right X X X X - - X 0 0 Y
multi-byte shift DR
NCB DR Nine's Reg. imm. 216 5 DRDR X X X X - - X X 0 Y
(or one's)
complement
byte
NCM DR Nine's Reg. imm. 217 448 DRDR X XX x - - X X 0 Y
{or one's)
complement
multi-byte
ORB DR, AR |Or byte Reg. imm. 224 5 DRDRAR X X X X - -0 0 0
inclusive
ORM BR, AR |Or multi-byte| Reg. imm. 225 4+B DR-DR~AR X X X X - -0 0 0
inclusive
PAD Pop ARP, DRP 237 8 Status«M(SP) X X X X X - X X X
and status
from stack
POBD DR,+AR] Pop byte with] Stk. dir. 340 6 DR<M(AR), X X X X - -0 0 0
post- AR-AR+1
increment
POBD DR,-AR | Pop byte with| Stk. dir. 342 6 DR<M(AR), X X X X - -0 0 0
with AR+AR-1
pre-decrement
POBI DR,+AR | Pop byte with| Stk. indir.} 350 8 DReM(M(AR)),] X X Xx X - -0 0 0
post- AR<AR+2
increment
POBI DR,-AR| Pop byte with] Stk. indir.| 352 8 DR<M(M{AR)), X X X X - -0 0 0
pre-decrement AR<AR-2
POMD DR,+AR | Pop multi- Stk. dir. 341 54B DR<M(AR), X X X X - -0 0 0
byte with AReAR+HM
post-
increment

Assembler Instruction Set

Status
Binary/
Instruction | Description Addressing [OpCode | Clock Operation DCM=0 DCM=1 BCP
Format Mode Cycles RDZ e e, g e, | OptiON
LSB MSB LDZ Z DCM E CY OVF E CY OVF
POMD DR,-AR | Pop multi- Stk. dir. 343 5+8 DR«M(AR), X X X X - -0 0 -0 0
byte with AR<AR-M
pre-decrement
POMI DR,+AR | Pop multi- Stk. indir.] 351 7+B |DReM(M(AR)),] X X X X - -0 0 -0 O
byte with AReAR+2
post-
increment
POMI DR,-AR § Pop multi- Stk. indir.] 383 748 DReM(M(AR)), X X X X - -0 0o -0 0
byte with AR-AR-2
pre-decrement
PUBD DR,+AR | Push byte Stk. dir. 344 6 M(AR)<DR, X X X X - -0 o -0 0
with post- AR<AR+1
increment
PUBD DR,-AR | Push byte Stk. dir. 346 6 AR<AR-1, X X X X - -0 0 -0 0
with pre- M(AR)<«DR
decrement
PUBI DR,+AR | Push byte Stk. indir.} 354 8 M(M(AR) }«DR, X X X X - -0 0 -0 0
with post- AR<AR+2
increment
PUBI DR,-AR | Push byte Stk. indir.] 356 8 AR-AR-2, X X X X - -0 0 -0 0
with pre- M(M(AR) }<DR
decrement
PUMD DR,+AR | Push multi- Stk. dir. 345 5+8 M(AR)<DR, X X X x - -0 0 -0 0
byte with AR<AR+M
post-
increment
PUMD DR,-AR | Push multi- Stk. dir. 347 5+B AR+AR-M, X X X X - -0 0 -0 0
byte with M{AR)<«DR
pre-decrement
PUMI DR,+AR | Push multi- Stk. indir.| 355 7+B M(M(AR) }+<DR, X X X X - -0 0o -0 0
byte with AR+AR+2
post-
increment
PUMI DR,-AR | Push multi- Stk. indir.j 357 748 AR<AR-2, X X X X - -0 0 -0 0
byte with M(M(AR))<DR
pre-decrement
RTN Subroutine 236 5 SP<SpP-2, - - = = - - - - - - -
return PCM(SP)
SAD Save ARP, DRP 232 8 M(SP)«Status - - - - - - - - - - -
and status on
stack

C-9

Assembler Instruction Set

Status
Binary/
Descripti Addressin OpCode | Clock Operation DCM=Q DCM=1 BCD
I"slftt)rr‘:atgon seripLion Mode s P Cycles RDZ e e, e, | Opt 0N
' LSB MSB LBZ Z DCM E CY OVF E CY OVF
SBB DR, AR [Subtract byte} Reg. imm. 304 5 DR+OR+AR+1 X X X X - - X X - X "] ¥
SBB DR, = Subtract byte] Lit. imm. 314 5 DR<DR+M[PCHTY] X X X X - - X X - X 0 Y
literal +1
SBBD DR, AR fSubtract byte| Reg. dir. 334 6 DR-DR+M{ARTH| X X X X - < X X - X 0 Y
SBBD DR, = |Subtract byte| Lit. dir. 324 6 DR«DR+MTADR) X X X X - - X X - X 1] Y
label +1
SBM DR, AR |Subtract Reg. im. 305 4+B DR«DR+AR+1 X X X X - - X X - X 1} Y
multi-byte
SBM DR, = Subtract Lit. imm. 315 4+B DR<DR+M{BC+T§ X X X X - - X X - X 0 Y
literal [multi-byte +1
SBMD DR, AR |Subtract Reg. dir. 335 548 DR-DR+M{ARN1 X X X x - - X X - X 3] ¥
multi-byte
SBMD DR, = |Subtract Lit. dir. 325 548 DR<DR+M[ADR} X X X X - - X X - X 0 Y
literal |multi-byte +1
STB DR, AR |Store byte Reg. imm. 242 5 DR+AR X X X X - -0 o -0 0
STB DR, = Store byte Lit. imm. 252 5 DR+M(PC+1) X X X X - -0 0 -0 0
literal
STBD DR, AR |Store byte Reg. dir. 246 6 DR+*M(AR) X X X X - -0 0 -0 0
STBD DR, = [Store byte tit. dir. 262 6 DR-+M(ADR) X X X X -« -0 0 -0 0
label
STBD DR, Store byte Index dir. 266 8 DR*M(ADR+AR) X X X X - -0 0 -0 0
XAR,
label
STBI DR, AR | Store byte Reg. indir.} 256 8 DR+-M{M(AR)) X X X X - -0 0 -0 0
STBI DR, = [Store byte Lit. indir.| 272 8 DR+M(M(ADR)) X X X X - -0 0 -0 1]
tabel
STBI DR, Store byte Index indir] 276 10 DR»M{M(ADR+ X X X X - -0 0o -0 0
XAR, AR))
label
STM OR, AR | Store multi- | Reg. imm. 243 448 DR-+AR X X %X X - -0 o -0 0
byte
STM DR, = Store multi-] Lit, fmm. 253 4+B DR+M(PC+1) X X X X - -0 o -0 0
literal byte
STMD DR, AR | Store multi Reg. dir., 247 548 DR>M(AR}) X X X X - -0 0 -0 0
byte

Assembler Instruction Set

Status
Binary/
Instruction | Description | Addressing] OpCode | Clock Operation DCM=0 DCM=1 BCcD
Format Mode Cycles RDZ S,y | Option
LSB MSB LDZ Z DCM E CY OVF E CY OVF
STMD DR, = |Store multi- | Lit. dir. 263 548 DR-M{ADR) X X X X - -0 0o -0 0
label byte
STMD DR, Store multi- | Index dir, 267 7+8 DR-M(ADR+AR) X X X X - -0 0 -0 0
XAR, byte
label
STMI DR, AR | Store multi-]| Reg. indir.} 257 7+B DR+M(M{AR)) X X X X - -0 0o -0 0
byte
STMI DR, = |Store multi- | Lit. indir.] 273 7+8 DR-+M(M(ADR}) X X X X - -0 0 -0 0
label byte
STMI DR, Store multi- | Index indir] 277 9+B DR+M(M(ADR+ X X X X - -0 0o -0 1]
XAR, byte AR})
label
TCB DR Ten's (or Reg. imm. 214 5 DR+DR+1 ¥ X X X - -0 0 -0 0 Y
two's)
complement
byte
TCM DR Ten's (or Reg. imm. 215 448 DR<DR+1 X X X X - -0 0 -0 0 \
two's)
complement
multi-byte
TSB DR Test byte Reg. imm. 220 8 Test DR X X X X - - X X - X 0 Y
TSM DR Test multi- Reg. imm. 221 448 Test DR X X X X - - X X - X 0 Y
byte
XRB DR, AR | Or byte Reg. imm. 226 5 DR<DR @AR X X X X - -0 0o -0 0
exclusive
XRM DR, AR | Or multi-byte] Reg. imm. 227 448 DR<DR @ AR X X X X - -0 0 -0 1]
exclusive

NOTES

The chart below shows how the CPU instructions appear when assembled

ApPENDIX D

ASSEMBLER INSTRUCTION CODING

language object code by the computer.

into machine

7 6 5 4 3 2 1 0
0 DRP/ #000001 Load with literal
ARP =000001 Load with R@
Logical/ .
1 0 0 0 0 Extended Right/lLeft M/8B
Decrement/
1 0 0 0 1 0 Increment M/B
Nine's Complement/
! 0 0 0 ! 1 Ten's Complement M/B
1 0 0 1 0 0 Clear/Test M/B
1 0 0 1 0 1 XOR/OR M/B
1 0 0 1 1 000 BIN
001 BCD
010 SAD
omn DCE
100 ICE
101 CLE
110 RTN
111 PAD
1 0 1 000 REG IMM Store/Load M/B
001 REG DIR
010 LIT IMM
011 REG IND
100 LIT DIR
101 INX DIR
110 LIT IND
111 INX IND
1 1 0 00 REG IMM 00 CMP M/B
01 LIT IMM 01 ADD
10 LIT DIR 10 SuB
11 REG DIR TT AND T
1 1 0 00 INX 11 JsB 0
01 LIT
IND/ PUSH/ ~ADR/
L L L 0 DIR POP +ADR M/B
1 1 1 1 000 JNO/ JMP
001 JEV/J0D
010 JPS/JNG
011 JZR/JNZ
100 JEZ/JEN
101 JCY/JNC
110 JLN/JLZ
111 JRN/JRZ
X/Y = 1/0

D-1

NOTES

D-2

ApPENDIX E

ASCIT TABLE

The following is a table of all the ASCII keycodes on the HP-83/85.

NOTE
The keycodes used in the HP-83/85 are very close to, but in some cases
not exactly the same as, ASCII codes.

et

KEYCODE ASLI KEYCODE ASCII
QEC 0 CHE KEY QEC 0CT _CHR = KEY
A 8 4 ctrl @ 47 57 s 7
i 1 & ctrl H 45 S E] a
2 2 = ctrl E 49 &1 i 1
3 3 [~} ctrl C a0 a2 z z
4 4 o ctrl O 51 &3 3 2
S 5 = ctrl E 5z &4 4 4
& & r ctrl F 53 &5) 5
7 7 f ctrl G 54 (=3 & (S
8 i & ctrl H 55 E7 7 7
3 11 I ctrl 1 5¢€ 78 o S
1A 1z T ctrl 57 71] =
i1 13 h ctrl K S5 T :
iz 14 iy ctrl L 59 3 ;
13 15 ctrl M & rd <
i4 16 T ctrl H 61 75 =
1S 17 3 ctrl 0 g2 TE x ¥
16 26 B8 ctrl F &3 77 < 3
i7 21 0 ctrl & a4 iaa © ®
15 22 & ctrl E 65 1831 A A
13 23 A ctrl S a6 iaz e E
o/ 24 a. ctrl T &7 1683 C C
21 25 =] ctrl U 3] 184]]
22 25 b1 ctrl M &9 185 E E
23 27) ctrl W 7a 18€ F F
24 o & ctrl ¥ 71 1a? G G
25 21 0 ctrl ¥ = 118 H H
26 3z g ctrl 2 73 i11 1 1
27 33 3 ctrl C 74 112 A J
z2a 34 * ctrl -~ = 113 K K
z23 35 z ctrl 1 TE 114 L L
3a 36 £ ctrl ~ rard i15 M ™M
a1 a7 % ctrl . e i1e N N
iz 48 SPACE 7a 117 0 0
332 41 i i aa 128 F P
34 4z " " et 121 o 8]
35 43 # # gz 122 [F
36 44 % ¥ g8z 123 S 5
a7 15 % % g4 124 T T
3a 4F % & 25 125]]
39 47 ' ! 26 ize i Y]
4@ S5 < i &7 127 3] W
41 51) 3 a5 138 % b
2 5z b 4 * 2a 131 Y Y
43 532 + + 96 i3z z z
44 54 . : 91 133 rC C
45 S5 - - az 134 . ..
45 56 az 135 | 3

ASCII Table

KEYCODE
QEC ac
94 136
a5 137
9& 1484
7 141
g 142
o5 143
1686 144
i91 145
itaz 1486
183 147
in4 156
ias i51
186 15z
187 133
185 154
155

156

157

i6ad

isl

162

163

154

185

166

167

17@

O e B L ol o o e e e e e e e

i G Gl Gd PO D PO T I PO P I TR = s s et bt ke et bt ot et ()
Cad o b CDLD D = T LN B L P = 00 00 g O LN e DD T LD

RO DO YL))

o Pt I D IJ B D) DY DTS P T et b e bt ot et s
=SSN B D e D LD B G R e RN T 0B) T

s (o ke ok ok o ek Pt (5 TY

RN VLY

|

B RR PSSR DR R R DR | EERREPIIRERRE AT 4 AN E <+ 0727033 mxernTd+002n T

f

KEY LRBEL

FONW ~BHYEETCS AN THDOIE T +0 2N TN
+

K8

REW

COPY
PAPER aADY
RESET
INIT

RUN

FAUSE
CONT

STEF

TEST

CLR SCREEM
GRAPH
LIST
PLIST

KEY LABEL

BACKSPRCE
END LINE
FAST BCKSP
LEFT CURS
RIGHT CURS
ROLL UP
ROLL DOWN
CLE LINE

E-2

KEYCODE
DEC OCT
161 241
162 242
163 243
164 244
165 243
166 246
167 247
168 258
163 251
176 252
171 253
172 254
173 235
174 296
173 237
176 268
177 z&l
i7°g 262
179 263
186 264
181 65
12z 266
123 267¥
124 av
185 271
186 a27e
187y 273
183 274
182 27
19@ 276
191 277
192 306
193 a1
194 3az
195 383
136 284
197 283
198 385
193 387
zea 31a
=81 311
z2nz 21z
283 213
284 314
=a5 215
286 I1e
a7 317
28g 228
289 321
zie 3zz
211 323
212 324
213 325
214 326
215 327
216 2306
217 331
215 33z
213 333
2z2a 334
221 335
22z 236
223 337
224 340
225 341
226 42
=227 343

I
0
L]
-
]

PR A e PR EKE SRR MO EREF - MM R R s e |- (1 e ST T2 T STl T B R S L o e el It it o] =I"I% 3

EEY
UP CURSOR
DOWN CURS
INS-RPL
DEL CHRE
HOME CURS
RESULTY

DELETE
STORE
LORD

/RUTO
SCRATCH

KEYCODE
QEC QT
22% 344
229 345
226 246
231 347
23z 35a
233 351
234 352
235 353
235 354
237 355
2328 =1
233 357
z4a Z668
241 361

)
o

P
—
bt

KEY

BMEREE R R

DEC OCT CHR

KEYCODE
242 262
Z43 263
244 354
245 3E5
246 366
247 367
245 37
243 271
258 37z
251 373
252 374
253 3275
254 g
2535 377

ASCII

MR E-RNKEERE M

ASCII Table

KEY

NOTES

ApPeENDIX F
TABLE OF TOKENS AND ATTRIBUTES

The following is a table of the system tokens and attributes used in the HP-83

and HP-85.

ROUT IME MAME TOKEN RTTRIB
ThaE. R DEF EFRORE CRROR U,44

<

DEF FTISWL SHY i i, 1
LEF sYabR SAY P 0,1
LEF FTRTL STRYAR 3 1
GEF ICONET REARL COHST 4 a.4
DEF SCOMET TRUOTED STR 5 a,s
DEF SCOMET UHEUOT 3TR & 0,35
DEF zZTOST B3T3 STRING 7 3
DEF =T0SV STORE 5% i 3

DEF avaDR1 1=-0ImM AbR
DEF VRﬁPE 2-01IM QDR
LEF @vunl t-DIM YAaLUE
DEF 'JM'H._c_ 2~-DIM YAlLUE
DEF ERRORH CHRERIAGE RTH
LEF GORTH EHLETHT

DEV ERRORA DUPMY

DEF ERRDRE DUMMY P
LEF FTabr SHY ADR
LEF SYADR+ SaY ADR Z3 o,
LBEF FTSTLS SRYE STR 23 o,
DEF STOSWHM MULLTTI 5T0 24 a,
DEF 5TO3TH MULTI STOf 25 o,
DEF FHNCAL, FUMCTION CL

A e)
P i BEA TN 8 { B VSRS B O BT Y

—

!

",

W
—

ey
3
=
3
=
3
43
4z

[

~ O
e 2
1T

GEF FHUALS STR FUNT L 27 0,

LEF JTRUE# GHMP TRLUE 20 a,7v

DEF ERRORE TLLEGAL ZHD 31 ,44
DEF IHTZOM IHT DONET 3z 0,z

DEF JFRLER JMF FRLSE ZZ 0,11
EF JIMPREL GJHMEOREL 24 0,28
LEF SUBSTH 1 DIM SUBET 35 .34
LDEF SUBSTZ 2 DIM ZURET 2& 0,34
LEF EJMP# ELTE J# ar 0,25
DEF ERRORM Lrumey 41 0,44

LEF ERRORY DUFMY 41 a, 44
LEF FHARAY FArray PRINT#42 0,26
DEF ERRORN purmy 43 0,44
DEF R#aRAY Hrrayw READH# 44 0,44
DEF ERRORY : 45 0,44
GEF CONCA, B OTOMNCAT 4 .G
LEF HOP4T, : 47 0, a2

DEF ERRORK ‘ 54 ﬂ,44

1’.:-1

DEF ERRORX) ST 0,44
GEF MPYROI i sz 12,51
DEF ADDROI + 53T 7,51
DEF ERRORH . 54 0,44
BEF SUBROT - DIADIC S5 7,81
) 5 , 44

L2 S

F ERPORE .
F-1

Table of Tokens and Attributes

EF UKER.
DEF LER,
DEF GEw.

a2
i

h
~
o

PR B
[x Sy O n A s

R Lo n Ot oo

B T D ¥ 11

DEF UHEG.

DEF DIv2 r 57 12,51
DEF YTHS - 60 14,51
DEF UNEQS, # 61 6,53
LEF LEG$. <= €2 6,53
DEF GERS . = 62 6,53
CEF UNEQRS, < £4 6,53
DEF ER%, = 85 6,53
DEF GRS, £6 5,51
DEF LTS, 67 6,53
GEF CHEROI MONRDBIC 70 7,50

2

3

4

B N NN

> .5
LEF ER. = ., 5
DEF GR. > & 6,5
DEF LT. g 76,51

b, 42
0,241
U,y
03 0,24
1, 2499
350, 141
05 0,241
a6y 0, EM
0, an

DEF ATSIGH it
DEF NHERR, oM EREDR
OEF OFFER. OFF ERRUOR
DEF OHEKEY, aH KEY#
GEF OFKEY. UFF FEY#S
EY auTa. RITG
nEF BEEF, BEEP
DEF CLEAR. TLEAR
DEF COMTL, ST
DEF OGHTINM. G TIMER# i1 0, Z41
DEF IMIT. IHIY i2 0,144
pEF LIST. LI=ZT Y30, 241
DEF BPLOT, BRLOT 0,=41
DEF STIME. SETTIME IS 0,291
DEF ERRORX CREOR 116 0,494
DEF ERRORY CREOR TET 0,44
DEF READE., RESDH 0,243
EF REHAM. RENAME 0,241
CEF mlLPHA, HLPHA 4,241
CEF CRT, CRT OIS G, 241
EF RUH, R i, 141
BEF DES. LEG 04,241
DEF DISP. DIaE i, 249
DEF GCLE. Sl Eak 0,241
FOSTRAT., SURATCH 0, 141
GEF DEFA+, DEFHULT O 0,241
CEF JMPLM# SOTo 4,210
DEF JMPZUER LOSUR 0,210
DEF FEWT#., PRIMT # 0,341
DEF GRAD. GRab 0,241
DEF GRAPH, sRAPH 4,341
DEF INPUT, INPUT 0,241
DEF IDRAW, [DRy .24
LDEY FHLET, LET FH 0,247
DEF HNOP, LET 0,241
HEF PRaLL, PREIMT aLl 0,249
CEF LCAT, CAT 0,24%

oe]
ol

o 0D
fiy -~

B U " R S Y
L]
I3
-~

£

——

DRI U S B LN

ek e kel el aml al eml emd el ek wd e b b S e e

B o s T’ BV BN RS NP R0 S FS U Y O S SR LRI (R A % B O LY

o Ll B = D) O B) PO e o g T

F-2

Table of Tokens and Attributes

DEF DRER. DRAW 145 0,241
CEF OH, oM 146 0,234
DEF LABEL. LABEL 147 0,241
DEF WaIT. arIT IS0 0,%F419
DEF PLDOT. RLOT iS5 4,241
DEF PRINEZ, FRINTER IS 152 0,241
DEF PRINT. PREINT 83 0,241
CEF RaD., rab 154 0,244
DEFS RBNDIZ. RaNDOMIZE TS5 0,241
GEF RERD. RERD 156 0,241

DEF STORR, STORE BIH IV 0,241
DEF RESTO. RESTORE a0 0,249
DEF RETRHN. RETHURH &1 0, 241
DEF OFTIM, OFF TIMERS 2 R,241
LEF MOVE. MOYE &3 0,241
DEF FLIP, FLIF S4 0,241
GEF 3TOP, BTOP 630,244
DEF ERROARX ERREOR fe 0,44

DEF PEHNLP, FPEMNUP
DEF TROVE, TRACE YREBL
E

.
=

0,241
0,241
0,241
4,241
0,241
0,241

DEF TRCaL, T
DEF XAXIS, RASK
CEF YRYIS, YR
GEF COPY. caey
DEF HORMA, MR AL
ERAST. ERASE TAFE
SKIPI iHTEGER
SIPE SHART
DELET. RELETE
SCRLE, SCALE a2 0,
SKIPY REMARE 203 0,
DEF OPTINR, UFTION BRZE 204 4,
DEF SKIPC oM 205 0,
LEF SKIFEM LaTa 206 4,
DEF SKPDEF LEF FH 20y 0,
DEF ZKIPD DI 210 0,
DEF KEYLA, EEY LABEL 211 0,
LEF ETOP, EHD 212 @,
DEF FHETH. FH EMD 13 0,3
DEF FOR, FOR 214 0,341
DEF ERRORT IF 213 0,344
DEF SKIPIT IMAGE 218 0,341
DEF HEXT. HE®T 241
LEF ERROQRM ERROR 0,44
DEF ERRORT LET CIMPLYD 0,244
NEF ASIGH, ASZIGH s 2
f3EZF CREAT, CREATE 0,24
DEF PUEGE, PURGE 0,241
DEF REWIN, REWIHMD 0,241
DEF LORDE. LOaDRIN ,241
DEF PARUIE, FRlisE 0,241
DEF ERRORY ERRDR 0,44
GEF SKIPR REHL 3

0,321
DEF REHUM, REH 0,141

ALL

RUREA SR O O SV i ne B

I
]
i

fui £
—

T

| T 2 e U T R e e
el
o B e

P B =t Bt Bt e? B B B LN B3 1

e gy
Mot T Mo
mn o

o2

-

':_) : é\h. !,:“_i
T RO)

o PP G el Ged G fad PO P e) Gl B PO
3

B T SR LS CR LY B QN T

i B

ol

d
e

[EWER LA VO SN O B B OV IR U SO ch O A
Of] G B2 PRI PY R3 BI DRI PO
Bg o~ o e e LR -

F-3

m
T T T

Do I e B O

P
e
T

mmimmm

i

Table of Tokens and Attributes

SKIP!
DEFA-.
PENW.
PLIST.
LDIR,
IMOYE.,
FHLET .
CTAPE.,
TRACE,
TO,
oRr.
Max1a
TIHME.
LARATE.
FP3
IFrS
EPStR
REM10
CEILID
ATHZ .
ERRORS
TRRS
MINYO
ERRORS
ABSS
1C05
ISIN
ITAN
SGNS
ERRORK
caTio
CEECTD
ERRORE
EXPE
IHTS
LAOGTS
LHE
ERRORE
SELTN
CHRE .
VAaLE.
LEH,
HUM.
YAaL .,
IMFLD
EHDID
PI1O
HPos.
USING.,
ERRORX
TAaR.
STEP.
EXOR .
HOT,

CEFAULT 2FF

FEN
PLIST
LDIR
IiMOYE
FH OTLET
CTRPE
TRAGLE
TO

Or
M
TIME
avE
FE

ie
EPSIL 0N
AR IN
CEIL
BTHCHAY
DUy
SRR
MIn
DUMPY
“HEBS
Mios
Hoh
FRTH
S
GLiptry
SoT
[RCE
RIL TN
EXF
INT
WaT cioz:
LOG SED
DY
SEC
CHES
Yol ¥
LEM
HLM
WAL
INF
RO
1
UPCE
LIZ ITHG
THEHN
ThE
STER
EXQR
HOT

F-4

- NS IS BN Y
RV I S e¥ B 3 1 S R Y |

SO (I O ERRE VR [VRN (VN (V]

243

fa
£
N

21

(]
33

LeX T PR B B T (R R (B | B0 R N Y

Py

SRR I N = TR B EIE) O 7 I 0 BN |

Ty 0 3 T

— 0T

-
‘3

R R RERERE

=30 U e] Do o R R e B o T O B DR

[ZS IS I 7S BN B &% /N B S B % B 78 SN BT TN % B % SN B B0 S IR I (B O CNCR CO B0 CIE OO O I AN D T DU LN DS LN DN DV LR LU T TR O LV VI 5 T O N
I el i i~ R e B o B oo B e e R e R

frc]

40,55
0,55
0,55
20

20

‘:‘ z 4 "';‘
20,55

20, 5%
= 5

=

=2

-

LN

L)
noon

D)

A

LA]

g

nnen s

o

INTD1Y
ERHUM,
ERBEL .
RESET.
AND .
MOD1 0
ERRORX
FINYO
cos0
TAaNIQ
HOPZ .
RSTQ. .
ERRORX
ERRORX

f ERRORH

INTDIVY
FOg,
DEGID

- RADTD

INTS

ERRORH
READHN,
L IME,
INPLIN.
INPUSE,
FHRET.
RERDE,
PRLINE
SEMIC.
COMMR .
SEMICS
COMMAS
ERREORX
STER,
FTaADR

FTADR

TEET.

ERRDORX

" ERRORH

RM: GO
BF; GO
ERRDRN
ERRDORH
ERRORK
ERROR
ERRORK
ERRDRX

Table of Tokens and Attributes

DIV (%2 221
ERRM 222
ERRL 323
RERET 224
AN

MOk

ELEE

SIN

s0s

THAN

TO (HSSIGH
FRESTORE LN
DUMpY

L

1

.,
K]

f0g 241
gTD 342
DTR 43
FLGOR 44
DMy 245
READ (UM Z4d8
UZING LIHE #34F
ITuFe HUMERIC 250
INP STRING
LET FHY 3 =2
REXDSE

FRINT EHD
PRINT;
FRINT.
PRINT %
FPRINT. ¥
OLMMY

=TER KEY

1 DIM ARRAY
2 IM RREAY
TEST KEY
DUy

UGN ;
EATERNAL RUOM.
BINARY PROG
RTINS

DUy

DUMMY

DMy

DUMMy

DUy

Lo el 08l ¥
SN VIS AN LV)
-} O Ln

[
J

(XS

3
IRC
g -

1]
']

Y% | I SN

Y SO ¥ B OF IR 2 Y XF i O3
OO ORI 7% B I I PN

L
=)

SRR LIS | I S B LN

O P Q0 P L0 LN AR R R

D 2

s B ST B % B LS B TN B SR R

t

DF G) G GF D) G G el Cef G Lo O6f o el Ged D3 6] D) 0if L) T 0
o

e B B A Y MY A AR = AR

F-5

12,81
0,585
i, 5!
0,94
4.5
12,51
4,44
20,58
20,55
20,59
FE L E
0,227
0,44
0,44
cl/‘4"‘1'
12,5
52,58
20,55
20,588

20,355

S USRI 0% BN 7% T I T I R S A

I O R B & L B SRR Y O & DR S I VS B

0, =

D]
*
—

i, t
0,341
0,44
0,44
i,z
0,214
4,44
0,44
0,44
0,44
0,44
0,44

NOTES

F-6

APPENDIX G

ERROR MESSAGES

Below is a list of the error messages provided by the HP-83/85 Assembler ROM and
the System Monitor. For other errors refer to the HP-83 or HP-85 Owner's Manual
or to the manuals for other peripheral devices that may be attached to the
computer.

ASSEMBLER SYSTEM ERRORS

Error Message Error Condition

ERROR 109: ILL MODE A command has been executed in the wrong operating
mode (e.g., ASSEMBLER has been typed when computer
js already in assembler mode).

ERROR 110: LBL An invalid label has been seen; may have been either
longer than six characters or beginning with a digit.

ERORR 111: OPCO The opcode is not recognized; may have been because
of misspelling, because there was no space between
a label and the opcode, or because the opcode was
entered in the first or second column after the line
number.

ERROR 112: ARP-DRP Invalid ARP or DRP; ARPs and DRPs must be between 9
and 77 inclusive, and cannot be 1.

ERROR 113: OPER Bad operand; e.g., LDM R34, = 3, remark. Because a
number follows the equal sign in this example, the
assembler expects another number after the comma.
Also, each literal value must be specified with two
digits if a BCD quantity.

ERROR 114: FIN-LNK Missing FIN or LNK statement. If the file name or
file type is wrong in the LNK statement, then a
"FILE NAME" or "FILE TYPE" error will be generated.

G-1

Error Messages

Error Message

ERROR 115: ASSM ROM

ASSEMBLY-TIME ERRORS

Error Message

ILL NAM

AIF UND

ILL ABS

JMP FROM

JMP TO

UND LAB

ILL GLO

Error Condition

At power-on, this means the ROM had a checksum error.
At a breakpoint, all errors generate this message.

Error Condition

A NAM statement has already been executed, or an ABS
ROM has been executed.

The specified conditional assembly flag has not yet
been defined as set or cleared.

An ABS or NAM statement has already been encountered.
The jump from that line is out of range.

The jump to that line is out of range.

After assembly was completed, this label had not been
defined either in the program or in the optional

global file.

The GLO statement occurs after a NAM statement, ABS
statement, or another GLO statement.

APPENDIX H

PROGRAMMING HINTS AND ADDENDA

1. If execution of certain Advanced Programming ROM statements is attempted in
assembler mode, unpredictable results can occur. These AP ROM statements are:

X REF L
X REF V

SCAN
REPLACE VAR.

NOTES

H-2

A

Absolute
Address, 2-10
Program, 4-49
ABS pseudo-instruction, 4-49
ABS5 routine, 7-45
Add instruction, 3-7, 4-22
AD instruction, 3-7, 4-22
Address,
Assigning to a label, 4-53
Base, for reserved RAM, 6-20
CRT memory, 7-108
Format of, xiii, 3-10
In CPU register bank, 3-4, 3-10
Inserting, 4-54
Of variables, 5-1
Parse routine, 6-6
Runtime routine, 6-7
System table, 6-5
Addressing,
Binary program, 6-18, 6-19
CRT, 7-110
External ROMs, 6-17
Modes, 4-7
Stack, 4-16
Address register pointer, 3-1, 3-2
Address table, 5-15
Label, 8-1
ADDROI routine, 7-45
Advanced programming capabilities,
5-32
AIF pseudo-instruction, 4-56
ALFA routine, 7-23
Allocated program, 5-4
Allocation, 5-4, 5-19, 5-22
Status, 6-21
ALOAD command, 2-2
Alpha CRT display, 7-111, 7-112
ALPHA. routine, 7-113
ANM instruction, 4-22
Arithmetic and logic unit, 3-1
Arithmetic instructions, 3-12, 4-22
ARP, 3-1, 3-2, 3-9
Handling during assembly, 4-47
Loading, 4-39
ARP 1instruction, 4-39
Array variable storage, 5-31
ASCII,
Characters on CRT, 7-111

INDEX

I-1

Code, inserting, 4-52
Data file, 1-2, 2-3
Strings, 6-23
Table, 6-8
ASC pseudo-instruction, 4-52
ASP pseudo-instruction, 4-52, 6-8

ASSEMBLE command, 2-3, 6-7, 6-8, 6-22

ASSEMBLER command, 2-4

Assembler mode, 2-4, 2-7

Assembler ROM, ix, xii, 1-1

Assembly, x, 1-2, 2-3, 4-37, 4-38,
4-46, 4-57, 6-1, 6-22

Assembly control pseudo-instruction,

4-49
Assembly language, ix
Program type, 6-21
ASSIGN. routine, 7-142
ASTORE command, 2-5, 6-22
ATN2. routine, 7-46
Attributes, 5-19

B

Bank-selectable ROMs, 5-3, 5-4

Base address, 5-15, 6-19
O0f reserved RAM, 6-20
Specifying, 4-51

BASIC command, 2-5

BASIC language, ix
Reserved word, 5-1

BASIC (normal) mode, 2-1, 2-5, 2-7

Basic program, 5-1

BCD constant, 4-10

BCD instruction, 3-12, 4-41

BEEP. routine, 7-46

BIN instruction, 3-12, 4-41

Binary,
Mode, 3-12, 4-41
Quantity, 3-10

Binary program, 6-1
Addressing, 6-18
Entering a, 2-4
Error messages, 6-16
Reserving RAM by, 6-20
Scratching, 2-10
Storage of, 2-3
Tokens, 5-2, 5-17
Using, 6-23

BINTAB, 2-10, 5-6, 6-18

BKP command, 9-2

Index

BLKLIN routine, 7-114
Boundaries, register 3-4
BPLOT. routine, 7-114
BPLOT+ routine, 7-115
Breakpoints, xi, 9-1
Clearing, 9-6
Operations at, 9-6
Setting, 9-2
BSZ pseudo-instruction, 4-53
BYT pseudo-instruction, 4-53
BYTCR! routine, 7-116
BYTCRT routine, 7-116
Buffers, 5-7
1/0, 5-32

C

Calculator mode statement, parsing
a, 7-15, 7-19

CALVRB pointer, 5-6

Carry flag, 3-13

CEIL1® routine, 7-47

Central processing unit, 3-1, 4-1

CHIDLE hook, 5-14, 8-2
Use of, 6-23

CHKSTS routine, 7-117

CHSROI routine, 7-47

Class of token, 5-20
Decompiling using, 5-25

Clearing conditional assembly flag,
4-56

Clear instruction, 4-35

CLEAR. routine, 7-117

CLE instruction, 4-41

CL instruction, 4-35

CLR command, 9-6

CLREOL routine, 7-118

CLR pseudo-instruction, 4-56

CM dinstruction, 4-23

CNTRTR routine, 7-118

COMFLT routine, 7-90

Commands, 2-1

COMMA. routine, 7-48

COMMA$ routine, 7-48

Comments, end-of-line, 4-3
Entering, 4-3
Suppressing, 2-7

Common variables, 6-21

Compare instruction, 4-23

Compiling, 5-1

Complement instruction, 3-6, 4-33

CONBIN routine, 7-90

CONCA. routine, 7-49

Conditional assembly, 4-56, 4-57

[-2

Conditional jumps, 4-37, 4-38
CONINT routine, 7-91
Constant, assigning to a label,
4-53
CONT key in assembler mode, 2-4
COPY. routine, 7-119
COS19 routine, 7-49
COT1Q routine, 7-50
C.PARS routine, 7-15, 7-19
CPU, 3-1
Entering register numbers of, 4-3
Outputting status of, 9-3, 9-9
CREAT. routine, 7-142
CRT addressing, 7-110
CRTBAD, 7-108
CRTBLK routine, 7-120
CRTBL+ routine, 7-119
CRTBYT, 7-110
CRT control, 7-108
CRTDAT, 7-109
CRTINT routine, 7-120
CRTPOF routine, 7-121
CRTPUP routine, 7-121
CRTRAM, 7-110
CRT routines, 7-113
CRTSAD, 7-108
CRTSTS, 7-109
CRTUNW routine, 7-122
CRTWPO routine, 7-122
CRTWRS, 7-110
CSEC1® routine, 7-50
CSTAT, 5-7, 5-11, 5-13
Saving, 5-33
Current status, 5-13
CURS routine, 7-123
CVNUM routine, 7-91
CY flag, 3-13
Clearing, 3-13
Setting, 3-13

D

DAD pseudo-instruction, 4-53
Data definition pseudo-instruction,
4-52
DATE. routine, 7-51
DCE instruction, 4-42
DC instruction, 4-31
DCM flag, 3-12, 3-14
Clearing, 4-41
Setting, 4-41
De-allocated program, 5-4, 5-5, 5-6
De-allocation, 5-19
DEC assembler function, 2-7

Decimal constant, 4-10

Decimal mode, 3-12
Setting, 4-41

Decimal point representation, 3-11

Decimal to octal conversion, 2-11

Decompiling, 5-24, 7-146

Decreasing stack, 4-16, 4-17, 4-20,
4-21

Decrement instruction, 4-31

DECURZ routine, 7-123

DEFA+. routine, 7-51

DEFA-. routine, 7-52

DEF pseudo-instruction, 4-54

DEG. routine, 7-52

DEG1® routine, 7-53

Deleting ARPs and DRPs, 4-47, 4-48

DIGIT, 7-23

DISP. routine, 7-53

DIV2 routine, 7-54

DIV1@ routine, 7-55

DMNDCR routine, 7-24

DNCUR. routine, 7-124

DNCURS routine, 7-124

DRAW. routine, 7-125

DRP, 3-4, 3-6, 3-7, 3-9
Handling during assembly, 4-47
Loading, 4-39

DRP instruction, 4-39, 4-40

DRV12. routine, 7-92

Dumping memory, 2-8, 2-9, 9-7

E

EIF pseudo-instruction, 4-57
EL instruction, 4-25, 4-26
Ending a program, 4-49, 6-11
E0J2 routine, 7-125
EPROM, 6-23
Burner, 6-1
EPS1@ routine, 7-54
EQ. routine, 7-56
EQ$. routine, 7-56
EQU pseudo-instruction, 4-54
E-register, 3-12
Clearing, 4-41
Decrementing, 4-42
Incrementing, 4-42
ER instruction, 4-27
Error message, 6-14
Table, 6-8
ERROR routine, 6-14, 7-57
ERROR+ routine, 6-14, 7-57
Errors, 5-11
Assembler, 1-3

I-3

ERRORS location, 6-15
ERRROM location, 6-15
Example programs, x, 8-1
Exclusive OR, 4-24
Execution

By tokens, 5-8, 5-9

Pointer, 5-7
Executive loop, 5-10
Exponent representation, 3-11
Expression stack, 5-25
EXP5 routine, 7-58
Extended files, 2-2, 2-5
Extended left shift, 4-25
Extended right shift, 4-27
Extend register, 3-12
External label table, 6-10

F

Fahrenheit to Celsius, 1-2, 6-2, 8-1

FETAVA routine, 7-93

FETAV routine, 7-92

FETST routine, 7-93

FETSVA routine, 7-94

FETSV routine, 7-94

Finding labels, 2-6

FIN instruction, 4-49, 6-11

FLABEL command, 2-6

Flag,
Conditional assembly, 4-56
Status, 8-12

FLIP. routine, 7-126

Floating point numbers, 3-4

FOR/NEXT stack, 5-7

FREFS command, 2-6

FP5 routine, 7-58

FTOCB file, 1-2, 8-1

FTOCS file, 1-2, 8-1

FTOC program, 1-2, 6-2, 8-1

Functions, 2-1, 6-11
Assembler, 2-1, 2-7
Numeric, 6-10
Parameters of, 5-21
Storage of, 5-32

FWCURR pointer, 5-6, 5-35

FWPRGM pointer, 5-6

FWUSER pointer, 5-6

G

GCHAR routine, 7-28

GCLR. routine, 7-126

GCURB file, 1-2, 8-9

GCURS file, 1-2, 8-9
GCURSOR OFF statement, 8-9
GCURSOR statement, 8-9

Index

GCURSOR X function, 8-9 I

GCURSOR Y function, 8-9 ICE instruction, 4-42
GCURS program, 8-9 IC instruction, 3-5, 4-32
General hooks, 6-12 ICOS routine, 7-61

GEQ. routine, 7-59 IDRAW. routine, 7-129
GEQ$. routine, 7-59 Immediate addressing, 9-5

GETCMA routine, 7-31
GETCM? routine, 7-32
GET$N routine, 7-28

IMOVE. routine, 7-129
INCHR routine, 7-130
INCHR- routine, 7-130

GETIN routine, 7-30 Inclusive OR, 4-23
GET2N routine, 7-30 Increasing stack, 4-16, 4-17, 4-19,
GET4N routine, 7-31 4-20
GETPA? routine, 7-32 Increment instruction, 4-32
GETPAR routine, 7-33 Multi-byte, 3-5
GET) routine, 7-29 Indexed addressing, 3-2
GET1$ routine, 7-29 Entering, 4-3
Global file, x, 1-2 In binary programs, 6-18
Assembler, 7-1 Indexed direct addressing, 4-13
Creating, 6-11 Assembly of, 4-47
Declaring a, 2-3, 4-49 Indexed indirect addressing, 4-14
Disc and tape cartridge, 1-1, Assembly of, 4-47
1-2, 7-1 Index scratch register, 3-2
Using, 8-1 INF19 routine, 7-62
GLO pseudo-instruction, 4-49, 6-11 Initialization, 5-11, 5-14, 6-14, 6-18

GSN+NN routine, 7-25 Hooks, 6-13
G$N routine, 7-24 Reserving memory during, 6-19
GAIN routine, 7-26 Table, 6-9

GA12N routine, 7-25 INIT key in assembler mode, 2-4
GPOR2N routine, 7-26 Installation,
G10R2N routine, 7-27 Disc, 1-2
G120R4 routine, 7-27 System Monitor, 1-3
Go to, 4-55 Tape cartridge, 1-3
GRAD. routine, 7-60 Instructions, 4-1
Graphics CRT display, 7-112 Integer values, 3-11
Graphics cursor program, 1-2, 8-9 Popped off R12, 5-35
GRAPH. routine, 7-127 INTEGR routine, 7-33
GRINIT routine, 7-127 Intercepting a system routine, 6-18
GR. routine, 7-60 Interpreter, 5-1, 5-11
GR$. routine, 7-61 Halts, 5-14
GTO pseudo-instruction, 4-55 Loop, 5-15, 5-22
Interrupt, 5-15
H INTDIV routine, 7-63
Hardware-dedicated registers, 3-2 INTMUL routine, 7-95
Hooks, x, 5-14 INTORL routine, 7-95
General, 6-12 INT5 routine, 7-62
Initialization, 6-13 I/0,
System, 5-14, 6-11 Addresses, 5-3, 7-108
Using, 6-18 Buffer, 5-32
HLFLIN routine, 7-128 Control, ix
HMCURS routine, 7-128 Processes, x
HP-82928A System Monitor, xi, 9-1 IOSP hook, 5-14
HP-1B, 6-23 IP5 routine, 7-63

1-4

ISIN routine, 7-64
ITAN routine, 7-64

J

J instructions, 4-37

JSB instruction, 4-36
Jump instructions, 4-37
Jump, relative, 4-55
Jump to subroutine, 4-36

K
Keyword, BASIC, 5-8, 6-1, 6-7, 6-11
L
Label, 4-10
And conditional assembly flag,

4-56
Address table, 8-1
Assigning address or constant to,
4-53
Entering, 4-2
Inserting value of, 4-55
LABEL. routine, 7-131
Label table,
External, 6-10
Using global file for, 7-1
Language hooks, 6-11
LAVAIL pointer, 5-6
LD instruction, 3-8, 4-6
LDIR. routine, 7-131
LDZ flag, 3-14
Least significant bit flag, 3-13
Least significant byte, 3-10
Least significant digit, 3-11
Left digit zero flag, 3-14
LEQ. routine, 7-65
LEQ$. routine, 7-65
Line numbers, 4-2
Linking files, 4-50
Listing, 5-24
Object code, 4-50
Source code, 2-6
LIST key, 2-6
Literal direct addressing, 4-11
Assembly of, 4-46
Literal immediate addressing, 4-11
Literal indirect addressing, 4-12
Assembly of, 4-46
Literal quantities, 4-10
Inserting, 4-53, 4-55
LL instruction, 4-29, 4-30
LNK pseudo-instruction, 4-50, 6-11
LN5 routine, 7-66

I-5

Index

LOADBIN, action of, 6-7, 6-19, 6-20
LOAD key in assembler mode, 2-2
Loading ARP or DRP, 4-39

Load instruction, 3-8, 4-6
Logical AND instruction, 4-22
Logical instructions, 4-22
Logical left shift, 4-29

Logical OR instruction, 4-23
Logical right shift, 4-28

LOGT5 routine, 7-66

LR instruction, 3-6, 4-28

LSB flag, 3-13

LST pseudo-instruction, 4-50, 6-5
LTCUR. routine, 7-132

LTCURS routine, 7-132

LT. routine, 7-67

LT$. routine, 7-67

M

Machine code, 4-46
Machine language, ix
Main parse loop, 7-14, 7-19
Mantissa representation, 3-11
Mass Storage ROM, 5-7
MAX19 routine, 7-68
MEM assembler statement, 2-8
MEMD assembler statement, 2-9
MEM command, 9-7
Memory dump, 2-8, 2-9, 9-2, 9-10
Memory, CRT, 7-108
Memory, HP-83/85 system, 5-3
Programs in, 5-4
Memory, temporary, 5-7
Saving, 5-33
MIN1® routine, 7-69
MOD1@ routine, 7-68
Most significant bit, 3-13
Flag, 3-14
Set, 4-52 :
Most significant byte, 3-5, 3-6, 3-10
Most significant digit, 3-11
MOVCRS routine, 7-133
MOVDN routine, 7-96
MOVE. routine, 7-133
MOVUP routine, 7-96
MPYROI routine, 7-71
MPY1® routine, 7-70
MSB flag, 3-14
Multi-byte operations, 3-4
Locations involved in, 3-4
Multi-byte status, 3-14

Index

N

Naming a binary program, 4-51
NAM pseudo-instruction, 4-51, 6-5
NARREF routine, 7-34
NARRE+ routine, 7-34
NC instruction, 4-33
Nine's complement, 4-33
Non-arithmetic operations, 3-12
Normalized number, 3-11
NUMCON routine, 7-35
Numeric function, 6-10
Storage of, 5-33
Numeric quantities, 3-11, 4-4
On R12 stack, 5-35
NXTMEM pointer, 5-6
NUMVAL routine, 7-36
NUMVA+ routine, 7-20, 7-35

0

Object code, x
Files, 1-2
Listing during assembly, 4-50
Storage of, 1-2, 2-3, 2-4
Suppressing listing during
assembly, 4-51
OCT assembler statement, 2-11
Octal,
Constant, 4-10
Quantity, 3-10
To decimal conversion, 2-7
ONEB routine, 7-97
ONEI routine, 7-97
ONEROI routine, 7-98
ONER routine, 7-98
OFTIM. routine, 7-71
One's complement, 4-33
Opcodes, 4-2
Operands, 4-3
Operators, precedence for, 5-22
Option base, 6-21
ORG pseudo-instruction, 4-51
OR instruction, 4-23
OUTCHR routine, 7-134
OUTSTR routine, 7-134
Overflow flag, 3-13
OVF flag, 3-13

P

PAD instruction, 4-43
PAPER. routine, 7-99
Parameters, 5-21
P#ARAY routine, 7-143
Parity bit set, 4-52

I-6

Parse loop, main, 7-14, 7-19
Parser, 5-10, 7-14
Parse routine,
Addresses, 6-6
Registers, 7-13
Parsing, 5-1, 5-17, 6-9

A calculator mode statement,

5-19

A program line, 5-19

Flow, 7-13
PARSIT routine, 7-16, 7-19
PC, 3-2
PC= command, 9-7
PCR, 5-7

Saving, 5-33
PEN. routine, 7-135
PENUP. routine, 7-135
PI1® routine, 7-72
PLOT. routine, 7-136
PO instruction, 4-16
Pointers, 5-5
POLAR statement, 8-15
Pop instruction, 4-16
Pop status, 4-43
POS. routine, 7-72
Power-on, 5-10, 6-12
P.PARS routine, 7-14, 7-19
PRDVRT routine, 7-99
Precedence of operators, 5-22
Primary attributes, 5-19, 6-9
PRINT. routine, 7-73
PRINT#$ routine, 7-74
PRLINE routine, 7-73
PRNT#N routine, 7-74
PRNT#. routine, 7-143

Program control block, 4-51, 6-5

Accessing, 6-21
Program counter, 3-2
Changing contents of, 9-7

Program line, parsing a, 7-14, 7-19

Program type, 6-21
PROM burner, 6-1, 6-23

Pseudo-instructions, 4-1, 4-48, 6-~1

PU instruction, 4-16
PURGE. routine, 7-144
PUSHIA routine, 7-36
Push instruction, 4-16
PUSH32 routine, 7-37
PUSH45 routine, 7-37

R

RAD. routine, 7-75
RAD19 routine, 7-75

RAM, ix

Changing values in, 2-8

Dumping contents of, 2-8
RAM, reserving, 6-19

By a binary program, 6-20

By a ROM, 6-19
R#ARAY routine, 7-144
RDZ flag, 3-14
READ#. routine, 7-145
READ#$ routine, 7-76
READ#N routine, 7-76
Real numbers, 3-11

Representation of, 3-11
RECPLB file, 1-2, 8-15
RECPLS file, 1-2, 8-15
Rectangular/polar conversions, 1-2,

8-15, 8-19
RECTANGULAR statement, 8-15
REFNUM routine, 7-38
REG command, 9-8
Register bank, 3-1
Register bank pointer, 3-2
Register boundaries, 3-4
Register direct addressing, 4-8
Register immediate addressing, 4-8
Register increment and decrement, 4-31
Register indirect addressing, 4-9
Registers, CPU, 3-2

Changing contents of, 9-8

Qutputting contents of, 9-4
Relative address,

Absolute address of, 2-10
REL assembler statement, 2-10
RELMEM routine, 7-100
Relocatable code, 6-1, 6-8, 6-18
Register values, xiii
Remote variables, 5-30
REM1® routine, 7-77
Reserving RAM, 6-19
RESMEM routine, 6-19
Restoring CPU status, 4-43
Return, 4-44

Address, saving, 5-33

Stack, 5-6
Return stack pointer, 3-4
REV DATE function, 8-9, 8-15
Right digit zero flag, 3-14
RMIDLE hook, 5-14
RNDIZ. routine, 7-78
RND1@ routine, 7-77
ROM, ix, 2-3

Addressing, 6-17

Dumping contents of, 2-8

I-7

Index

Reserving RAM by a, 6-19
Tokens, 5-2, 5-17
ROM-defined errors, 6-15, 6-16
ROM Drawer, HP-82936A, 1-1
ROMFL flag, 5-14, 6-9, 6-13, 6-18
ROMINI routine, 5-10, 6-13
ROMJSB routine, 6-17, 7-101
ROM module, ix
Installation, 1-1
ROMPRB file, 1-2, 8-19
ROM program, x, 1-2, 6-1
Example, 8-19
Using, 6-23
ROMPRS file, 1-2, 8-19
ROMRTN routine, 6-18, 7-20, 7-101
Routine, 5-1
System, 5-8, 6-1, 6-10, 7-1
RPN, 5-1, 5-24, 5-25, 5-27
RSMEM- routine, 7-102
R12 stack, 5-6
At runtime, 5-24
And functions, 6-10
Formats on, 5-34
In decompiling, 5-25
In parsing, 5-18
RSUM#K routine, 7-103
RSUM8BK routine, 7-103
RTCUR. routine, 7-136
RTCURS routine, 7-137
RTOIN routine, 7-104
RTN dinstruction, 4-44
RTNSTK pointer, 5-6
RUN key in assembler mode, 2-4
Runtime, 5-15, 5-22, 7-44
Addresses, 6-7
Routines, 6-9
R*, using, 4-46
R#, 4-47

S

SAD instruction, 4-44, 4-45
SALT, 7-18, 7-19
SB instruction, 4-24
SCALE. routine, 7-137
SCAN routine, 7-17, 7-19, 7-38
SCAN+ routine, 7-39
SCRATCHBIN assembler statement, 2-10
SCRATCHBIN statement, 8-15
Scratching memory, 2-5

A binary program in, 2-10
SCRAT. routine, 7-78
SCRAT+ routine, 7-104
SCRDN routine, 7-138

Index

SCRUP routine, 7-138
SEC1® routine, 7-79
SEMIC. routine, 7-79
SEMICS routine, 7-80
SEQNO routine, 7-40
SEQNO+ routine, 7-39

Secondary attributes, 5-19, 5-21, 6-9

Select code, 5-3
SET pseudo-instruction, 4-57
SET248 routine, 7-105

Setting conditional assembly flag, 4-57

SGN5 routine, 7-80
Shell of program, 6-2
Shift instructions, 3-12, 4-25
Shift right instruction, 3-6, 3-15
Short numeric quantities, 3-11
Simple variable storage, 5-30
Single byte instructions, 3-6
Single-step execution, xi, 9-8
SIN1® routine, 7-81
SMLINT routine, 7-40
SOFTKB file, 1-2, 8-2
SOFTKEY, 8-2
SOFTKS file, 1-2, 8-2
Source code, x, 1-2, 4-46
Entering, 2-4, 4-1
Files, 1-2
Loading, 2-2
Storing, 2-5
SP, 5-7
Special function keys, 1-2, 8-2
In assembler mode, 2-1, 2-2
SQR5 routine, 7-81
Stack direct addressing, 4-18
Stack indirect addressing, 4-18,
4-21
Stack instructions, 4-15
Stack pointer, 5-7
Status,
Current, 5-13
Indicators, 3-1, 3-12
Outputting, 9-3
Restoring, 4-43
Saving, 4-44
STBEEP routine, 7-82
STEP command, 9-8
STEP key, 2-4, 9-8
ST instruction, 3-9, 4-6
Store instruction, 3-9, 4-6
STORE key in assembler mode, 2-5
STOST routine, 7-105
STOSV routine, 7-106

I-8

STRCON routine, 7-41

STREXP routine, 7-42

STREX+ routine, 7-20, 7-41

String function, storage of, 5-34
Strings, inserting, 4-52

String underline, 8-7

String variable storage, 5-32
STRREF routine, 7-42

Subprogram capability, 5-7, 5-30, 6-21

SUBROI routine, 7-82
SUB1® routine, 7-83
Subroutine jump, 4-36
Subtract instruction, 4-24
SVCWRD, 5-15
Symbols used in descriptions, 4-4,
4-5
Syntax guidelines, xii, 4-4
System address table, 6-5
System,
Error messages, 6-14
Flow, 5-10
Global file, 6-10
Hooks, 6-11
Labels, x
Memory, 5-3
ROMs, 5-3
Routines, 5-8, 6-1, 6-10, 7-11
System routine format, 7-11
System monitor, HP-82928A, xi, xii,
9-1
Installation, 1-3

T

TAN1@ routine, 7-84
Tape routines, 5-7, 7-141
TC instruction, 3-6, 4-34

Temporary scratch-pad memory, 5-7, 5-33

Ten's complement, 4-34

Terminating conditional assembly, 4-57

Test instruction, 4-35
Conditional assembly flag, 4-56
Multi-byte, 3-5
TIME. routine, 6-17, 7-84
Tokens, 5-1, 5-8, 5-15
Class, 5-20, 5-25
External, 5-17
New, 6-11
Pointer to, 5-7, 5-22
For variables, 5-29
Type of, 5-20
Missing operator, 5-27
Top-of-stack pointer, saving, 5-33

Index

TOS, saving, 5-33 Z

TRACE command, 9-9 Zero flag, 3-14
Tracing execution, xi, 9-9 Zeros, inserting, 4-53
TREM command, 2-7 Z flag, 3-14

TRYIN routine, 7-43 ZROMEM routine, 7-88

TS instruction, 3-5, 4-35
TWOB routine, 7-106

TWOROI routine, 7-107

TWOR routine, 7-107
Two-operand operations, 3-7
Two's complement, 4-34

Type of token, 5-20

U

UDL$B file, 1-2, 8-7

UDL$ function, 8-7

upL$S file, 1-2, 8-7

UNBAS1 and UNBAS2 locations, 6-20
Underlining a character, 7-110
Underlining a string, 1-2, 8-7
UNEQ. routine, 7-85

UNEQS$ routine, 7-85

UNL pseudo-instruction, 4-51
UNQUOT routine, 7-43

UPC$. routine, 7-86

UPCUR. routine, 7-139

UPCURS routine, 7-139

Utility routines, 7-89

v
VAL pseudo-instruction, 4-55
VAL. routine, 7-87
VALS. routine, 7-86
Values, inserting, 4-55
Variables, 5-1, 5-9
Common, 5-6, 6-21
Format of, xiii
On R12 stack, 5-34
Representation of, 3-11
Storage of, 5-28

W
WAIT. routine, 7-87

X

XAXIS. routine, 7-140
XCOM, 5-8, 5-11, 5-14
XR instruction, 4-24

Y
YAXIS. routine, 7-140
YTX5 routine, 7-88

I-9

[ﬁﬁ HEWLETT

PACKARD

For additional information please contact the nearest authorized Series 80
HP-83/85 dealer or your local Hewlett-Packard sales office.

00085-90444 Rev.B 11/81 Printed in U.S.A.

