HEWLETT-PACKARD

HP 82940A

O Interface

OWNER’S MANUAL

SERIES 80

Printedin U.S.A.

A caciaro

HP 82940A
GPIO Interface

Owner’s Manual

Series 80

September 1982

Reorder Numbér :
82940-90011

©Hewlett-Packard Company 1981

Contents

Section 1: General Description et ettt et 5
INtrOAUCHION L ittt iiiesenreneasenenosanssnesssnenosassosossesasassasassansanns 5
70 T 1] R S S 5
SPECIfICAtIONS ... iiteriieierrinenereensiorornesseersssasntassasnossssrsassesscnasnssns 5

Section 2: Installationi ittt ittt 6
Unpacking and INSpectionciuiuriiiiiiiieiiiirieaiaennaeraretetasarsessoeasonans 6
153 - 11 1o 2 TS P 6

Disassembly and Preparation of the GPIO InterfaceCablecociiiiiaanets 7
L= = o2 0+ T 1 10
Recommended Peripheral Driver and Receiver Circuitsccvevviinnrencnieannas 18
Installing the Interface and Connecting the Peripheralscociieevnnnn 21

Section 3: Using Your GPIO Interface A 23
L] (o T LU {0 o N 23
Essentialsof aParallel Interfacecooiiiiiiiiniiiirenneriineseenaneinesannones 23

Direction of Data FloWuiiitiiiineerrnenererosesrssansersesssessssnsnerssenns .. 24
Number of Bits and POrtSivreiiiiiiiinieirrneretsestosestocoseasansnesssnnoas 25
Using Primary AddreSSesvuvieiiineiererosisseonssonosasssssonnnnasassnnssas 25
Handshake Methodscoiiiiiiiiiiiitierneresesssassononesessoansnannnnanss 26
Selectingthe Handshake Methodc.coviiiiiiiiiiiiii it iiiiieenens 32
Settingthe Logic Polarityc.coviiiiiiiiiinnnerereinersrarserososeesssananaanns 35
Enabling OuUtpuUL . .. ittt ittt ittt ittt ey 37
Choosingthe Methodof Transfercc.iiiiiieiiiiierieiiiieieennnsercssnennones 38
Advanced Capabilitiesc.iiiiiiiiiiiiieiiieniieaineens et ebeiae s 39
FHS and INTR Transferscouoiieieiennererctesiotnnoersosnsisssanarssesanensnns 39
EOL SeQUENCEiiteriinneetvussorotansssetonsesesassssansisessnanssesanaossas 41
DirectUseof Control Linesoviiiiiiiiiiiiiiii it iiietanrraasonnnsanssansns 42
[T 1 Y/ P 43
EVENt INeITUPES ..ottt tieer e icneie i tonseroonnnossonsnssssnnnosossnssessnnnsasnas 44
The Trigger FUNCHION ittt iiie it iiat it rateatanennss 48

Section 4: Maintenance, Serv1ce, and Warranty 51
MaiNtBNANCE .+ vvvvtrtr e ererereraseinnenisoressasossesessssesonsssssns e e 51
LY Y T - Y N 51
Warranty and Repair Information et et e etee et 51
Radio Frequency Interference Statementc.viiiiiiiieagerarananes eeeeeianea 52

Appendlx A: Theory of Operatlon ettt e 55
IR OAUCTION L.ttt i ettt ee e etaneseannonecesnssososassessasssssononssensonaaassonnns 55
Theory of OpPerationccoiiiiiuuiniiionnnieiereeesesnosroaenssessososassoonenessees 55

Translator IC DescCriptionciiiiiiiiiiiiieieesieenntonsronssaonscssssassennss 55
SelectCodesvviiiiiiiiiiiiiiriiereinenereerannnnn P 556
Translator |/ORegiSterscccvvviviennnneeninnns P 56
IO UPES v e tttiareeeenneseneneosencnasososassssnssniosanancoencnnses S ... b8
DataTransferc.ciiieiiiiiieririninsseennnns SN NP -1 -
GPIO BUS LiN@S « .ot iteiiieieneteteaeatstosassossosonansnnsssasosononasananonnns 58
Low-Power, Bi-directional Data Lines (DAO-7, DBO-7) et reeretes ey 59
Output-Only Data Lines (DCO-7,DD0-7) ... cvvriirreeiiiiieeienrereranannneneenoanns ... 59
Handshake Lines (CTLA, CTLB, CTLO-1, FLGA, FLGB, STO, ST1) +vvvireeriinnnrenennns . 59
OUTA/OUTB LINES .. etttieeteitttinsranaeeaneeeessssssssenssossenssnsesanseonness 59
Reset Lines (RESA, RESB) ...vvvtrererirerenenesesneenesasassossssensansens P .. B9
DataHandshakeciiiiiiiiiiuiennenneeroesssnoseisetatsrnsasasanaananes 59
Modes Of Operationccuuriveeeennieecrorsseesssnosssssssssnnassssnnnanans ... 61
8049 Microcomputer (UC)ciuunuutiiniiinnneteeeesseinnssstosenrennrsosssannens 65
Replaceable Partsc..iiiiiuiiierenrororioseesessseeiecneessnsasessonanannnasens 66
Appendix B: Register Assignmentsciiiiiiiiiiiiiiiiiiiiiiia 71
Appendix C: GPIO(I/OROM)Statementscoviiiiiereiiiiriieiinaens 75

2

Contents 3

Appendix D: GPIO Interface Errors vt e e, eieean .. 77

Figures: i
2-1 GPiOinterface Disassemblycciiininiiiiiiiiieieeerserereserrreoreisssenes 7
2-2 Preparingthe GPIO INterfacecccvvvriiinieriirereererereeresesssssssnansannes 9
2-3 Select Code SWItCh Settingsuuutuueirrnrerrreeerererererereaenesasanasns 11
2-4 Device Address SWItCh Settingsveieieniieieniieiiiiienenrnnnaroronsens 13
2-5 Default SWitch Settingscovvrtniirerineerererererererererersnesasananes 156
2-6 Cable Preparationcoviiiiuieeerennereenneeeronnesessnneestannenesnnnns 16
2-7 GPIO Interface ConNector PINOULScuveeuurrenereenneeenerosoeesoaesansaas 17
2-8 Recommended Peripheral Transceiver CirCUituvuviiiireeerererereresraraassn 18
2-9 Recommended Peripheral Driver Circuitc.ccitiiiiiiineieieiereneasniararans 18-
2-10 Recommended Peripheral Receiver CIrCUItSvvrrvirirnrnenererenaneasasanans 19
2-11 Recommended Peripheral Receiver CircUitsuovuieiiiiiieioensesesesassssssons 19
2-12 Recommended Peripheral Transceiver CirCUitscvvvuerereeronveceseannns 20
2-13 Installing the GPIO Interface AP 22
3-1 Output: FullHandshake Timingcuvttiueurunreronreeseresesesenenanaerons 27
3-2 Output: PartialHandshake Timingccveiteninetttiinrerrnneeennaneernnnnnn 28
3-3 Output: Strobe Handshake Timingcoiuitiiiniiiiiiiiiiietitienenanrananns 28
3-4 Input: FullHandshake Timingccceiieeannernnneneeeaneereoanneeernnneneanns 29
3-5 Input:PartialHandshake Timingccoiiiiiiiinririnnnreennnneennn, e 30
3-6 Input: Strobe Handshake Timingicceiiiereninreiviinnenensieieeesnnnenns < 31
A-1 CRBItASSIGNMENTStetttteniiinerreeanenaunaeeesasnonasasessnnneesons 56
A-2 SR BIitASSIGNMENTSciiitttetetteiniateereeeannnrecesasnaseseseannnnensens 87
A-3 Full Handshake Timing Diagram e e r et te it eee et e eaaaans 62
A-4 Partial Handshake Timing Diagramccceireereennennnneeroeonnnoceeaeanin 63
A-5 CTL-Strobe Timing Diagramcoiiieiiiieiiinierivieiiineieniioiisrenacsnnns 64
A-6 GPIOEXDIOded Viewvtiiiiiiiiieiiireerereeeeeeeeeesrssarenenenennannenns 67
A-7 Interface Schematic Diagramcccettiininnnnreeennonnneesorononcsssansns 68
A-8 Interface Component LocationDiagramciiiiiiiiiiiiiiiiiaeianan, 70

Tables:
1-1 Hardware Specificationscciviitiiiiiiniiinniienneerneeennneennrennaeens 6
2-1 Default SWitch Selectionsiiiiiirriiriieriterrinerenerennereenseonnnen 14
2-2 POrt CoNfigUIBLIONS . ..uvitiiiirrnt e veeeeennesnnsessassoesesosnseonneeonness 16
3-1 8-BitPorts e et ettt ettt s e tasaeee e e e tasas 25
3-2 1B-Bit POrtS ..ottt it i e i et e e e eaeaaaaas 26
A-1 HandshaKe Linesccuiiiriireeerineennneeenneensnecnnasenasosonerensrsans 60
A-2 HP 82940A GPIO Interface Replaceable Partscoevevivierneeeennnnnnnnas 66

Section 1

General Description

Introduction

The Hewlett-Packard GPIO Interface is a general-purpose interface that provides 16-bit or dual 8-bit data
exchange between HP Series 80 Personal Computers and peripheral devices. The interface can transfer
data in the “half-duplex” mode, which requires either an input or output handshake.

The hardware and software characteristics of the interface are extremely flexible. The data exchange
timing and logic can be configured by switches or dynamically under program control to meet a wide
variety of peripheral requirements.

This manual contains the general description, installation, hardware theory of operation and software
information and operating instructions.

1/0 ROM

In order to make use of the capabilities of the HP 82940A GPIO Interface, an I/0O ROM is required. The
I/0 ROM (P/N 00085-15003 for the HP-85/83 or P/N 00087-15003 for the HP-87) plugs into an HP 82936A
ROM Drawer which is installed into a port at the back of the HP Series 80 Personal Computer.

Specifications

The HP 82940A GPIO Interface provides two 8-bit, low-power, bi-directional ports (A and B), and two
8-bit, output only ports (C and D). Each port uses a two wire handshake for I/0 data, and each port can be
operated independently of the others in byte mode. In word mode, the interface can also be configured for

16-bit word mode operation. Data transferred via ports A and B use the A or B handshake lines. Data
transferred via ports C and D may also use the CTLO/STO or the CTL1/8T1 handshake lines.

‘Two general purpose control bits can be written, and two status bits can be read. Depending on the
application, port A or port B handshake lines can also be used as general purpose control and status bits.

The interface provides eight different hardware configurations for eight-bit ports, all of which may be
selected by program statements.

The HP 82940A GPIO Interface consists of one circuit board mounted in a case. The case plugs into any
one of the computer I/0 ports. A 24-conductor, shielded cable is provided for connection to the peripheral
device. The cable is approximately 4 meters (13 feet).

6 Section 1. General Description

Data Lines:

Table 1-1. Hardware Specifications

16 low-power bi-directional, DAO-DA7 (port A), DBO-DB7
(port B), and 16 output only, DCO-DC7 (port C), DDO-DD7
{port D) ‘

Control Lines:

4 Control, 2 Flag, 2 Status

Signal Lines: TTL and open collector
” Dimensions Approximately 16.7 X 12.7 X 1.5¢cm
(6.59 X 5X0.59in).
Weight 0.5kg (1.1 Ib)
Cable Length Approximately four meters. (13.12 feet)

Operating Temperature

0°t0 55°C(32°to 131°F).

Power Requirements

The computer mainframe supplies all power for the interface ,
via the plug-in module ports on the back panel.

Section 2

Installation

Unpacking and Inspection

If the shipping carton is damaged, ask the carrier’s agent to be present when the interface is unpacked. If
the interface is damaged or fails to meet electrical specifications, immediately notify the carrier and the
nearest HP sales and service office. Retain the shipping carton for the carrier’s inspection. The sales and

service office will arrange for the repair or replacement of your interface without waiting for the claim
against the carrier to be settled.

Installation

The complexity of the installation procedure depends on the device to be interfaced to the computer. The
interface will have to be configured, and its cable properly prepared to meet your needs. This involves
cutting the cable to the proper length, proper termination of the cable wires and the setting of default and
select code switches located within the interface case. The following paragraphs will instruct you in
configuring and preparing your interface. ‘

~ Figure 2-1. GPIO Interface Disassembly

7

8

Section 2: Installation

Disassembly and Preparation of the GPIO Interface Cable
The GPIO interface is shipped with one 4-meter-long, 24-conductor, shielded cable with both ends

terminated to the interface.

The following steps are given for preparing the interface cable prior to installation. Refer to figure 2-7 for

the connector pin-outs and wire color codes. Reverse the disassembly procedure to reassemble the

interface.

1.
2.

6.

7.

10.
11.
12.

Place the interface on a flat surface with the bottom cover facing up (screw heads showing).

Remove the seven screws shown in figure 2-1 and lift the cover, being careful not to lose the ground
clip.

Carefully lift the circuit board out of the top cover and place on a flat surface, with the component
side up, and the cable on the left (as shown in figure 2-2).

Determine the required cable length or lengths for your particular application. Remember that cable
A contains the port A and port C data and handshake lines, and cable B contains the port B and
port D data and handshake lines.

The maximum supported cable length (from card to peripheral after installation) is 4 meters. After
installation, this will give one cable that is 4 meters long, or two cables that are 2 meters long, or any
combination in between. If two cables longer than 2 meters each is required, another 4-meter cable
can be ordered. The cable part number is 8120-3190.

Cut the cable, being sure to leave some extra length for slack.

Note: After the cable has been cut, all unused wires must be properly terminated.

If an entire cable (A or B) is not to be used, either remove the unused portion of that cable by
removing the connector, or sleeve each wire in that unused cable to prevent shorting of the wires.

- Note: Removal of an unused cable will leave a hole at the rear of the interface case after reassembly.
This hole should be covered with electrical tape to keep out forelgn material.

Determine the select code and default configuration that your peripheral will require and set the
appropriate switches, as shown in figures 2-3 and 2-4.

After the select code and default switches have been set and the cable has been cut, re-install the
circuit board in the case with the ground clip properly positioned. Reverse steps 1 through 3 of the
disassembly instructions to re-assemble the interface.

Refer to figure 2-6 for instructions 9, 10 and 11.

Strip off the outer plastic jacket about 10 cm (4 inches).
Cut off the outer shield even with the end of the outer plastic jacket. ;
Cover the end of the jacket and outer shield with heat-shrink tubing or electrical tape.

For the following conditions, sleeve the lines individually and leave th_em floating:

- o If some or all of the lines in an output only port (port C and/or port D) are not used.

e Ifall of the lines in a bi-directional port are not used.

Section 2: Installation 9

13. If some of the lines of a bi-directional port (used for input only) are not used and a low level is
required on the unused lines, the unused lines should be pulled low by a 1 k() resistor to ground. Use
one resistor per line. ’

Note: When some of the lines of a bi-directional port are tied low, an output operation on that port
should not be attempted.

The connector pin-outs for the GPIO are shown in figure 2-5.

A

N

Cable A
(Port A and Port C)

Approximately -
4 Metres

If The Connector With The Unused
Cable |s Not Removed, Each Unused
Wire Must Be Individually Sleeved.

Cable B
. r (Port B and Port D) —)

|) L

r e] ~
L | L |

J J p—
|- — Approximately - ’

: 2 Metres

r fud]
[| 1]

J J o

Figure 2-2. Preparing the GPIO Interface

10 Section 2: Installation

The select code switches and default switches are set at the factory as follows:

Select Code =4

Device Address =6
Handshake Mode =Full

Output Enable Register - = Not Enabled

Data, Flag/Status and CTL Logic Sense = Positive True Logic

Verifying or changing the select code or default conditions requires disassembly of the interface housing.
If this is necessary, refer to the following disassembly procedure and to the discussion of the function
requiring change covered in this section.

Select Code

The select code is preset to “4” at the factory. To change this setting, it is necessary to change the position
of the switch segments 2, 3, and 4 of switch S1. Segment 1 of S1 is not used. Select codes 3 through 10 may
be set with these switches. Select codes 1 and 2 are reserved for the computer CRT and internal printer,
respectively. ‘

The select code and configuration (default) switches found on your interface card may be either the slide
or rocker type. To set the switch segments to “1”, either depress the “1” side (as marked on the circuit
card) of the rocker switch or slide the tab of the slide switch to the “1”°. To do this, use the point of a pencil
or other similar object. The select code, which is preset at the factory, is “4” and shown selected in figure
2-3 for both switch types.

Note: If you change any of the factory settings, make sure that you change the proper switch
segments. Do not disturb the settings of adjoining switches. The small tip of a pencil or similar object is
recommended for this purpose.

Select Code Switches

Switch segments 2, 3 and 4 of switch S1 are preset at the factory for select code “4” as follows:

¢ Switch segment 2 set to “0”.
® Switch segment 3 set to “0”.

¢ Switch segment 4 set to “1”.

The “0” and “1” positions are labeled on the circuit board.

Select codes 3 through 10 may be set with these three switch segments. To change or verify the factory
setting, orient the circuit board as shown in Figure 2-3 and locate switch segments 2, 3 and 4. Next,
identify the “0” and “1” switch positions on the circuit board. You may verify that select code “4” is
properly set by comparing the actual positions of switch segments 2, 3 and 4 with those illustrated. They
should be the same.

Section 2: Installation 1

To change the select code, refer to the table and set switch segments 2, 3 and 4 as required for the select
code chosen. For example, if select code “3” is to be set, the three switch segments must all be set to “0”. In
this case, if the switches are the slide type, slides 2, 3 and 4 must all be set to the “0” position; if they are
the rocker type, all three rockers must be pressed down toward the “0” position.

g —
-— The select code is preset to “4’ at the factory and is
pr— shown below.
D
D To change the select code, locate the desired code in
- the table and set the corresponding switch segments.
o Set the rocker switch segment by depressing the ‘O
o or "1 side with a pointed object. Depressing the “0"
-— side selects 0" for that segment.
0 1234 86T L
D[]m]l][m[] p— Set the slide switch segment by moving the slide tab
| S2 ﬁﬁfn 0 Y toward the “0” or “'1” side with a pointed object.
(- Sliding the tab to the “0’ side selects "'0" for that
S pres—_ segment.
—

Select
Code S$1(2) $1(3) S1(4)
3 0 0 0
[PRESET — 4 0 0 1
5 0 1 0
6 0 1 1
7 1 0 o}
8 1 0 1
9 1 1 0
10 1 1 1

0=0n/Closed 1 =0ff/Open

Figure 2-3. Select Code Switch Settings

12 Section 2: Installation

Device Address Default Switches

Switch segments 1 through 3 of switch S2 are preset at the factory for device address ‘06" as follows:

e Switch segment 1 set to “1”,
e Switch segment 2 set to “1”,

e Switch segment 3 set to “0”.
The “0” and “1” positions are labeled on the circuit board.

Any device address from 0 through 7 may be set with these three switch segments. To change or verify the
factory setting, orient the circuit board as shown in figure 2-4 and locate switch segments 1 through 3.
Next, identify the “0” and “1” switch positions on the circuit board. You may verify that device address
“06” is properly set by comparing the actual positions of switch segments 1 through 3 with those
illustrated. They should be the same.

To change the factory setting, refer to the table and set switch segments 1 through 3 as required for the
device address chosen. For example, if device address “7” is chosen, switch segments 1, 2 and 3 must be
set to “1”. In this case, if the interface is equipped with slide switches, move the slides for segments 1, 2
and 3 to the “1” position. If'they are rocker switches, press the rockers down toward the “1” position for
segments 1,2 and 3.

1234 847

(oooogod

s2 \'__

1%
10

SI

L]

Section 2: Installation 13

~ The device address switches are preset to 06’ at

the factory and are shown below.

To change the device address, locate the desired
address in the table and set the corresponding
switch segments.

Set the rocker switch segment by depressing the ‘0"
or “1"” side with a pointed object. Depressing the
00" side selects ‘O’ for that segment.

Set the slide switch segment by moving the slide tab

toward the 0" or 1" side with a pointed object.
‘Sliding the tab to the "0 side selects “0" for that
segment.

Address S$1(1) $1(2) $1(3)
00 0 0 0
01 0 0 1
02 0 1 0
03 0 1 1
04 1 0 o
05 1 0 1
| PRESET—~ 06 1 1 0
07 1 1 1
0=0n/Closed 1 =0ff/Open

Figure 2-4. Device Address Default Switch Settings

14 Section 2: Installation

Default Switch Settings

The configuration switch selections determine the configuration (default condition) at power-on and reset.

Refer to table 2-1 for available configurations. Refer to figure 2-5 for setting the following switch

segments:

Switch Segment

Table 2-1. Default Switch (S2) Selections

Function

S2(1), S2(2), S2(3)

»

S52(4)

S2(5)

S2(6)

S2(7)

S52(8)

Determines data port configuration (refer to table 2-2 and figure 2-4).
Device addresses 00 through 07 only may be configured by the switches.
Addresses 0 through 15 may be selected by writing to Register 5.

Protects the output drivers. Factory setting disables output ports (0 = not
enabled, 1 = enabled). When this switch is set to 1, Register 8 (output
enable register) can be written to enable output capability on ports A and
B.

Determines handshake mode; 1 = partial, 0 = full.

Determines data line logic sense; 0 = positive-true logic, 1 = negative-true
logic.

Determines FL.G- and ST- logic sense; 0 = Busy-High, Ready-Low; 1 =
Busy-Low, Ready-High.

Determines CTL- logic sense; 0 = Set-High, Clear-Low; 1 = Set-Low, Clear-
High.

With the exception of S2(4) these switches can be overridden by programming. The data port

configuration is programmed by modifying Register 5. The handshake mode is programmed via Reglster

4 and the logic sense modes are controlled through the contents of Registers 3 and 4.

The Output Enable switch S2(4) is factory preset to the “0” (not enabled) position to protect the interface
until the cable is cut and properly prepared. Once the cable(s) have been finished this switch should be
moved to the 1 (enabled) position so that the interface may output data. If there is any question

concerning proper cable preparation, leave this switch at “0” and attempt input operations to confirm
correct switch/cable configuration.

~Note: Device address (port configuration) may be 00 through 15 by modifying the contents of register

5. Only device addresses 00 through 07 may be selected by setting segments 1, 2 and 3 of switch S2

_ {default condition).

T

Section 2: Installation 15

Figure 2-5.

Default Switch Settings

-
[
D To change the default condition, locate the desired
e condition in the table and set the corresponding
" . .
prem— switch segments.
D
" Set the rocker switch segment by depressing the 0"’
o or 1" side of the switch with a pointed object.
D pr— Depressing the “0" side selects 0" for that
Y segment.
0 1234 551[1 L
| Daoono N Set the slide switch segment by moving the slide tab
S2 1234 0 "y . . . - vipye
111} p— with a pointed object. Sliding the tab to the “0O
|
S| Y ‘selects ‘0" for that segment.
S2(4) S$2(5) $2(6) $2(7) $2(8)
PRESET-~ 0 0 0 (o)
S2 Segment Function ““1'* Setting 0"’ Setting
4 Output Enable Register Enabled Disabled
5 Handshake Mode Partial Full
"6 Data Line Logic Sense Negative True Positive True
7 Flag/Status Logic Sense Busy = Low, Ready = High Busy = High, Ready = Low
8 CTL — Logic Sense Set = Low, Clear = High Set = High, Clear = Low

16 Section 2: Installation

Table 2-2. Port Configurations

Device | Selected Data Transfer Handshake #of Transfer Direction
Address | Data Port Configuration Lines Bits Control Line
00 Port A Bi-directional port CTLA/FLGA 8 OUTA line shows direction
01 Port B Bi-directional port CTLB/FLGB 8 OUTB line shows direction
02 Inport A | 2 uni-directional ports CTLA/FLGA 8/8 OUTA line shows direction
Qutport C
- 03 InportB | 2 uni-directional ports CTLB/FLGB 8/8 OUTB line shows direction
Outport D
04 Port C Output only port CTLO/STO 8 Does not use OUT-line
05 Port D Output only port CTL1/8T1 8 Does not use OUT-line

06 Ports A/C | Bi-directional ports A & C CTLA/FLGA 8 OUTA line shows direction
’ tied together

07 Ports B/D | Bi-directional ports B & D CTLB/FLGB 8 OUTB line shows direction
tied together

08 Ports Bi-directional ports CTLA/FLGA 16 OUTA line shows direction
A&B (port A LSBs, port B MSBs)

09 Ports Bi-directional ports CTLB/FLGB 16 OUTB line shows direction
A&B {port A LSBs, port B MSBs)

10 In ports 2 uni-directional ports CTLA/FLGA | 16/16 | OUTA line shows direction

A&B {ports A & C LSBs, ports B &
Out ports | D MSBs)
ca&b

11 In ports 2 uni-directional ports CTLB/FLGB | 16/16 | OUTB line shows direction
A&B (ports A & CLSBs, ports B &
Outports | D MSBs)

ca&abD

12 Ports Output only ports CTLO/STO 16 Does not use OUT-line
CcC&D (port C LSBs, port D MSBs)

13 Ports Output only ports CTL1/ST1 16 Does not use OUT-line
C&D {port C LSBs, port D MSBs)

14 Ports A & | Bi-directional ports CTLA/FLGA 16 OUTA line shows direction

B/C&D | (ports A&C tied —LSBs,
ports B & D tied — MSBs)

15 Ports A & | Bi-directional ports CTLB/FLGB - 16 QUTB line shows direction
B/C&D | (ports A & Ctied —LSBs
ports B & D tied — MSBs)

UNUSED HEATSHRINK
LINE TUBE
CABLE TO HEATSHRINK
INTERFACE TUBE
DATA
LINES
/

’-—2cm—+—l0 em—————————>
(3/4in (4in.)

Figure 2-6. Cable Preparation

\\

4 5 6

7 8 9 10

Section 2: Installation

| 12

hhooooooood
P rPrY

19445

// / / 7] \\\\\\
17 18 19 20 21 22 23 24

J1 Pin J2 Pin .

Assignment | Assignment Wire Color

1 GND 1 GND Black (0)
2 DC5 2 DD5 White/Blue (96)
3 DC7 3 DD7 White/Grey (98)
4 DC2 4 DD2 White/Orange (93)
5 DCO 5 DDO White/Brown (91)
7 OUTA 7 OUTB White/Black/Red (902)
8 CTLA 8 CTLB White/Black (90)
9 DA7 9 DB7 Grey (8)
10 DAS 10 DB5 Blue (6)
11 DAO 11 DBO Brown (1)
12 DA2 12 DB2 Orange (3)
13 GND 13 GND White (9)
14 DC4 14 DD4 White/Green (95)
15 DC6 15 DD6 White/Violet (97)
16 DC3 16 DD3 White/Yellow (94)
17 DC1 17 DD1 White/Red (92)
18 FLGA 18 FLGB White/Black/Yellow (904)
19 RESA 19 RESB White/Black/Orange (S03)
20 CTLO 20 CTL1 White/Black/Brown (901)
21 DAG6 21 DB6 Violet 7
22 DA4 22 DB4 Green (5)
23 DA1 23 DB1 Red {2)
24 DA3 Yellow (4)

24 DB3

Figure 2-7. GPIO Interface Connector Pin-Outs

17

18 Section 2: Installation

Recommended Peripheral Driver and Receiver Circuits

Sixteen of the data I/0 lines (ports A and B) are connected to I/O expanders. These lines have bi-
directional data transfer capability. The input voltage to these lines must not exceed 5 volts.

Here are typical specifications: »

Vi, max =5.0V
Vi, high=>2.0V,<5.0V

\ e

Vinlow=<0.8V

- -~ INTERFACE- —————— — —

U3, u4,Us 10K

o I . low<45mA @045V
o I ..high>240,.V @24V

CABLE

-~

[—=—= PERIPHERAL-— - ——————— ——

/

Figure 2-8. Recommended Peripheral Transceiver Circuit

(Bi-directional Data Transfer on Ports A and B)

The port A and B data lines may also be connected for input only or output only data transfer as follows:

——— -INTERFACE— —— ——— — — .

u3,u4,us
10K

CABLE

A 4

~ — — — PERIPHERAL— — — — —— —
+5V

3.3K TTLor DTL

+5V

2.2K
2.2K

L 10K

Figure 2-9. Recommended Peripheral Driver Circuit
(Ports A and B Output Only)

Section 2: Installation 19

—— — — INTERFACE — — —— — —— = CABLE — ———— PERIPHERAL—— — —~— — — —
| |
! ! -
l ' <
I ! TTL,OTL,
+5V I | or OPEN
U3,U4,U5 ok | : COLLECTOR
' 1
|)
i i \ﬁ
' [+5V
| I
| I 10K
I V<5V]
| l '
| ! -
[
: v I
]
______________ — L o o Y -

Figure 2-10. Recommended Peripheral Reciever Circuits
{Ports A and B Input Only)

Ports C and D utilize open collector output devices as line drivers and are therefore capable of output data
transfer only.

Here are typical specifications:

e I ..low=20mA foreachline
® V., .low=<05V

e V_.high=5V maximum

— — -INTERFACE-— ——————— CABLE r~——— PERIPHERAL— — — ——— —— — — —
+5V ‘
(I.5K%
~,
27K TTLor DTL
U6,u7,us
N
>4 +5V

OPEN COLLECTOR 2 2K

2.2K

. 10K

I
!
i
I
|
|
|
!
|
|
|
|
I
I
I
|
I
I
I
I

Figure 2-11. Recom.mended Peripheral Receiver Circuits
(Ports C and D, Lines CTLO and CTL1,
Output Only)

20 Section 2: Installation

— — - INTERFACEf —— - j PERIPHERAL — — — —
| I ouT
| I
+5v ' |
10k | I
+5V
} U3, U4, US I |
' I 1.5K
! |
2.7K
| | !
us6, U7, U8 I |

+5V

2.2K

I 2.2K

Figure 2-12. . Recommended Peripheral Transceiver Circuits
(Ports A and C, Ports B and D, Wired Together)

When using tied-together ports (device addresses 06, 07, 14 and 15) the above configurations are typical.
Integrated circuits that perform both functions are available such as the HP-IB driver/receiver
(75XX160). This configuration is recommended for long interface cable lengths due to the high noise
immunity of low impedance drivers.

Section 2: Installation 21

Installing the Interface and Connecting the Peripherals

Make sure you read and understand this entire section before you install the interface or connect a
peripheral device to it.

Safety Precautions

Manufacturers of peripheral devices often use differént grounding techniques. In some instances, logic
ground is allowed to float with respect to earth ground in an effort to reduce ground return interference
with digital signals. This may cause a voltage level between the two grounds to be high enoggh to be
hazardous. Therefore, care should be taken when you are installing the interface or when peripherals are
being connected to or disconnected from the interface.

On the HP 82940A GPIO Interface, the ground contact connects to the cable shield, and, when the
interface is installed in the HP Series 80 Personal Computer, the ground contact connects to earth ground
and to logic ground. On the peripheral end of the cable, the shield is not terminated to any ground. By not
connecting the cable shield on the peripheral end, two things are accomplished:

e The possiblity of a ground loop problem is greatly reduced.

e Ifthe peripheral’s ground is floating or defective, touching the ground contact when the interface is
removed from an I/0 port cannot result in a shock hazard.

You should keep in mind, however, if the interface is removed from an I/0 port while it is connected to a
peripheral, logic ground does appear on the edge connector of the interface. Unless you know the voltage
level of logic ground with reference to earth ground, never touch the edge connector while the interface is
terminated to a peripheral.

When the HP 82940A GPIO Interface is installed in the computer, earth ground and logic ground become
connected together. Thus, if logic ground on a peripheral is never connected to earth ground or, if it is
defective, it may have a voltage level considerably different than logic ground on the interface. This level
may be high enough to be hazardous unless peripherals are connected to the bus in an exacting manner.

If you don’t know the grounding technique used on a peripheral, check with the manufacturer of the
device. After verifying that suitable grounding techniques have been used in your peripheral, use the
following steps in the order given to install the interface and peripherals to the computer’s bus.

WARNING
To avoid personal injury and equipment damage, read and understand the preceding safety
precautions and do not deviate from the order of the following steps to install the interface and
peripheral.

1. Turn the power switch, located on the back of the HP Series 80 Personal Computer, to the off
position. However, make sure the power cord is plugged into a grounded (3-wire) ac outlet.

2. Refer to figure 2-3 an& install the interface into one of the I/O ports.

3. Make sure the power switch on the peripheral to be connected to the HP 82940A GPIO bus is in the
off position:

4. Connect the interface cable to the peripheral.

5. After the peripheral has been connected to the HP 82940A GPIO bus, turn the computer and the
peripheral power switches on.

22 Section 2: Installation

Figure 2-13. Installing the GPIO Interface Installation

Removing Peripherals/Disconnecting the Interface

Use the following steps in the order given to remove peripherals from the bus or to disconnect the
interface from the HP Series 80 Personal Computer.

CAUTION
Do not remove the interface from the computer with the power switch on. Doing this may cause
damage to either the interface, computer or both.

1. Turnthe power switch on the peripheral connected to the HP 82940A GPIO bus to the OFF position.

2. Disconnect the bus cable from the peripheral. If you intend to disconnect the interface from the
’ computer first make sure that the bus device power switch is in the off position. Then remove the
interface cable from the peripheral and proceed with step 3.
3. Turn the power switch on the back of the computer to the OFF position. Make sure the interface
- cable is not connected to the peripheral and proceed with step 4.

4. Remove the interface from the I/0 port.

Section 3

Using Your GPIO Interface

Introduction

The HP 82940A GPIO Interface allows your HP Series 80 Personal Computer to communicate with a wide
variety of devices through the use of parallel data exchanges. A parallel interface sends or receives an

entire byte or word of data in one operation. This is the most basic, and most versatile, method of I/0.
However, it is the inherent versatility of this interface that makes it appear somewhat confusing at first.
Don’t be overwhelmed. Consider each interface characteristic of your peripheral device and deal with
these characteristics one at a time. For example, there are 16 primary addresses to choose from on this
interface. But if you know that your only requirement is the input of 8-bit data, you can eliminate 14 of the
16 choices. By using this “process of elimination” approach, you can master a parallel interfacing task in
short order.

This section explains the use of the GPIO interface from a programming point of view. The emphasis is
on accessing the capabilities of the interface using program statements. Unlike the HP-IB interface
however, a basic parallel interface does not isloate you from the hardware. Many references to the
characteristics of the hardware are necessary to properly explain the various features available to you. If
your background is solely in software, you will probably want to solicit the help of a person with some
hardware background. In fact, some technical facility is practically a necessity during the installation of
a parallel interface because there aren’t any connectors wired to the HP 82940A GPIO Interface when you
receiveit.

Throughout this éection, the abbreviation “GPIO” is used when referring to the HP 82940A parallél
interface. This stands for “General Purpose Input and Output” and reflects the flexible nature of the
interface. .

Essentials of a Parallel Interface

The introduction recommended that you consider each interface characteristic individually whenever
possible. What are these essential characteristics? In most cases, a parallel interface will be successful if
each of the following characteristics has been properly determined:

e Direction of data flow

e Number of bits in a unit of data

e Method and timing of handshake

o Logical polarity of data and control lines

e Typeof I/0 statement used in the program
Note that these five categories represent only the essentials of a parallel interface. There may be other
factors to consider in individual applications, such as parity, end-of-line sequence, and creative use of
interrupts. But no amount of attention to parity or end-of-line sequence will get an interface working if the

handshake or polarity is wrong! Therefore, deal first with the five factors listed above. Extra features and
special capabilities can be added after the GPIO is properly handling the basic communication task.

23

24 Section 3: Using Your GPIO Interface

Direction of Data Flow

Because an interface connects to both the computer and the peripheral device, it is important to avoid
confusion about the direction of data flow. The output of the computer is the input to the peripheral device.
All references to data direction in this section are given with respect to the computer. This is shown in the
following diagrams.

Periphera! /] GPIO HP-85
Device Computer
\\l ouTPuT Interface
Periphe\ral GPIO HP-85
Device INPUT tortace Computer

There are four basic choices when selecting data direction with the GPIO interface. They involve
direction of data flow and drive capability. Two kinds of output ports are available. One kind has a small
drive capability of about two standard TTL loads. The other kind has a larger drive capability of about 12
standard TTL loads. A list of the data direction choices available is shown below. A detailed description
of each choice is given in the following paragraphs. Typical drivers and receivers for use with these
options are shown in the Installation section, page 00.

1. Bidirectional—small output drive (choose this for input-only applications)
2. Bidirectional—large output drive

3. Input and output on separate lines—large output drive

4.

Output only—large output drive,

Choice #1 is a bidirectional port with a small output drive capability. This type of port is recommended for
input-only operations and for bidirectional interface to light loads. A “light’”’ load is a circuit that sources
less than 4.5 mA. Some examples are NMOS interface chips, one TTL gate with a 2.2 kQ pull-up resistor,
or CMOS gates with a 10 kQ pull-up resistor.

Choice #2 is a bidirectional port with increased output drive capability. This type of port is recommended
for bidirectional interface to heavier loads. The output drivers on this port type are open-collector
transistors rated to sink 20 mA. Any bidirectional load that sources more than 4.5 mA must be connected
to this port type.

Choice #3 is similar to choice #2, but there is a significant difference. The bidirectional port (choice #2)
uses a common data bus for input and output. The port type of choice #3 uses one data bus for input and a
separate data bus for output. This type of port is useful when interfacing to a device that has separate
input and output lines which cannot be connected together for electrical reasons.

Choice #4 is for output-only applications. This port type uses open-collector drivers rated to sink up to 20
mA.

Section 3: Using Your GPIO Interface 25

Number of Bits and Ports

The GPIO interface allows the selection of either 8-bit or 16-bit ports. The number of ports availéble
depends upon the size you choose and the data direction requirements. If you are using 8-bit ports, there
can be a maximum of four independent ports. These are two bidirectional ports with small output drive
and two output-only ports. Note that other configurations yield fewer ports. For example, if you need
bidirectional ports with large output drive, there can only be two. The reason for this will become
apparent as you read the next topic on addressing and configuration.

A similar situation exists with 16-bit ports. You can have two of them if one is output only and the other is
bidirectional with small output drive. However, any other configuration is limited to one 16-bit port.

Using Primary Addresses
You select the type of port by specifying a primary address in your LiLIT FUT, EMTER, or TRHAMEF

statements. In essence, each type of port is treated as a separate device and is accesssed by using a device
selector. There are other ways to access a port, but they are all related to primary addresses. The primary
address can be written directly into register 5, and the default configuration switches allow any primary
address for an 8-bit port to be selected automatically at power-on or reset. However, the simplest way to
avoid surprises and confusion is to include the desired primary address in your device selector when
performing I/0 operations.

If you do not specify a primary address in the device selector (e.g. CHITFUT &), the last primary
address specified is used. If no primary address has been specified since the last power-on or reset, the
address set by the default configuration switches is used.

The following tables summarize the port options available. The tables also indicate which lines are used
for handshake and direction indicator for each port type. The handshake lines are discussed at length in
Handshake Methods (covered next). The direction indicator is a line used with a bidirectional port to
indicate in which direction the data is currently flowing. This line is often used for the control of tri-state
gates or selector circuits. It presents a logic low when the interface is outputting and a logic high when the

interface is inputting.

Table 3-1. 8-Bit Ports

. . Primary .. Handshake Direction
Data D
ata Direction Address Port Description Lines Indicator
00 Port A CTLA/FLGA OUTA
Bidirectional:
small output drive
01 Port B CTLB/FLGB ouTB
Input to Port A
Input and output 02 Output from Port C CTLA/FLGA OuTA
on separate lines;
large output drive Input to Port B
03 Output from Port D CTLB/FLGB OuTB
04 Port C CTLO/STO none
Output only;
large output drive
05 Port D CTL1/ST1 none
Port A and Port C
06 ! CTLA/FLGA OUTA
Bidirectional; wired together
large output drive
Port B and Port D
07 wired together CTLB/FLGB OouTB

26 Section 3: Using Your GPIO Interface

Table 3-2. 16-BitPorts

. . Primary .. Handshake Direction
Data Direction Address Port Description Lines Indicator
08 LSB" on Port A CTLA/FLGA OUTA
. . MSB* on Port B
Bidirectional,;
small output drive
09 same CTLB/FLGB ouTB
LSB inputon Port A
MSB input on Port B
Input and output 10 LSB output on Port C CTLA/FLGA OuTA
on separate lines; MSB output on Port D
large output
11 same CTLB/FLGB ouTB
‘ LSBonPortC
12 MSB on Port D CTLO/STO none
Output only;
large output drive
13 same CTL1/ST1 none
Port A and Port C
14 wired together (LSB) CTLA/FLGA OUTA
Bidirectional: Port B and Port D
large output drive wired togehter (MSB)
15 same CTLB/FLGB OUTB

Handshake Methods

A handshake is a sequence of electrical events used to synchronize a transfer of data. There is a brief
overview of the handshake process in the I/O ROM Owner’s Manual. With the GPIO interface, you have
four basic methods of handshake to choose from (with some variations, of course). These basic choices
are: ’

¢ Full handshake

¢ Partial handshake

® Strobe handshake

® Nohandshake
The handshake lines on the interface are called FLAG (FLG) and CONTROL (CTL). The FLAG line is
used to sense the handshake signal coming from the peripheral device, and the CONTROL line is used to
send a handshake signal from the interface to the peripheral device. (The output-only ports use a line

called STATUS (ST) to perform the same function as the FLAG line.) Exactly what signals are sent and
received depends upon the handshake mode that you select. Let’s look at the details of each method.

* As it is used here, the abbreviation “LSB” stands for “‘Least Significant Bits”. These are bit 0 thru 7 of the 16-bit word. Likewise,
“MSB” stands for “Most Significant Bits”. These are bit 8 thru bit 15 of the 16-bit word.

Section 3: Using Your GPIO Interface 27

Output Handshakes

Output handshakes are somewhat simpler than input handshakes, so they are presented first. The
following timing diagrams show only the essential action of the data and handshake lines. The line used
toindicate data direction has been left out for the sake of simplicity, and not all timing relationships have
been given numeric values. More complete timing information is available in Theory of Operation,
appendix A. These diagrams are intended to clai‘ify the concept of the handshake methods. The
important factors to note are the order of events and the causal relationship of events.

{ b
e B o

DATA OUT DATA VALID
True i
CTL tD —
False
Busy
FLG
Ready — —
t 12 13 14 5

Figure 3-1. Output: Full Handshake Timing

When the full handshake cycle starts, the interface checks for a READY indication on the FLG line. If the
line is READY, the interface places a new word of data on the DATA lines (t1). After a programmable
delay time (tD), the interface places the CTL line in the true state (t2). This signals the peripheral device
that the data is valid. The delay time is provided to ensure that the DATA lines are stable and valid before
CTL is asserted. This delay time is set by Register 6, which is explained later. When the peripheral device
sees the true state of the CTL line, it does whatever is necessary to input the data presented to it. The
peripheral device indicates that it is busy inputting data by placing FLG in the BUSY state (t3). This
serves as an acknowledgment to the interface that he CTL signal was received. Therefore, when the
interface sees FLG go BUSY, it can return the CTL signal to the false state (t4). When the peripheral
device has finished inputting data, it returns the FLG line to the READY state to indicate that it is ready
for the next cycle (t5).

28 Section 3: Using Your GPIO Interface

{ &
-1 !

DATA OUT DATA VALID
True R —{ f
CTL tD -}
False L—
FLG < tHo>f:

Figure 3-2. Output: Partial Handshake Timing

The key difference between full and partial handshake is that partial handshake does not check the FLG
line before it outputs the data. The output cycle can begin with the FLG line BUSY or READY. As in the
full handshake, the interface outputs the data (t1) and sets CTL to the true state (t2) after a programmable
delay (tD). This signals the peripheral device that the data is valid. The interface then waits for the
peripheral device to indicate that it has received the data. This is the reason for the name partial
handshake. The interface does not require a READY signal to start the transfer, but it does require an
acknowledgment to complete it. The peripheral device inputs the data and supplies the data accepted
signal by holding FLG in the READY state (t3) for at least 30 us (tH1) and then in the BUSY state (t4) for
at least 35 us (tH2). Note that although this action greatly resembles an edge-triggered event, it really is
not. The minimum state times mentioned are necessary for the interface to sense the READY to BUSY
transition. Once the interface senses the FLG signal from the peripheral device, it can return the CTL
signal to the false state (t5).

DATA OUT DATA VALID

True
CTL tD to

T ! T

t 2 3

False

Figure 3-3. Output: Strobe Handshake Timing

The strobe handshake for output is a very simple sequence. It is probably the most common handshake
method used in devices that do not implement full handshake. This method assumes that the peripheral
device is always ready and the FLG line is not used. (If your device is not always ready, then the “Output
Inhibit” feature can be used. This is explained in Selecting the Handshake Method.) The cycle starts with
the output of data (t1). After a programmable delay (tD), the interface sets CTL to the true state (t2). This
state is held for the delay time, then CTL is returned to the false state (t3). In other words, the interface
supplies data, followed by a strobe pulse to indicate that the data is valid.

Section 3: Using Your GPIO Interface 29 |

No Handshake

The “no handshake” option does not need a timing diagram. The interface simply places new data on the
DATA lines when it becomes available. The FLG and CTL lines are not used. The ASSERT and STATUS
statements can be used to supply your own handshake in this mode (see Direct Use of Control Lines).

Input Handshakes

One reason that the input handshakes are more complex than the output handshakes is that each input
handshake has two options for the timing of the interface’s read operation. These options are called
“READY to BUSY” and “BUSY to READY”.* In the following diagrams, both options are shown on the
same drawing. The upper part of each diagram shows the timing that is common to both options and the
READY to BUSY timing. The lower part of each diagram shows the timing changes that pertain to the
BUSY to READY option.

True 1+
CTL
False
Busy
FLG
Ready 1}
DATA IN

NEW DATA VALID

(Ready to Busy)

DATA IN
(Busy to Ready)

Figure 3-4. Input: Full Handshake Timing

READY to BUSY: When the full handshake cycle starts, the computer checks for a READY indication
on the FLG line. If the FLG line is READY, the interface requests data by setting CTL to the true state
(t1). The peripheral device sees this request and places data on the DATA lines (t2). The peripheral device
then signals that the data is valid by placing the FLG line in the BUSY state (t3). When the interface sees
this signal, it inputs the data (sometime between t3 and t4). The interface then signals that it has received
the data by returning CTL to the false state (t4). When the peripheral device sees that the data has been
received, it returns FLG to the READY state to prepare for the next cycle (t5).

* These names were derived from the state change on the FLG line that triggers the read operation in full handshake mode. However,
the terms are not meant to imply that FLG lines are edge-triggered. They are not. Also, these names are used to describe the timing
choices for all input handshakes, even though strobe handshake does not use a FLG line.

30 Section 3: Using Your GPIO Interface

BUSY to READY: When the full handshake cycle starts, the computer checks for a READY indication
on the FLG line. If the FLG line is READY, the interface requests data by setting CTL to the true state
(t1). This signal tells the peripheral device that it can place new data on the DATA lines. The peripheral
acknowledges the CTL signal by placing FLG in the BUSY state (t2). The interface then acknowledges
the FLG signal by returning CTL to the false state (t3). After all these acknowledgments are taken care of,
the peripheral device places new data on the DATA lines (t4). The peripheral device then signals that the
data is valid by returning FL.G to the READY state (t5). After the interface sees this signal, it inputs the
data (sometime between t5 of this cycle and t1 of the next cycle.)

True { f B
CTL
False
~ Busy — f
FLG [e— tH1—>]—tH2
(Ready to Busy)
Ready =
DATA IN

(Ready to Busy)

FLG thH1 —
(Busy to Ready)

Ready — f

_—

DATA IN
(Busy to Ready)

OLD DATA

VALID NEW DATA VALID

o e T

t1 12 3 14 15

Figure 3-5. Input: Partial Handshake Timing

READY to BUSY: The primary use of this handshake method is to input data that is being sent with a
strobe handshake from the peripheral device. Partial handshake does not wait for the FLG line to be
READY before starting the cycle. Regardless of the state of the FLLG line, the request for data is made by
setting CTL to the TRUE state (t1). It does not matter if the peripheral device outputs the data first or
starts the strobe pulse first. The important thing is that the data should be valid before the end of the
strobe pulse. This diagram shows the strobe pulse starting first as the peripheral device places the FLG
line in the READY state (t2). The data becomes valid before the end of the pulse (t3). Then the peripheral
signals that the data is valid by placing the FLLG line in the BUSY state (t4). The minimum state times of
30 us (tH1) and 35 us (tH2) are necessary for the interface to detect this READY to BUSY transition. When
the interface sees this transition, it inputs the data (sometime between t4 and t5). Note that the difference
between this option and the “BUSY to READY” option is timing of the input operation with respect to the
end of the CTL pulse, not the polarity of the FL.G pulse. Either option can be used with any polarity of
FLG pulse (see Setting the Logic Polarity).

Section 3: Using Your GPIO Interface 31

BUSY to READY: This is a variation of the previous method. Regardless of the state of the FLG line,
the request for data is made by setting CTL to the true state (t1). It does not matter if the peripheral device
outputs the data first or starts the strobe pulse first. The important thing is that the data should be valid
before the end of the strobe pulse. This diagram shows the strobe pulse starting first as the peripheral
device places the FLG line in the BUSY state (t2). The data becomes valid before the end of the pulse (t3).
Then the peripheral signals that the data is valid by placing the FLG line in the READY state (t4). The
minimum state times of 30 us (tH1) and 35 us (tH2) are necessary for the interface to detect the READY to
BUSY transition.

After the pulse on the FLG line is finished, the interface returns CTL to the false state (t5). The interface
then inputs the data (sometime between t5 of this cycle and t1 of the next cycle). Note that the difference
between this option and the “READY to BUSY” option is timing of the input operation with respect to the
end of the CTL pulse, not the polarity of the FLG pulse. Either option can be used with any polarity of
FLG pulse (see Setting the Logic Polarity).

True

CTL tD
(Ready to Busy)

-

False

DATA IN NEW DATA
Ready to Busy) VALID
t2t3 t4

CTL D
(Busy to Ready)
True
False
DATA IN OLD DATA VALID NEW DATA VALID

(Busy to Ready)

Figure 3-6. Input: Strobe Handshake Timing

READY to BUSY: This is a simple handshake method that can be used when you are sure that your
peripheral device can provide valid data in a fixed amount of time after a request signal. The peripheral
device is not given an opportunity to acknowledge any signals or control the handshake timing in any
way. Therefore, the FLG line is not used. The cycle starts when the interface requests data by setting CTL
to the TRUE state (t1). The peripheral device then places new data on the DATA lines (12). After a
programmable delay (tD), the interface inputs the data (sometime between t3 and t4). The interface
completes the cycle by returning CTL to the false state (t4).

BUSY to READY: This is a variation of the previous method. The cycle starts when the interface
requests data by setting CTL to the true state (t1). The peripheral device then places new data on the
DATA lines (t2). After a programmable delay (tD), the interface returns CTL to the false state (t3). Then
the interface inputs the data (sometime between t3 of this cycle and t1 of the next cycle).

32 Section 3: Using Your GPIO Interface

No Handshake

The “no handshake” option does not need a timing diagram. The interface simply inputs new data
whenever a data input statement is executed. The FLLG and CTL lines are not used. The ASSERT and
STATUS statements can be used to supply your own handshake in this mode (see Direct Use of Control
Lines).

Selecting the Handshake Method

The handshake characteristics of the GPIO interface are selected by writing various codes to interface
control registers. The registers of interest are Control Registers 4, 6, and 9. These are accessed by using

Register 4 - Data Normalization and Handshake Control

Most Significant Bit Least Significant Bit
Bit 7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 BitO
0 =Ready
Handshake to Busy Not Data Polarity
Method 1 =Busy Used (see “'Selecting the Logic Polarity™)
to Ready
Value=128| Value=64 | Value=32]| Value=16| Value=8 | Value=4 | Value=2 | Value=1

Register 4 has two primary functions. The lower four bits are used to select either positive-true or
negative-true data for each 8-bit port. This is explained in Selecting the Logic Polarity. The top three bits
are used to select the handshake method. The primary selection of handshake method is done with bit 6
and bit 7 as follows: ’

Bit7 | Bit6 | Handshake

0 0 Full
0 1 Partial
1 0 Strobe
1 1 None

Bit 5 of this register is used to select the input timing option. Its states are defined as follows:

Bit5 | Data Input Timing

0 READY to BUSY
1 BUSY to READY

Section 3: Using Your GPIO Interface 33

The meaning of all these options is discussed at length in Handshake Methods. The following is a
summary of all the choices, listed with the decimal value of the control byte used to select each choice.

Decimal Value
of Bit5 Handshake Method
thru Bit 7
0o Output: Full Handshake
64 Output: Partial Handshake
128 Output: Strobe Handshake
(0] input: Full Handshake; READY to BUSY
32 Input: Full Handshake; BUSY to READY
64 Input: Partial Handshake; READY to BUSY
96 Input: Partial Handshake; BUSY to READY
128 Input: Strobe Handshake; READY to BUSY
160 Input: Strobe Handshake; BUSY to READY
192 Input or Output: No Handshake

It is possible to write the values shown directly into Register 4. However, if you do that, you will also clear
all the data normalization bits. This gives all data ports a positive-true logic sense. If that does not cause
any problems, statements like the following can be used. These, and all other example statements in this
section, assume that the interface select code is 4.

COMTREOL 4,4 ¢ 128 | Sgt s=trobe handshake
isc regh control byte
COMTROL 4.4 @ %8 | Partial handskake, input BUSY to EERDY

COMTROL 4,4 & 132 U Turn off harndshake

You are encouraged to get into the habit of using comments on statements like these. The word
months after it was written. Anyone who needs to support a program will be very thankful for a little bit
of information about the action of a cryptic L. TE]. statement. Remember, that support person just
might be you!

Now suppose that you are concerned about affecting the normalization bits. There are two approaches to
this problem. First, and most common, is to set all the options in Register 4 with the same statement. This
simply means that you determine the value of the bits used for handshake control, determine the value of
the bits used for normalization, add those two values together, and use the sum as your control byte.

If for some reason you need to change the handshake bits after the normalization bits have been set,
that’s OK. The value of bits previously in the register can easily be maintained by using a couple extra
statements. The general technique is to read the current register contents, mask out the old handshake
bits, OR in the new handshake bits, then place the result back into the register. The following example
shows the details of this process.

18R STATUS 4,4 1+ .0 L o Réead surrent walus

1168 C=RIHANDCIS., O L Tlear B o thru BY

180 C=EIHIORCES D 4 Set partigl - handshake mode
138 COMTROL 4.4 0 dodrite new walue

34 Section 3: Using Your GPIO Interface

Another register affecting handshake is control Register 6. This register establishes the delay time
between data output and the setting of CTL, and it establishes the width of a strobe pulse. These times are
shown in Handshake Methods as “tD”. The value in Register 6 is used to estblish a delay time which is
added to a minimum time that is always present. The minimum times are generally around 60 ¢s, but
there are exceptions. Refer to appendix A for more specific details. ‘

- Register 6 - CTL Delay and Strobe Pulse Duration

Most Significant Bit Least Significant Bit
Bit7 Bit 6 Bit5 Bit4 Bit3 Bit 2 Bit1 BitO
Increment
0=10us Delay: Number of Increments
1=1ms
Value=128| Value=64 | Value=32| Value=16| Value=8 | Value=4 | Value=2] Value=1

The control byte in this register contains a delay value (bit 0 thru bit 6) and a range selection bit (bit 7).
When bit 7 is clear, the value of the other bits is multiplied by 10 us to determine the additional delay time.
When bit 7 is set, the value of the other bits is multiplied by 10 ms to determine the additional delay time.
In other words, the lower seven bits specify how many time intervals to use, and bit 7 defines the size of
each interval. This system yields two overlapping ranges that include times from 10 us to 127 ms. Here
are some examples:

of DTL delasuw
CTL delay

mE =irabhe pulse

The final handshake-related register is Register 9. This register has only one active bit. It is used to select
the Output Inhibit function. Although this feature is most often used with certain strobe handshake
devices, it can be used with any handshake method. When the Output Inhibit function is disabled, all
output handshakes work exactly as described in Handshake Methods.

If the Output Inhibit function is enabled, the output sequence is slightly modified. Enabling this function
causes an additional handshake line to be assigned as an inhibit line. If the output port is using CTLA as
a handshake line, then STO becomes the inhibit line. If the output port is using CTLB as a handshake
line, then ST1 becomes the inhibit line. If the output port is already using STO or ST1 as a normal
handshake line, then the Output Inhibit function cannot be used. The action of the Output Inhibit
function is simple. Before starting an output cycle, the interface first checks the inhibit line. If the inhibit
line is FALSE, the handshake proceeds in the normal manner. If the inhibit line is true, the interface
waits until inhibit returns to the false state before proceeding with the output operation.

Section 3: Using Your GPIO Interface 35

This function makes it easy to interface to devices that have a general busy line that is not part of the
normal handshake sequence. An example is a printer with an internal buffer. This type of device often
uses a strobe handshake, since all the internal buffer needs is a pulse to latch the valid data. However,
once the buffer is full, or a line ending is received, the printer goes busy and prints the entire buffer.
Buffers of this type usually cannot print and receive data at the same time. The GPIO interface must hait
its output while the printer is busy, hence the use of the Output Inhibit function.

Register 9 - Output Inhibit Function

Most Significant Bit Least Significant Bit
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 BitO
Enable
Not Used Output
Inhibit
Value=128| Value=64| Value=32| Value=16| Value=8| Value=4 | Value=2 | Value=1

Bit 0 is the only bit used in this register. When bit 0 is clear (value = 0), the Output Inhibit function is
disabled and no inhibit line is used. When bit 0 is set (value = 1), the Output Inhibit function is enabled
and the inhibit line is assigned and monitored as described two paragraphs ago. Access to this register is
shown in the following example statements:

COMTREOL 4,5 ¢ 1 1 Ernabkle Dutput ITekibit
COMTROL 4,% @ @ | Dont't Inkibit Output

Setting the Logic Polarity

Register 3 allows you to individually determine the logic sense of each handshake line. Register 4 allows
you to individually determine the logic sense of each data port. This is a tremendous amount of flexibility.
The term logic sense (or logic polarity) refers to whether the lines are treated as positive-true or negative-
true. A positive-true line interprets a logic low as a “0” and a logic high as a “1”. A negative-true line
interprets a logic low as a “1” and a logic high as a “0”. Note that if you change the normalization of any
CTL line, the line changes states immediately after the normalization bit is changed in the control

register.
Register 3 - Handshake Line Normalization
Most Significant Bit Least Significant Bit
Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 BitO
Invert Invert Invert Invert Invert Invert Invert Invert
ST1 STO FLGB FLGA CTL1 CTLB CTLO CTLA
Value=128| Value=64 | Value=32| Value=16]| Value=8 | Value=4 | Value=2 | Value=1

Each bit in this fegister corresponds to one handshake line. When a bit is “0”, its corresponding line is
positive-true. When a bit is “1”, its corresponding line is negative-true. In other words, each bit is used to
enable or disable an inversion for its corresponding line. The following table shows the polarity
definitions of the handshake lines.

36 Section 3: Using Your GPIO Interface

Line Type | Normalization Bit Logic Sense
0 Logic HI = BUSY
LOGIC LO = READY
FLG (or ST)
1 Logic Hl = READY
Logic LO =BUSY
0 Logic HI =TRUE
Logic LO =FALSE
. CTL

Logic HI = FALSE
Logic LO = TRUE

Here are some example statements:

lires
Fort 0 hndsk lines
FLGH and FLGE

Register 4- Data Normalization and Handshake Control

Most Significant Bit Least Significant Bit
Bit7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit 1 BitO
Invert Invert Invert Invert
(see “Sel ':.a"dtshha:e C:";""(' Method") UN°‘d Port D Port C Port B Port A
see ""Selecting the Handshake Metho se Data Data Data Data
Value=128| Value=64 | Value=32 | Value=16| Value=8| Value=4 | Value=2 | Value=1

This is the same Register 4 discussed in Selecting the Handshake Method. This time we are interested in
the lower four bits. Each of these bits corresponds to one of the data ports. When a normalization bit is
“0”, all the data lines on the corresponding port are positive-true. When a normalization bit is “1”, all the
data lines on the corresponding port are negative-true.

Because this register contains normalization bits and handshake control bits, you should pay particular
attention to what you are doing when you write to it. As was mentioned in Selecting the Handshake
Method, the cleanest approach is to set all the options with one statment. This simply means that you
determine the value of the bits used for handshake control, determine the value of the bits used for port
normalization, add those two values together, and use the sum as your control byte. For example, assume
that you wanted to output negative true data from Port A using strobe handshake. The handshake control
value is 128. To invert the data lines on Port A, a value of “1” is used. The total of these two values is 129.
Therefore, the following statement would be used:

ﬁQHTRHL d,04 0 129 1 EZtrobe handishake) invert Fort B dats

isc regh control byte

Section 3: Using Your GPIO Interface 37

If for some reason you need to change the normalization bits after the handshake bits have been set, you
can use the masking technique discussed in Selecting the Handshake Method. The following examples
show two methods of isolating normalization bits. The first example sets Port A and Port C to negative
true, sets Port B and Port D to positive true, and leaves the handshake control bits unchanged.

18@E STATUS 4,4 @ © ! Fead current walue
118 C=RIMAHDOC248, 02 1V Clear BB thru B3
126 C=RIHIORCS, 0 1V ITrnvert Port A & O
136

]
e
kX

Db Write new owvalus

The second example shows how the normalization of a single port can be changed without affecting any
other bits in the register.

258 STATUE 4,4 & 2 1 REead current walus
SEE H=RIHMAHDCE, BTOO 1111111812 V Port B = pos. trus
VR COMTREOL 4,4 & & 0 Mrite new walus

Enabling Output
So far you have seen how to set the method, timing, and polarity of handshake, how to set the logic
polarity of the data, and how to address a port of the proper size, direction, and drive capability. This is

enough information to get most of the ports working, but there is an extra little “trick” needed to activate
the output drivers on Port A and Port B.

The GPIO interface has protection mechanisms built in that must be satisfied before Port A or Port B will
output. The reason for this is to ensure that the output drivers are not accidentally activated while they
are grounded or connected to current-sourcing circuitry. If the GPIO is trying to drive a device that is also
trying to drive the GPIO, an electrical conflict will result. In other words, don’t try an output operation on
an input port. Without safeguards, this could happen as the result of a simple typing error when entering
a device selector.

It is unlikely that you will accidentally generate an output from Port A or Port B. To enable the output
drivers of Port A or Port B, you must set an enable bit in Register 8. To set any enable bits in Register 8,
switch 4 of the default configuration switches must be on. The details on accessing and setting this switch
are in the Installation section. Trying to write to Register 8 without first setting this switch results in
Error 115.

Register 8 - Output Enable for Port A and Port B

Most Significant Bit Least Significant Bit
Bit7 Bit 6 Bit 5 Bit 4 Bit3 Bit2 Bit 1 BitO
Enable Enable
Not Used PortB Port A

Outputs Outputs

Value=128| Value=64| Value=32| Value=16| Value=8| Value=4| Value=2| Value=1

38 Section 3: Using Your GPIO Interface

Assuming that switch 4 has been properly set, the following example shows an output enable operation
for Port B.

COMTREOL. 4.2 ¢ 2 U Epnakle Fort B oogtput

Choosing the Method of Transfer

The basic software link with the GPIO interface is the program statement used to perform the 1/0
operation. Assuming that you have studied the I/O ROM Owner’s Manual, choosing the proper
statement is usually a simple matter. Some of the factors to be considered are reviewed here.

If you are using an 8-bit port and dealing with ASCII data, most of your needs can be met with simple
OUTPUT and ENTER statements. For example, string data is output to Port B by the following
statement:

CHITFUT <481 A%
The following statement inputs a number that is being sent to Port A as an ASCII representation:
EHTERE <&8a 3 M

If straight binary numbers are being transferred, you will probably want to suppress the end-of-line
sequence and use binary formatting. An 8-bit binary number can be output to Port C as follows:

The following is an example of inputting a 16-bit binary number from Ports A & B using Port A
handshake lines:

EHTER 483 USIHG "#, 4" 1 K

If you are using 16-bit ports without the “i4" image, be careful to move an even number of bytes.
Attempting to move an odd number of bytes through a 16-bit port generates Error 113. A common
oversight is trying to output data using free-field format. If your 16-bit data is stored as a string, the string
must contain an even number of bytes and a " k. "' image should be used.

All I/0 formatting capabilities are available for use with the GPIO interface. An image is used in the
following example to output a column of numbers using the output side of the Port B/Port D combination:

CUTFUT 4683 USIHG "4 00, - 2 H, B, O

The details of alternate transfer methods, such as fast handshake or interrupt transfer, are covered next.

Section 3: Using Your GPIO interface 39

Advanced Capabilities
The first half of this.section dealt with the basic characteristics of a parallel interface. This half covers
the extensions to those capabilities that are provided by the HP 82940A GPIO Interface. These extra
features are:

e Specialized transfers: fast handshake and interrupt.

o User-defined end-of-line (EOL) sequences.

e Sensing and controlling individual handshake lines.

e Parity generating and checking.

e Using external events to generate interrupts.

e A trigger-byte function for transfer control.

It may be necessary to review the statements made available by the I/0 ROM; see the Syntax Summary
in the /0O ROM Owner’s Manual.

FHS and INTR Transfers
In addition to the normal JUTHFLUT and EMTER statements, the GPIO interface can be used with
TEAMNSFER..FHS and TRAMSFER... IHTH statements. No special configuration is necessary to use

IMTHE transfers Slmply set the control reglsters as you would for a normal DITPUT or EMTE i" The
defined. Transfer speeds are hmlted to about 400 bytes per second using this method. The following
example program shows the use of an interrupt transfer to input string data using full handshake and
positive-true logic on Port A.

Eif'i]

36 OH EOT 4 Lﬁu”E 148
- to B3 IMTR ; DELIN 1@
A LIME FEED CHAR.

(J!

isﬁ*zfnsniz'zé I3

;UMmmg laﬁp' lﬁﬁl ésather processing

L L V+1

AWEGT Routiﬂe

i%ﬁ;éﬂTE%f&i"j AT 1 Empfu buffer
158 FEIHT A% ['
160 TRAMEZFER 488 TO Bf INTR ; DELIM 1@ @ RETURH

G EY

40 Section 3: Using Your GPIO Interface

Notice that the TFFM%FEF statements have a [IE L. 111 1 & parameter. Ten is the value of a line-feed
character. This is a common delimiter when dealing with string data because it allows the transfer to
terminate at the end of each line of incoming text. Without the [1 L. I It parameter, the transfer would not
terminate until the buffer was full. Another point to remember abput buffers is shown in line 140. The
incoming data could be viewed by simply printing & #. However, this approach would leave data in the
buffer. When more data came in, it would be appended to the existing data until an ERROR 126 was
generated. Since this is usually not the desired action, the buffer should be emptied after each transfer.
Entermg from the buffer is one way to empty it (as shown in the last example). Another way to empty a

buffer is to re-execute the I [1ELIFFEF statement. For example:
148 FREIHT B2
158 10BUFFER B 0 Fmpfu Bt fer

Performing an I OREUFFER is faster and simpler than performing an E i+ T LR but it also clears any

.........

somewhat cryptlc. The following is an example:

148 FRINT B
188 COWNTROL BEF. &8 108 L Empty bufyer

FEDET IO, A

ST, HELT, BE
transfer. These statements take affect immediately and are the only statements that do so. All other

BT, and % THT LI statements can be executed during an interrupt

interface—controlling statements (such as L LEARE, COMTROL, E HT ER, OUTFUT, or another

interface can only doone TEMMIZFEF at at time (EH TEF from a buffer and { ” ITFLIT to a buffer are
not interface-controlling statements and can be performed at any time).

The fast handshake transfer is a special case. In order to achieve maximum speed, certain constraints are
placed on this transfer method. A FHS transfer is allowed for 8-bit data only. This transfer type must use
the Port A/Port C bidirectional configuration (primary address 06). Only full handshake is allowed, with
FLGA and CTLA as the handshake lines. Normalization changes for FLGA, CTLA, Port A and Port C
are allowed, but alternate handshake methods or port configurations cannot be used. A CiilIHT
terminating condition can be specified for an input transfer, but EOI is not defined. Transfer speeds of
about 18,000 bytes per second can be achieved using this method.

Because a FHS transfer locks out all interrupts (including the key) and a full handshake is used,
the computer can be completely “hung” or “locked up” if the peripheral device stops handshaking before
the transfer is complete. To help deal with this problem, a special feature has been added to the GPIO
interface. A FHS transfer can be aborted by placing the STO line in the true state. This can be done by an
operator with a pushbutton or by a control line from the peripheral device. If STO is asserted during a FHS
transfér, the transfer is aborted, ERROR 114 is generated, and the program stops. If you wish to trap this
event and keep the program running, use an (1 EFF{IF statement.

Section 3: Using Your GPIO Interface 41

EOL Sequence

In its default state, the GPIO interface outputs a carriage return/line feed as the end-of-line (EOL)
sequence. This sequence is sent at the end of each [iLi TF I statement and whenever it is called for by an
IMAGE statement. If you desire a different EOL sequence, any sequence up to seven characters long can
be programmed by using the i THIil. statement. The EOL sequnce is controlled by Registers 16 thru
23. Register 16 holds a number 0 thru 7. This is the number of EOL characters in the sequence. The
characters themselves are stored starting in Register 17. For example, the default sequence has the value
2 (number of characters) in Register 16 and the character values 13 (carriage return) and 10 (line feed) in
Registers 17 and 18, respectively. Although these registers can be changed using the LIH{TRIIL.
statement, they cannot be examined with the =TT LiZ statement. In other words, they are write-only
registers.

The following program statement redefines the EOL sequence to be four control characters: bell, carriage
. return, line feed, DC3.

0 !:‘H FROL 4,16 ¢+ 4,7, 13, 18,12

It is important to note that the EOL sequence is also sent at the end of an outgoing transfer operation. If
you don’t pay close attention to the contents of the buffer, this can produce an extra, unwanted carriage
return/line feed. For example:

1o IGBUFFER A%
o OUTPUT A% @ "Hello®
38 TRAMSFER A% TO 486 INTR

This program sequence outputs the word “Hello” followed by a carriage return/line feed and an EOL
sequnce. The carriage return/line feed is placed in the buffer by the [LITFLIT statement. The EOL
sequence is added by the GPIO after it sends the buffer contents. To avoid this duplication, one of the
EOL sequences must be suppressed. To suppress the carriage return/line feed in the buffer, the following

change can be made. This change uses an CHITFLIT image to place the string into the buffer without any
EOL characters.
18 TOBUFFER A%
28 0 JTF UT A USIHE M# k" o "Hello!
5

TRAMSFER A% TO 486 IHTE

To suppress the EOL sequence sent by the GPIO, the following change can be used. This change writes a
value of zero to Register 16, which tells the interface to output zero EOL characters. Unless you need an
EOL sequence different from carriage return/line feed, this method is the most convenient of the two. It is
especially handy when transferring strings and text, since blank lines (null strings) can be output
without worrying about transferring an empty buffer. Note that this also eliminates the need to
dimension the IOBUFFER larger by the number of EOL sequence characters.

18 KGEUFFEF AE

20 COMTROL 4,168 @ @ t Usze no EOL characters
S8 OUTRPUT B ¢ Y"Hello!

48 TRAHSFEE A TO0 488 IHTR:

42 Section 3; Using Your GPIO Interface

Note that the programmable EOL sequence is sent to 8-bit ports only. When 16-bit ports are used (primary

addresses 08 thru 15), no EOL bit patterns are sent. You do not need to suppress the EOL sequence when
using 16-bit data, just be aware that it is not sent.

Direct Use of Control Lines

in the true state. The true state might be a logic high or a logic low, depending upon the normalization bits
in Register 3. The RES lines do not have normalization bits and are always negative true. If you use a bit

value of “1” to FZ %2R T a RES line, that line is placed in the logic low state.
Register 2 (read) - Line Status

Most Significant Bit Least Significant Bit

Bit 7 Bit6 Bitb Bit4 Bit 3 Bit2 Bit 1 BitO

ST STO FLGB FLGA CTu CTLB CTLO CTLA

Value=128| Value=64| Value=32| Value=16| Value=8| Value=4 | Value=2| Value=1

Assertion Control and Register 2 (write)

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit4 Bit3 Bit 2 Bit 1 BitO

RESB RESA Not Used CTL1 CTLB CTLO CTLA

Value=i28 Value=64 | Value=32| Value=16| Value=8| Value=4 | Value=2 | Value=1

The following simple example shows a method of checking a handshake line. This program reads
Register 2 and checks the state of ST1. If ST1 is false, the program loops back and continues checking.
When the ST1 line is true, the program takes an alternate path. Phis example just beeps and goes back to
the main loop. In actual application, the BEEF statement would be replaced by whatever action is
appropriate as a response to the line being monitored.

18 STARTHES ¢, 205
s IF HOT BITOH,.2 THEH GOTO 18
28
G800 Your proaram goes here
HE

m@ BEEF
PEOnOTO 18

Register 2 returns the logical state of the lines, not necessarily their electrical state. Therefore, a line state

shows as “1” if that line is true. It does not matter if a logic high or a logic low has been defined as the true
state (see Setting the Logic Polarity).

The HZ % ERT statement has a similar definition. If you set a bit to “1”, the corresponding line is placed
in the true state. The true state might be a logic high or a logic low, depending upon the normalization bits
in register 3. The RES lines do not have normalization bits and are always negative true. If you use a bit
value of “1” to H = % EF T a RES line, that line is placed in the logic low state.

Section 3: Using Your GPIO Interface 43

The following example shows the use of an H=5LiEFT statement to produce a custom handshake

sequence. This example sets the CTLA line true, outputs a byte, waits 500 ms, then sets CTLA false.
Notice that to control the handshake line directly, the interface handshake options must be turned off.

18 COMTROL 4,4 @ 152 0 Turn off héﬂdihak@
ERT POTLE True :

T I =

431
IEOCUTPUT 488 USIHG "#.B" 1 M
48 WARIT 588
5@ ASSERT 4@ D CTLA Falss

The following example pulses RESA and RESB.

Parity

The GPIO interface provides both parity generation and parity checking. Parity is a simple method of
detecting erroneous transmissions of data. It uses one bit of data as an indicator which is set or cleared
according to known rules. If the sender and receiver are both using the same set of rules, any
disagreement in the state of the parity bit indicates a possible transmission error. The GPIO can only use
parity with 8-bit ports and data that has seven bits (or less). The most common data type that fits these
requirements is the ASCII character set.

There are five parity choices on the GPIO.

e Zero parity
¢ One parity
¢ Even parity
¢ (Odd parity

e No parity

If Zero parity is selected, all outgoing characters have “0” in their eighth bit. All incoming characters are
checked to make sure that the eighth bit is “0”. If any incoming character has ““1” in the top bit, a parity
error is generated. One parity is similar to Zero parity, except that the eighth bit is set to “1” for outgoing
data and checked for “1” on the incoming data.

Even parity and Odd parity are more sophisticated than that. The object of these methods is to ensure
that all data bytes have an even or odd number of “1” bits in them. For example, consider the letter “A”
being output with odd parity. The bit pattern for this character is “01000001”. There are two bits set to
“1”. When odd parity is applied to the character, the top bit is set so that there are an odd number of 1’s.
The resultant pattern is “11000001”. Even parity operates in a like manner, except that the top bit is used
to guarantee an even number of “1” bits. If an incoming byte does not have the proper number of 1’s in it,
a parity error is generated. o

44 Section 3: Using Your GPIO Interface

A parity error can be detected in two ways. If an incoming character generates a parity error, its eighth
bit is set to “1”. This can be detected by the E I T function. Also, if the character is printed or displayed on
the computer, the top bit shows up as an underline. The second way to detect parity is to use an
(i IHTH statement. This is explained in Event Interrupts.

The parity function is selected by Control Register 0. The desired parity mode is specified by using a

interface ID code.

Register O (write) - Parity Control

Most Significant Bit Least Significant Bit
Bit 7 Bit6 Bitb5 Bit4 Bit3 Bit2 Bit 1 BitO
Enable Enable Enable Enable
Not Used Odd Even One Zero
Parity Parity Parity Parity
Value=128| Value=64| Value=32| Value=16| Value=8| Value=4 | Value=2] Value=1

Here are some examples of parity selection:

4.8
g8

= eddd pariiu
y FF parity

If more than one parity mode is selected, the one occupying the lowest bit position has preference. For
example, if you try to select both Even and Odd parity, Even parity will be used. Also, if you try to use
parity with 8-bit data, the top bit of the data will be replaced by the parity bit.

Event Interrupts

There are two kinds of interrupts available with the GPIO interface. One kind is used for interrupt
transfers. This kind is handled automatically by the computer and interface. All you need to do is specify
IMTE in your TEAMZFEF statement and provide an (1t E(IT statement. The other kind of interrupt.
is used for /I IMTF programming. This kind requires more involvement from the programmer and is
referred to as an event interrupt.

The following is a summary of the steps necessary to use event interrupts with the GPIO.

1. Have an interrupt service routine in your program that performs the desired tasks as a result of the

interrupt.

2. Provide an {1 THTH statement to direct the program to the service routine in the event of an
interrupt.

3. Usean EMFAELE IHTF statement to select the event(s) that you want to cause an interrupt.

4. When an interrupt takes the program to the service routine, read the =T H T LIS of Register 1. This
lets you determine ‘the cause of the interrupt and is a necessary part of the interrupt-handling
protocol (allows another interrupt to be accepted).

5. If you are expecting further interrupts, do another EMHMELE IHTHE on the same line as the
FETIIEH statement in the interrupt service routine.

Section 3: Using Your GPIO interface

Events that can cause an interrupt are selected and detected by using Register 1. These events and their

corresponding bit positions are shown in the following diagram.

Most Significant Bit

Register 1 - Interrupt Enable/Cause

Least Significant Bit

Bit 7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 BitOQ
ST1 STO FLGB FLGA Parity Error
Interrupt Interrupt Interrupt Interrupt Not Used Interrupt Not Used
Value=128| Value=64| Value=32| Value=16| Value=8| Value=4 | Value=2| Value=1

45

The first example shows the simplest form of interrupt handling. This program counts pulses on the
FLGA line by using interrupts. Each time FLGA goes true, an end-of-line branch directs the program to
the interrupt service routine (line 120). This routine performs the necessary = TFTLlI% 4, 1 statement,
waits for the end of the pulse, increments a counter, enables the interface for the next interrupt, and then
returns to the main program. The main program simply monitors the counter and beeps when a count of
10 is reached. In actual applications, an action more significant than beeping would be included. For
example, the interrupt might be generated by a photocell detector that is counting items moving on a
conveyor into a packing carton. When the proper number of items is in the carton, the main program
might send bit patterns to an output port that controls the folding and sealing of the carton.

‘i

SE B P FLGH imterrupt
2

485 I Main program goss here

s=a :

:

TEOIF MO8 THEM GOTO Y8 t Check counter
2R REERF m G i:% T =@

15 I :

Tad b Intervrupt Service Bouwtine

ig oA

TEs STATUS 4,1 & 8

138 4o Wait for oend of FLGR pulse

148 STRATUS 4,2 148

188 IF BITO S %2 THEHN 1498

186 MeHel o Ipncremetnt counter

178 EMABLE IHTRE 4:1i8 & RFETURH

When dealing with interrupts in real-life applications, it is very important to consider the timing of the
interrupt pulse. Both the width and the frequency of the pulse are important factors. The number of
interrupts per second that can be handled depends greatly upon the amount of processing being done in
the interrupt service routine and the amount of time spent on the lines in the main program. To get the
fastest response time, keep the main program moving from line to line as fast as possible. This can be
done by coding efficiently and by not using the i# symbol to combine statements on a line. In any event, it
is unlikely that you will be able to handle interrupts that are more closely spaced than 25 ms or so.

46 Section 3: Using Your GPIO Interface

Interrupt processing can be adversely affected by pulse widths that are too long or too short. An interrupt
pulse must be over 100 us long for the interface to see it under ideal conditions. If the interface is busy with
other tasks, such as handling data or communicating with the computer, even longer pulses are
necessary. However, if the interrupt pulse is too long, the same pulse can cause more than one interrupt.
This happens if the computer makes it through the interrupt service routine and re-enables interrupts
before the pulse has ended. This problem does have a solution, as shown by lines 140 and 150 in the
preceding example. If you expect a relatively long pulse, you can use the = TH 1115 statement to ensure
that the pulse has ended before re-enabling for more interrupts. When this technique is used, the only
disadvantage of long interrupt pulses is that they will slow down the program. '

Not all event interrupts are based on pulses. A handshake action is sometimes employed. In these
applications, the interrupting device holds its line true until the interface sends a signal that clears it.
When this is the case, the interrupt service routine can use H=%ER T statements to cause the peripheral
device to drop its request before interrupts are re-enabled.

The next example shows the detection of more than one interrupt cause. Assume for this example that the
computer is controlling a test station. This is a hypothetical test for circuit reliability at certain
temperatures. The example program does two things. The main loop sends data to the circuit under test
and reads the response. If the response is equal to the data sent, the circuit is operating properly. This
operation uses full handshake on the Port A/Port C combination.

The interrupt service routine runs the temperature controller. An interrupt from STO indicates that the
heater must be turned on, while an interrupt from ST1 tells the computer to turn the heater off. The heater
is controlled by bit 0in Port D. This operation uses strobe handshake.

Admittedly, a simple thermostat could be set up without involving the computer. This example merely
demonstrates some principles of handling interrupt-driven events. In actual applications, you will
probably be doing something more complex than turning a heater on and off.

e ITMAGE #.B : ‘

S COMTREOL 4,4 008 b Set full handzshake

A8 0 IHTR 4 GOSUE 178

G0 BEMHABLE IHTRE 4:;01284+84 1 STE & ST1 interrupts
58

8 E=0 00 Rezet error counter

YEOFOR E=8-T0 255

SE QUTPUT 482 USIHG 18 @ KB 1 Test walus to Port O
A8 EMTER 482 USIHG 18 ;0 ¥ 1 Response from Port A
e IF S4xk THEM E=E+1 0 Count srrors

118 HEST K

128 PRINT Ei"Errars for thiz test!

P28 GOTOo g8) Repeat continuwnusly

148 1 :

158 b Interrupt service routins

161 o

178 STATUS 4,1 @ =

188 IF BITCS, 80 THEM H=1 I Hester on

198 IF BITOS, 73 THEM H=8 1 Heater off
SER COMTROL 4,4 5 128 LV Go to strobe handshaks
18 QUTPUT 483 USIHNG 18 : H I Heater byte to Fort 0
So CORMTREOL 4,4 30 B P Return to full handzhake
230 EMABLE IHTE 4:0128+84x B RETURH

Section 3: Using Your GPIO Interface 47

Notice that a binary image is used for all I/O statements because actual binary values are being handled,
not ASCII representations. Primary address 03 is used to access Port D so that FLGB and CTLB are used
for handshake. If primary address 05 were used, there would be a conflict between the use of ST1 as an
interrupt line and as a handshake line. Notice also that Register 4 defines the handshake mode for all
ports on the interface. Line 200 sets up a strobe handshake for the Port D operation. Then line 220
re-establishes the full handshake mode that is needed by Port A and Port C in the main routine.

The previous example assumed that the two interrupts would never occur at the same time. This is not
always the case. Many applications need to handle multiple interrupts that may occur in any order or in
any combination. To deal with this situation, it is recommended that you employ a carefully structured
polling routine. The need for proper polling is especially critical since the HP Series 80 Personal
Computers do not have a priority system for interrupts (see Interactions and Permutations in section 7 of
the I/0 ROM Owner’s Manual). The recommended polling technique is shown in the following example.

This program uses interrupts from ST0, ST1, and FLGB to demonstrate the concept of polling. When an
interrupt occurs, the program branches to line 100. The required = T A T L}z statement reads the interrupt
cause register. Note that only one S THTLIZ 4, 1 statement is used. The interrupt cause register is
automatically cleared when it is read. Therefore, attempts to identify multiple causes by repeatedly
reading Register 1 would be futile. This is not a problem since the register contents are placed in variable
%, where they can be inspected as often as necessary. Variable % is tested by the & I T function to isolate
the interrupt causes. The [F . . . G5 LIE structure is the simplest and least confusing method of dealing
with multiple causes. This technique allows all causes to be tested before returning to the main program
and yields independent subroutines for handling each cause. If two or more interrupts occur
simultaneously, the one that is tested first in the polling routine will be serviced first.

18 O INTE 4 CGOSUER 188
28 E=128+ad+32 1 IRE conditions

[
Jrtiagieg
poLi s

!

DIEF YFLGE Interrupt?
RETURH

i

IR EHMABLE IMTR 4:E

el -

S8 U Main program goss here

a8 GOTH =8

TEod

S8 b Inmterrupt polling routines
= T

R STATUS 4

18 IF BITOS 1a6
28 IF BIT 218
| OIF BIT K - : FoEdE
48 EMABLE d1FE @ RETUREH

5]

R L Interrupt serwice routines
1

o

=0 250 0SS O O O 05 ST T O

ﬁISPV“STﬁ Imterrupt!
RETLEH
i

a0t v OTH AT

DISP “STi1 Interrupt®
FETURM

P T T T Tolt Tt s b ks ok o bt 3 Bt B Bt

DR 28

48 Section 3: Using Your GPIO Interface

Note: Do not use FLG or ST interrupts and the T FHi{ % EF statement at the same time. During a
transfer, the interface’'s resources are dedicated to the data movement operation. An external interrupt
is not recognized during a transfer. If a FLG or ST interrupt occurs at the end of an incoming transfer,
the computer and interface might /ock up. ‘

Parity error is the only event interrupt that is recognized during an interrupt transfer. Interrupts for FLG
and ST lines should be disabled before a transfer starts and re-enabled (if desired) after the transfer

completes. Any form of event interrupt may be used in conjunction with CJLTFUT and EMTER
statements, but remember that the end-of-line branch is not taken until the DUITFLIT or EHMTER
statement completes.

The Trigger Function

An elegant feature of the HP 82940A GPIO Interface is its ability to initiate actions upon the detection of
a trigger byte. The GPIO interface can input and inspect data without interacting with the computer,
thereby freeing computer time for other operations. The trigger byte is defined by a LIIHTRL
statement. Incoming data can be tested for conditions “less than”, “greater than”, or “equal to” the
trigger byte, or any combination of these conditions. When a trigger condition is detected, the interface
can initiate an interrupt transfer or signal the peripheral device with a CTL line. The registers involved
are Register 5 and Register 7.

The trigger byte itself is written into or read from Register 7. The following statement defines the binary
value 127 as the trigger byte:
COMTREOL 4,7 3 127

The trigger actions are established by the top four bits in Register 5. The lower four bits of this Register
hold the currently-assigned primary.address. As was the case for Register 4, writing only high-order bit
values will clear the lower bits. However, if primary addresses are included in the I TFLUT EMTEFR, or
TEAMZFEFR statements, Register 5 will be updated automatically for every operation. This means that
youdon’t have to worry about those lower four bits if the primary addresses are included in your program.

If your are concerned about preserving the primary address in Register 5 for some special reason, use a
masking technique like the one explained in Selecting the Handshake Method.

Register 5 - Primary Address and Trigger Action

Most Significant Bit

Least Significant Bit

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 BitO
Trigger Trigger Trigger If Trigger,
If Data If Data If Data Pulse Primary Address
<R7 =R7 >R7 CTL
Value=128| Value=64| Value=32| Value=16| Value=8]| Value=4 | Value=2| Value=1

Section 3: Using Your GPIO Interface 49

The trigger bits can be summarized as follows:

Comparison Test Register 5 Value
Data > Register 7 - 32

Data = Register 7 | 96

Data <Register 7 128

Data << Register 7 192

Data = Register 7 64

Data # Register 7 160

No Trigger 0

The primary trigger function is to initiate an interrupt transfer. The following example establishes an
interrupt transfer that begins when the interface detects a DC2 control character (decimal value 18) and
ends when the buffer is full. Port A of a Port A/Port C combination is used for the input.

18 DIF BEfFC487

S8 IORUFFER B#

IR OCOMTROL 4,5 84 1 Strart if = trigger
48 COMTROL 4,7 & 180 OC2 i= trigaer
=G0M EOT 4 GOTO 148

SRR TRAMEFER 482 TO BF IWHTE - DELIM 18

TE ol

28 0 Dummy loop ! indicates other processing
S
188 K=1i
118 DIsP K@ k=k+i

12 COTO 11a
13a

148 t EOT Fowutines
158 1

188 EMTER Bf ; =H.¥%

178 PRIMT =,

128 EMD

In addition to initiating a transfer, the trigger function can also signal a peripheral device that the trigger
byte has been detected. The signal is a short pulse on a CTL line. If FLGA/CTLA are being used as the
handshake lines, the pulse is sent on CTLO. If FLGB/CTLB are being used as the handshake lines, the
pulse is sent on CTL1. The line is pulsed from false to true and back to false, with normalization changes
allowed. The pulse width is roughly 40 us.

This function, called auto response, is enabled in Register 5. If bit 4 of Register 5 is set to “1”, the
appropriate CTL line will be pulsed when an incoming byte meets the trigger byte requirements. If bit 4 is
“0”, the auto response function is disabled. To enable this function, add 16 to the values shown in the
preceding summary table.

Note that this feature is available in addition to the automatic start of a transfer. Auto response cannot be
selected without setting up a transfer of at lease one byte. The following example shows the minimum
software required to produce an auto response pulse. This example is inputting data from Port A and
using CTLO as the auto-response line. The pulse will be sent when the first control character (value<32) is
input.

50 Section 3: Using Your GPIO Interface

19 IORUFFER 2%
28 CONTROL 4,7 ¢ 32 b Trigaer buts
2 CCOHTREOL 4,% 128418 1 IF E7. pulse CTL
4@ O EOT 4 GOSUR 166
ZF CIHMTE 3 COUHT 1

S6 TREAMSFER 488 TO
e

FEb D Main proaram goss here
SOTO 86

!

PEOT rouwtine (doss nothings
I

FETURHM

}

L0 I 0% O)

%

1
1
1

oo o L
Ot
A

This example can be enhanced to produce a CTLO pulse for every trigger condition detected, instead of
just the first. Assume that you want an auto response pulse for each form-feed character (value=12). The
EOT routine is changed to empty the buffer and start a new transfer.

JORUFFER 2%
COMTROL 4.7 ¢4
COMTREOL 4,5 v 8
O EOT 4 GOSUR 5
TEAHSFER 488 - T0O-Z% IHTRE ¢ COHMT 1
|

T AT N T
Bl = %

' Main program aoes here
GOTO 88
i
|

Tt T I Tl I

AR 3
SRR R JLROL g Y

EOT routime

T
o

iﬂEUFFEH 2F D Empty buffer
TEANSFER 45& TOOZF& IHTR 5 COUNHT 1 @ RETUHREH

(od Pod o= D A0 00 — 3T 0 B G POy e

i}
(2l

ke ke fte e

Section 4

Maintenance, Service, and Warranty

Maintenance

There are no customer serviceable parts inside the HP 82940A GPIO Interface. It should not be hecessary
to clean the interface module or cable contacts. The action of installing the module in the port or plugging
the cable into a peripheral is normally sufficient to clean contamination from the contacts.

Service

If at any time you suspect that the interface may be malfunctioning, do the following:

1. Turn off the computer and all peripherals. After diconnecting all plug-in devices from the ports, turn
on the computer. If the cursor appears and no error message is displayed, the computer is
functioning properly.

2. Turn off the computer. After installing the interface module in question in any port, turn on the
computer.

o Iffrror 118 1 1.0 [HAKED appears,theinterface module requires service.

e If the cursor does not appear, the system is not operating properly. To help determine if the
interface module is interfering with proper operation, repeat this step with the module installed
in a different port.

3. If improper operation is indicated in either the interface module or the computer, repair service is
required.

Warranty and Repair Service Information

The warranty statement and procedures for obtaining repair service are contained on the Warranty and
Service Information sheet shipped with your HP 82940A GPIO Interface. If you need additional
information, please contact your authorized HP dealer or the nearest Hewlett-Packard sales and service
facility.

If you have any questions concerning the warranty, please contact:

Inthe U.S.: One of the six Field Repair Centers
listen on the Service Information
Sheet packaged with your owner’s
documentation.

51

52 Section 4. Maintenance, Service, and Warranty

In Europe: Hewlett-Packard S.A.
7, rue du Bois-du-lan
P.O. Box
CH-1217 Meyrin 2
Geneva
Switzerland
Tel. (22) 82 70 00

Other Countries: Hewlett-Packard Intercontinental
3495 Deer Creek Road
Palo Alto, California 94304
US.A.
Tel. (415) 857-1501

If your system malfunctions and repair is required, you can help assure efficient service by providing the

following items with your unit(s):

1. A description of the configuration of the HP Series 80 Personal Computer system, exactly as it was
at the time of malfunction, including ROMs, interfaces, and other peripherals.

2. Abrief yet specific description of the malfunction symptoms for service personnel.
3. Printouts or any other materials that illustrate the problem area.

4. A copy of the sales slip or other proof of purchase to establish the warranty coverage period.

Each computer and peripheral carries an individual serial number. It is recommended that you keep a
separate record of this number. Should your unit be stolen or lost, the serial number is often necessary for
tracing and recovery, as well as any insurance claims. Hewlett-Packard does not maintain records of

individual owner’s names and unit serial numbers.

General Shipping Instructions
Should you ever need to ship any portion of your computer system, be sure it is packed in a protective
package (use the original case), to avoid in-transit damage. Hewlett-Packard suggests that the customer

always insure shipments.

If you happen to be outside of the country where you bought your computer or peripheral, contact the
nearest authorized HP-83/85 dealer or the local Hewlett-Packard office. All customs and duties are your

responsibility.

Radio Frequency Interference Statement

The HP 82940A GPIO Interface uses radio frequency energy and may cause interference to radio and
television reception. The interface has been type-tested and found to comply with the limits for a Class B
computing device in accordance with the specifications in Subpart J of Part 15 of the FCC Rules. These
specifications provide reasonable protection against such interference in a residential installation.
However, there is no guarantee that interference will not occur in a particular installation. If the interface
does cause interference to radio or television, which can be determined by turning the computer on and off
with the interface installed and with the interface removed, you can try to eliminate the interference
problem by doing one or more of the following:

Section 4: Maintenance, Service, and Warranty 53

¢ Reorient the receiving antenna.

® Change the position of the computer with respect to the receiver.

e Change the position of the interface cables and peripherals with respect to the receiver.

e Movethe computer away from the receiver. »

¢ Plug the computer into a different outlet so that the computer and the receiver are on different

branch circuits.

If necessary, consult an authorized HP dealer or an experienced radio/television technician for additional
suggestions. You may find the following booklet by the Federal Communications Commission helpful:
How to Identify and Resolve Radio-TV Interference Problems. This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock No. 004-000-00345-4.

Appendix A

Functional Description

Introduction

This appendix contains a description of the interface circuit operations. This includes a schematic
diagram description of various interface components and signal lines. Although this information is
provided, component level repair is not recommended due to the microcomputer based organization of the
interface.

If the interface appears to be malfunctioning, it is recommended that you contact your nearest HP sales
and service office for assistance.

Theory of Operation

Translator IC Description

The interface uses an 8049 microcomputer (uC) which requires a +5V TTL logic level. The microprocessor
in the HP Series 80 Personal Computer (referred to here as the CPU) uses a +6V level. A special IC, known
as a translator, permits communication between the two devices by providing level translation. The +5V
and +6V power supplies and two +12V clock signals (1 and $2) required by the translator are located on
the computer mainframe. They are brought out to the interface via the I/0 backplane when the interface
is inserted into one of the four 1/0 ports.

¢ Handshaking of data and command information from the HP Series 80 Personal Computer to the
uC.

¢ Handshaking of data from the uC to the computer.

e Interrupts issued to the computer by the uC.

¢ Interrupts issued to the uC by the computer.

¢ Fast handshake operation where the translator halts the computer with each data byte transfer to

synchronize the flow of data.

It may be helpful to refer to the interface schematic diagram (figure A-7) while reading the theory
discussed in this section.

Select Codes

Three select code bits are used to define the I/0 address of the interface. These bits (S2, S3, S4) are set via
a switch by the user. The range of available select codes is 3 through 10.

The three select code bits and I/0 address bits (A1, A2, A3) are sent to comparator circuitry within the
translator. If they match, the interface is addressed. When this occurs, another bit (A0) is sent out by the
comparator to specify one of two read/write locations. If A0 is low, the computer writes to the control
register (CR) and reads the status register (SR). When A0 is high, the computer writes to the output buffer
(OB) and reads the input buffer (IB). These four registers are the next topic of discussion.

55

56 Appendix A: Functional Description

Translator 1 /O Registers

The computer sends data to the interface uC via the output buffer register (OB) and defines that data by
setting appropriate bits in the calculator control register (CCR). Both registers are physically located
within the translator IC. The OB is write-only by the computer and read-only by the uC. Except for bit 0
and bit 7, the CCR is also write-only by the computer and read-only by the uC. Different status bits are
read by the pC for bit 0 and bit 7 than those written as bits 0 and 7 by the computer (CPU). This is
illustrated in the following figure.

uC Read CR

7** 6 5 4 3 2 1 0O

OBF |O|0O)|O| O] CED [COM | IBF

CPU Write to CR

7* 6 5 4 3 2 1 o0

RESET | O] Of O| O] CED | COM| INT

INT Interrupt. This bit is routed directly to the T1 input of the uC which is
used to interrupt.

COM Command.

CED End Data. Used by the computer to terminate a data transfer to the
uC.

RESET Resets the xC. This bit is routed directly to the reset input of the uC.

IBF Input buffer full.

OBF Output buffer full.

Figure A-1. CR Bit Assignments

* Power-on state true.
** Power-on state false.

Appendix A: Functional Description 57

Two other registers within the translator are used when the computer receives data from the interface uC.
These registers are the input buffer register (IB) used to handle the data and the status register (SR) which
contains status bits to implement communication protocol. The IB is write-only by the uC and read-only
by the computer. Except for bit 0 and bit 7, the SR is also write-only by the interface uC and read-only by
the computer. Different status bits are read for bits 0 and 7 by the CPU than those written as bits 0 and 7
by the uC. This is illustrated in the following figure.

#C Write to SR

7 6 5 4 3 2 1 o*

HLTEN | TFLG | O | O | PACK | PED { BUSY | SERVICE

CPU Read SR

7* 6 5 4 3 2 1 o*

OBF | O| O O PACK| PED| BUSY | IBF

SERVICE The uC sets this bit to initiate an interrupt to the CPU.

BUSY Informs the CPU the state of the uC. When low, the xC is monitoring
OBF to determine when the next command or data byte is available
from the CPU. When OBF = 1, the uC sets BUSY to 1, reads the OB
and CR, performs the necessary operation then returns BUSY to low.

PED Processor (1C) End Data. Set high by the xC upon detection of
programmed termination sequence (byte count or end character).

PACK Processor (uC) Interrupt Acknowledge. The uC’s interrupt service
routine sets this bit after being interrupted by the CPU.

HLTEN Used by the uC to halt the CPU based on the status of OBF and IBF
during fast handshake data transfers.

IBF Input buffer full.
OBF Output buffer full.
TFLG Set to tell the CPU that this interrupt is for a multiple byte transfer.

Figure A-2. SR Bit Assignments

* Power-on state false.

58 Appendix A: Functional Description

Interrupts

The interface interrupts the computer (CPU) as follows:

1. The interface uC sets bit 0 (Service) true in the Translator status register. This causes the interrupt
line, IRLX, to go low, interrupting the CPU.

2. The CPU acknowledges the interrupt and obtains from the interface an interrupt vector. This tells
the computer that this is an I/0 interrupt as opposed to an interrupt from the internal keyboard
. chip.

3. After the interrupt is acknowledged, IRLX is returned high and all other interfaces are locked out
from interrupting until re-enabled by the CPU.

4. The CPU then obtains the select code of the interrupting interface and processes the interrupt
accordingly.

5. After the interrupting interface is serviced, the other interfaces are re-enabled to interrupt.

Since the computer can accommodate up to three interfaces, there must be a priority scheme if more than
one requests service at the same time. This would most likely be a very rare occurrence. Essentially, the
computer handles interrupts on a first-come, first-served basis. However, if more than one interface is
pulling the IRLX line before the CPU acknowledges the interrupt request, the interface that gets serviced
first will be the one occupying the upper-most 1/0 port.

The uC interrupt counter is preset to 255. The CPU initiates an interrupt by pulling CINT of the translator
(T1 of the uC) low. This increments the interrupt counter from 255 to 0 (and overflow) and starts the
interrupt sequence. Before the uC acknowledges the interrupt, it reads the CR to check the IBF bit. If IBF
is set, it indicates the IB contains data. To prevent this data from being lost, the uC sets an input buffer
restore flag. This will permit the IB to be restored after the interrupt is serviced.

The uC acknowledges the interrupt by setting the PACK bit in the SR. When PACK is set, the CPU reads
the IB, which may or may not contain data, and discards it. The CPU then sets the COM (command) bit
in the CR, writes an instruction into OB and returns CINT high. When CINT goes high, the xC accepts
the instruction and performs the operation specified.

After the operation is performed, the CPU strobes CINT again, which increments the xC interrupt
counter from 0 to 1. When this occurs, the interrupt counter gets reset to 255 and the SR is restored. If the
input buffer restore flag is set, the IB is also restored. The uC then returns from interrupt.

Notice in the above sequence that CINT was strobed twice. The first time caused an overflow of the uC
interrupt conter (from 255 to 0) which started the interrupt sequence. The second strobe incremented the
counter from 0 to 1 which the uC detected to return from interrupt.

Data Transfer

GPIO Bus Lines

The standard GPIO signal lines are described next. The GPIO bus consists of two separate shielded
cables (A and B) each containing 24 insulated conductors.

Appendix A: Functional Description 59
[

Low-Power, Bi-directional Data Lines (DAO — 7, DBO — 7)

These data lines may be used to communicate all input and output data between the interface and the
peripheral device. One character byte (when configured as separate 8-bit ports) is sent at a time in a byte
serial, bit parallel fashion. In most instruments, characters are based on the 8-bit ASCII representation.
As an example, if the interface is connected to a printer, the eight bits that represent one character are all
sent at once in parallel. Then, the next character is sent and so on. Thus, the eight bits (one byte) defining
a character are all sent at once (bit-parallel) while each character is sent serially (byte-serial). Port A and
port B may be configured as one 16-bit, bi-directional port for word mode operation. Port A data lines
(DAO through DA7) are located within cable A and port B data line (DBO through DB7) are located within
cable B.

Output Only Data Lines (DCO — 7, DDO — 7)

These data lines can be used to output data or address (word mode) to a peripheral device. These data lines
DCO through DC7 (port C) and DDO through DD7 (port D) may be configured for 8-bit (byte) transfer or
16-bit (word) transfer. Port C data lines (DCO through DC7) are located within cable A and port D data
lines (DDO through DD7) are located within cable B.

Handshake Lines (CTLA, CTLB, CTLO, CTL1, FLGA, FLGB, STO, ST1)

The control lines, two for each port, control the data transfer on the data lines. They allow asynchronous
data transfer without timing restrictions being placed on any instrument connected to the bus. The
transfer speed of each data byte is determined by the speed at which the slowest instrument is capable of
sending or receiving data. The control (CTL-) lines may be written as general purpose control, and the
flag (FLG-) and status (ST-) bits can be read as general purpose status bits depending on the application.

OUTA/OUTB Lines

These lines indicate to the peripheral in which direction the data is to be transferred. Low indicates an
output operation; high indicates an input operation.

Reset Lines (RESA, RESB)

These lines, when taken low, reset the peripheral device.

Data Handshake

Synchronization of data exchanged between the computer and the peripheral is referred to as the
handshake. The handshake is accomplished via the CTLA/B, FLGA/B and OUTA/B lines. The
peripheral receives information about the data exchange on the CTL and OUT lines and then responds on
the FLG line. The OUT line tells the peripheral which direction the data is to be transferred.

Each port has two handshake lines; CTLA, FLGA (port A); CTLB, FLGB(portB); CL0, ST0 (port C) and
CTL1, ST1 (port D). In the following discussion, port A is used as an example. All capabilities exist
likewise for port B.

The GPIO is not an edge triggered interface. It does respond to level changes.

60 Appendix A: Functional Description

The handshake lines, their states and intended meanings are listed in the following table.

Table A-1. Handshake Lines:

Line State or Mnemonic Meaning
Output
OUTA LOW Computer output operation.
CTLA CONTROL CLEAR No new output data available.
(From Interface) CONTROL SET New output data is available on output line.
FLGA READY Peripheral is ready for next data transfer.
(From Peripheral) BUSY Peripheral is not ready for next data transfer.
Input
OUTA HIGH Computer input operation.
CTLA CONTROL CLEAR Computer is not requesting new data.
(From Interface) CONTROL SET Computer is requesting new data.
FLGA READY Peripheral is ready for next transfer.
(From Peripheral) BUSY Peripheral is not ready for next transfer.

The reason that the state of the CTL and FLG lines are not referred to as being either high or low is that
the logic level of these lines can be complemented by switch settings or dynamically under program
control. The use of mnemonics for the state of these lines allows discussion of the handshake logic
without referring to the specific switch settings/program chosen for your periphral.

The Four Modes of Handshake

The four modes of handshake are referred to as full, partial, CTL- strobe and no handshake.
The user may select from one of four options for controlling handshake by modifying Register 4.

In the full mode, the CPU will check the peripheral FLG- line to ensure that it is in its ready state prior to
setting the CTL- (control set) line to initiate another transfer. Refer to the Full Handshake Timing
Diagram.

The user may program the interface (bit 5 of Register 4) to accept input data on FLG- going from either
ready to busy or from busy to ready. The default mode at power on is to accept data on the ready to busy
transition.

If burst transfer is used, only port A’s handshake lines and full handshake will be used.

In the partial mode of handshake, the computer will not check the FLG- line prior to setting the CTL-line
to control set. Applications which require this mode do not have true ready to busy levels on the flag line.
Only. a transition on the FLG- line is used to terminate the transfer. Refer to the Partial Handshake
Timing Diagram, figure A-4.

Appendix A: Functional Description 61

In the CTL- strobe mode, no response is required on the FLG- line from the peripheral device. For either
input or output operations, a strobe pulse of programmable width (within Register 6) occurs on the
CTL-line. The pulse transition is from clear to set to clear again. Refer to the CTL- Strobe Timing
Diagram, figure A-5. The width of this pulse is set by writing to Register 6.

When output with one of the above handshake modes is selected, a programmable delay (using Register 6)
provides a delay for data to settle on long lines. The data is placed on the data lines followed by the delay
and then the setting of CTL-.

In the no handshake mode, the user can control the CTL- directly by using the (= = EF T statement or by
writing to bits within Register 2. This mode of operation effectively provides extension of the four control
bits (CTLA through CTL1). This mode also does not require a peripheral FL.G- response.

Modes of Operation

The interface has four operating modes which are available under program control. The modes are:

1. Byte mode
2. Word mode
3. Auto Response/Trigger mode
4. Enable Output Inhibit
Byte Mode

In the byte mode, ports A, B, C and D are totally independent.

Word Mode

In word mode, ports A and B are treated as one 16-bit, bi-directional port. The user may program the
interface to use either A’s handshake lines (CTLA, FLGA) or B’s handshake lines (CTLB, FLGB) by
using port address 08 for A and 09 for B. The lines not used for handshaking may be used as general
purpose control (CTL-) and status (FLG-) bits (Register 2). Ports C and D can be combined to form a 16-bit
output only port.

62

)
HIGH : I F : ; I F
ouT A | |
LOW ———— ' | |
] ' 1 ' 1
/ Vo ! !
DATA X) 5 F "HOLD DATA | J
!) ‘X SET UP NEV? PATA ' VALID e
! I JJ 4 ' 7
'] | 1]
\ [re : !
TRUE \ |‘ 77 | »End
- 1 N t e
[} e t 1
FALSE ——————— " 775 : e I F
\ N \\ | /’/ :
1 1 ~ 1
8USY SN:rt i : .. \ ,'/ : s
FLG ol ! R !
READY : oy . !
FLG Should Not Go From Busy To Ready While CTL Is Still True
INPUT FULL HANDSHAKE (BUSY TO READY)
1 1
! 1
— HIGH ! SF fr :
~. I
out Fe 5 : :
LW —r— ! 1
] 1! !
! 1] e > L
T g 77 7 f
DATA OLD DATA | ! SET UP NEW DATA i NEW DATA VALID
I L { \
T [JJ 7 Y
N |
I
]
TRUE v S f) |
oL ___;_‘_l\\ f| o
' \ ... , ML 1
‘ : I / : :
tart \ | AN , \ rr |
BUSY . ' | N ~JJ ’End
FLG P P V. o T -
READY ¢ —_—~ TP
1 i
FLG Should Not Go From Busy To Ready While CTL Is Still True
New Data Should Stay Valid Until The Next Time CTL Is Set True
QUTPUT FULL HANDSHAKE
HIGH o
ouT :| N »
LOW ‘I /' Jrjr JJ
]]
I]
[%) DA"I'A R‘ {-’r {"r
DATA oC 0 X._ NEW DATA
TRI- STATE ~< rr rr
A << 7J J7J
\ le——rbTe \—»‘ _
TRUE 1 >~ 1S
CTL Stgrt S N — End
! = -~ Vet il
FALSE — N / S F
i ‘\ \\ III
H \ fr
BUSY] \ [S f—
FLG of s o
READY IS

Appendix A: Functional Description

INPUT FULL HANDSHAKE (READY TO BUSY)

*TDTC = Time From New Data To CTL = Min. 60 usec (8 usec FHS)

Figure A-3. Full Handshake Timing Diagram

* Register 6 can be used to extend Tpyypc and T cpp for all handshakes except FHS.

Appendix A: Functional Description

INPUT PARTIAL HANDSHAKE (READY TO BUSY)

HIGH wia — f

1f IF HOLD DATA
il
‘\ >< SET UP NEW DATA rj_>< VALID ><
Al

!
1
)
DATA : : iy y
' \
: k rr rec
TRUE | N = f £ f
CTL ! L P oEnd -
FaLse —1rt e J—
\\ II
\‘ Il
BUSY . y
FLG N -
READY SF

I-TRM-I |—TFM-|

TRM = Minimum Time FLG Must Hold Ready After CTL = 30 usec
TFM = Minimum FLG Duration = 35 usec

INPUT PARTIAL HANDSHAKE (BUSY TO READY)

s { L
JJ JJ

\
' < f f
OLD DATA '\‘ X SET UP NEW DATA ’ D< NEW DATA VALID
ol sl {

1
1
1]
DATA !
H . JJ 7
L} A
1 \
' N rr
TRUE | \ 1f el
cTL : { P <Ena
FALSE —>tor!t . j
\‘]
Al ’
BUSY ~—. -
LG Nt I 4__,]
F READY Py

brawd e

TRM = Minimum Time FLG Must Hold Ready After CTL = 30 usec
TFM = Minimum FLG Duration = 35 usec
New Data Should Stay Valid Until The Next Time CTL Is Set True.

QUTPUT PARTIAL HANDSHAKE

HIGH
ouT

LOW JfJf JIJ[
er JrJr
OLD DATA OR
DATA TRI-STATE >< NEW DATA P e
JJ JJ
} TDTC .
TRUE
CTL
FALSE S
BUSY { F
FLG
READY S F

-y
FTRM FTFm
TRM = Minimum Time FLG Must Hold Ready After CTL = 30 usec

TFM = Minimum FLG Duration = 35 usec

*TDTC = Minimum Time From New Data To CTL = 65 usec

Figure A-4. Partial Handshake Timing Diagram

63

64 Appendix A: Functional Description

INPUT STROBE (BUSY TO READY)

— HIGH
ouT
LOW
DATA ><JOLD DATA VALID ><
TRUE
CTL
FALSE

e—r7cPo—ns]

*TCPD = CTL Pulse Duration = Min 110 usec

_ HIGH
ouT
LOW

DATA OLD DATA ><SET UP NEW DATA ><HOLD NEW DATA VALID

TRUE

eTt FALSE ‘—I [

|<———Tcpo—>|

TCPD = CTL Pulse Duration = Min 60 usec
New DATA Should Stay Valid Until The Next Time CTL Is Set True.

QUTPUT STROBE

o
-

HIGH ————‘
LOW

DATA TRI- STATE X NEW DATA

}<—T DTC —»{
TRUE
CTL
FALSE

f—T1cPD—>

*TDTC =Time from new data to CTL = 60 usec min.
*TCPD = CTL Puise Duration = Min 60 usec min.
*Register 6 can be used to extend Topc and Tpp for all handshakes except FHS.

Note: Timings are not valid if card is interrupted.

Figure A-6. CTL- Strobe Timing Diagram

Appendix A: Functional Description 65

Auto Response/Trigger Mode

In this mode, the transfer begins upon detection of a character which meets the qualifications of Registers
5 and 7. Register 5 contains the >, =, or < delimiters and Register 7 contains the trigger value. The
computer is interrupted when this character is detected. The data is then transferred until the count is
satisfied or until the CPU sends a CED or until a character equal to the delimiter is received. This mode is
restricted to 8-bit data transfer only. »

Enable Output Inhibit is provided to prevent data output from the interface to the peripheral. The
capability is enabled by setting bit 0 of Register 9. The inhibit may be used for 8- and 16-bit output
operations. If ST1 or STO lines are used in the handshake, this feature is not available. When
CTLA/FLGA handshake lines are used, STO will act as the inhibit line. When CTLB/FLGB handshake
lines are used, ST1 will act as the inhibit line.

This feature is not available in burst output data transfer.

8049 Microcomputer (u)

Most of the activities carried out by the 8049 uC have already been discussed in this appendix. The
following discussion will summarize these activies and list all the input and output lines utilized.

The uC is the intermediary between the CPU and the GPIO bus. It implements interface protocol via its
own self-contained ROM. The uC responds to instructions from the host CPU.

There are two 8-bit I/0 ports. Port 1 (P10 thrdugh P17) is connected to the configuration switch S2 switch
segments and port 2 (P20 through P26) is used for communicating with the I/O expanders.

There are eight other data bits (D0 through D7) for communication between the uC and the translator.

66 Appendix A: Functional Description

Replaceable Parts

This appendix lists the HP 82940A GPIO Interface replaceable parts, and illustrates the GPIO Interface
card hardware. The exploded view of figure A-6 shows the part numbers of the major assemblies. Table
4-1 lists the replaceable parts of the interface circuit board assembly.

The total quantity of a part is listed only the first time it is used on the assembly.

The number in the “CD” column, immediately preceding the part number, is the part number’s check
digit. Please include this number when ordering a part.

Table A-2. HP 82940A GPIO Interface Replaceable Parts

Reference HP ..
Designator cb Part No. Ta Description
A1l 1 82940-60901 1 Circuit Board Assembly, GPIO Interface
C1,C2 6 0180-0228 2 C-F: 22ufd, 15V
c3—-C10 8 0160-4571 9 C-F:.1ufd, 50V
c11 8 0167-4767 1 C-F: 20Pfd, 200V
C12 8 0160-4571 C-F:.1ufd, 50V
J1,J2 4 1251-5266 2 Connector, 24-Pin
R1 4 1810-0278 1 R-F: Network, 9 X 3.3k, 2%, .25W
R2 8 1810-0280 2 R-F: Network, 9 X 10k, 2%, .25W
R3 2 1810-0276 3 R-F: Network, 7 X 1.5K, 5%, .15W
R4 . 8 1810-0280 R-F: Network, 9 X 10k, 2%, .25W
R5, R6 2 1810-0276 R-F: Network, 7 X 1.6k, 5%, .156W
R7 3 1810-0368 1 R-F: Network, 5 X 10.0k, 2%, .125W
R8 2 1810-0367 1 R- F: Network, 5 X 4.7k, 2%, .125W
S1 3101-2533 1 Switch: 4 Segment, SPDT
S2) 3101-2534 1 Switch: 8 Segment, SPDT
u1 3 IMB5-0101 1 IC: Translator
u2 7 1820-2440 1 IC: 8049 Microcomputer
Uu3—ub 7 1820-2177 3 IC: 8243 1/0 Expander
U6 —us8 0 1820-2138 3 IC: DS887IN Driver
U9 8 1820-1112 1 IC: 74LS74
Y1 1 0410-1222 1 Crystal: 11 MHz
8120-3190 1 Cable Assembly

Appendix A: Functional Description 67

/___ GPIO Interface Assembly
(9) 82940-69901 \

Case
(2) 82940-60902

Cable Assembly
(9)8120-3190

Hex Nut With

, g Lock Washer (4)
iy (9) 0590-0198

Top Cable Clamp

(8) 1400-1063 «4—————Interface Circuit

, S Board A1
Bottom Cable Clamp (1) 82940-60901

(9) 1400-1064

Ground Contact

/ (9) 0363-0174

¢ | i

& 4-40 Machine Screws (7)

/ (0) 2200-0143

&

Figure A-6. GPIO Exploded View

68 Appendix A: Functional Description

RD
Lﬂ_] 82940-60901 GPIO INTERFACE CIRCUIT BOAL

|-

+8v
45— &——n

v a5V
RS Leo Los Ic:z If?'“ o i
L T T o : : L
—< v B i - 22— e
: ’ « I i 10 12 1no [
; Vee " ! r
; : " ; ol37
H : I
80X <~ 8l | o 4, ol .
ox ——¢ ol ol I ' ne
: H I
pex— <73 ; 19 g3 ' W, ol =
0¥ 34 i o
B‘x_<_< ’ . H], 15 23
: =] 22|
= : i I par22
— : i
asx 14 : . o : . : ‘) :
‘ 3
87X :] fyvyed ’ i - — :
AR (s &= o REELT . = vz) - :
: : : i vl 1 or ——‘_/ I
¢ v I 33 is2i2) - !
ROX A 5| wre . " ‘ |
. I : = l‘ * 15203 ;
. —< I s -R—IL/
< I " I 3 15204} :
| | Pi4 ——I_/
@ Ay 2l :) - |
P | ’ P13 -39——|V i
- D 20 orf22 e |
Vo RrC = . e I |
. 9 . o s !
; HALTX J) : e I
‘)
oy —(7 : z |
l =" ¢ PIO J
wex —<7 : r lo i
o <_ I : WR
PRIL ——8 : i} : 5
PR —— (17— o : -
4 : A i
: aLe
- ; ace |22 : = «
B ‘
-sv : ‘
‘ aorz [23—ne | i d o
1
l ; RS |22 nc - - o
: i R
+12v ._<5 : " I 3
|) > XTALZ
: sk 4
2
' wrlas v
.5 . ° 7 20
o i 'EE cl_SCO 1) T
ols — < : . "
T
I

Appendix A: Functional Description 69

PR
n2 :
© ok 3ok Fiok 3ok Fioxk 3ok $iok
SN Y EOUE N bo- - ¥]
$les 2 (] 7 {] 9 2 3 4 : : a0
z e l - oA
] a2 |2 LY 12— DA2
[[] Pey DA3
P22 oo L >22>—— a4
Slr2s poi (22
sz |22
U3 ps3 “>9>——oar
|20 8 ue lio :
P8O 38 >——oco
et 2 14 Dc \ 7>——oct
ey £ {>0* 12 : >——oc2
32 5 {><> 13 :
pro |3) Dc 14 :
on | 2 Dc 16 .
18 3 I >c 15
6 P J>c 1
RE DZ1SK 15K FIsK ThoK 15K FOK ThEK Jraok |
cs reo] 22 I2 3 4 s & 4 s s
2] eros ez |18
P23
21022 2 = 1,><> ® e
10
2l rar |2 2 \
ITH
2 15
LA, 4 "
ezt] Dc 3
cals] D& 12 L
s 22 L4 {>c 1 57 oUTE
21 8 {>c 10 H > -
i & >——sTt
®
Pet < 3 3 lla>—FLSB
ox > 1 >——GND
10K L
£—):3>—cun
[
S-- N
s 2 3 7 o [2 3 0 s i
P40, _ S ud>——oeo
1 Pl |2 : >——o81
2 paz |t = t2 > B2
2 aaf2 —2a)———083
0 psol? Y L}
i 23 :
P S
esz|22 >——o8s
9 >——o87
ue |
u?
peof 22 ! Dc 17 s L
per |12 2 ADC 18 H o
8 2 DC 15 ~>a>—o02
14 L] 1'>c 18 ~316)—— 003
: 2 DC 10 > 14> 004
pr 2 I U —>2>——oos
pr2}8 L] Dc 12 15 >———— 006
16 5 13 H
3 0 5 € © B 0 7 D"L +>3>——oo7
B i Rttt - .
DZ0eSK 215K TOK TuSK F15K TLSK ThSK TiSK!
g oo e

Figure 3-10. Interface Schematic Diagram

Appendix A: Functional Description

70

W W W W WAT 3

9
9

Interface Component Location Diagram

Figure A-8.

Appendix B

Register Assignments

The GPIO interface contains 11 registers which are accessible by means of (write) L[TFEil.. Nine
registers are accessible by means of (read) = THTLIS, The bit assignments and their mnemonics are
shown below.

The following is a description of the control registers and their bit assignments.

Register 0 (CONTROL)
7 6 5 4 3 2 1 (]
Odd Even One Zero
XX x|X Parity | Parity | Parity | Parity

If bits O through 3 are zero, then no parity
X =Don't care

Register O (STATUS) Interface I.D.
7 6 58 4 3 2 1 0

ojojJoflojo]1}j0]oO

Bit 2 always = 1 {I.D. code = 04)

Register 1 (CONTROL)

7 6 5 4 3 2 1 0
Received

sT1| sto [FLGB | FLGA | x [x| DPata |y
Parity
Error

FLGA = Flag A interrupt mask (1 = enabled)

FLGB = Flag B interrupt mask (1 = enabled)

STO = Status Bit O interrupt mask (1 = enabled)

ST1 = Status Bit 1 interrupt mask (1 =enabled)
X=Don'tcare

Received Data Parity Error Interrupt Mask (1 = enabled)

71

72 Appendix B: Register Assignments

Register 1 (STATUS)

7 6 5 4 3 2 1 0
Received
st |sto| FleB | FLea| o] o] P | o
Parity
| Error

FLGA =Flag A interrupt

FLGB = Flag B interrupt

STO = Status bit O interrupt

ST1 = Status bit 1 interrupt
Received Data Parity Error Interrupt

Register 2 (CONTROL)
Register 28 (ASSERT)
7 6 5 4 3 2 1 0

RESETB | RESETA | X | X | CTL1 |CTLB| CTLO | CTLA

CTLA = Control bit A before normalization (1 = true)

CTLO = Control bit O before normalization (1 = true)

CTLB = Control bit B before normalization (1 = true)

CTL1 = Control bit 1 before normalization (1 = true)

A high to low transition on the RESETA or RESETB line will reset
the peripheral device.

X =Don’tcare

Register 2 (STATUS)
7 6 5 4 3 2 1 (4]

ST1 | STO | FLGB | FLGA | CTL1 | CTLB | CTLO | CTLA

CTLA = Control bit A before normalization (1 = true)
CTLO = Control bit O before normalization (1 = true)
CTLB = Control bit B before normalization (1 = true)
CTL1 = Control bit 1 before normalization (1 =true)
FLGA =Flag A after normalization (1 =true)

FLGB = Flag B after normalization (1 = true)

STO = Status bit O after normalization (1 =true)

ST1 = Status bit 1 after normalization (1 =true)

Register 3 (STATUS/CONTROL) Normalization
7 6 5 4 3 2 1 0

ST1 | STO |FLGB | FLGA | CTL1 |CTLB | CTLO | CTLA

Configuration Switch 7 Configuration Switch 8

CTLA = Control bit A (0 = positive-true)
CTLO = Control bit 0 (0 = positive-true)
CTLB = Control bit B (0 = positive-true)
CTL1 = Control bit 1 (0 = positive-true)
FLGA =Flag A (O = positive-true)
FLGB = Flag B (0 = positive-true)

STO = Status bit 0 {0 = positive-true)
ST1 = Status bit 1 (0 = positive-true)

Appendix B: Register Assignments

Register 4 (STATUS/CONTROL)

7 6 5 4 3 2 1 (0]
Handshake Handshake Flag 1 Port Port Port Port
Mode Mode Transition : D C B A

\+Configuration Switch 5———’Always 1 \—Configuration Switch 6 —/

Port A data normalization (O = positive-true)

Port B data normalization (0 = positive-true)

Port C data normalization (O = positive-true)

Port D data normalization (O = positive-true)

Flag transition O = Accept on Ready to Busy (default power on)
1 = Accept on Busy to Ready

Handshake mode Bit7 Bit6

0 0 = Full handshake
0 1 = Partial handshake
1 0 = Strobe handshake
1 1 = No handshake
Register 5 (STATUS/CONTROL)
7 6 5 4 3 2 1 0
> = < CTL Device Device Device Device

DELIM | DELIM | DELIM | Enable | Address | Address | Address | Address

Device address = Bits 1, 2, 3 and 4 (configuration switches 1, 2 and 3 respectively)
< DELIM = Less than register 7 contents (delimiter)

= DELIM = Equal to register 7 contents (delimiter)

> DELIM = Greater than register 7 contents (delimiter)

CTL enable = Send CTL upon TRIGGER

Register 6 (STATUS/CONTROL)
7 6 56 4 3 2 1 0

Resolution

Strobe Pulse Duration
Increment

Strobe pulse duration = Delay in number of resolution increments
Resolution increment = 1 = 1 millisecond, 0 = 10 microseconds

Register 7 (STATUS/CONTROL)
7 6 5§ 4 3 2 1 0

Trigger Value

Bits O through 7 are used in conjunction with register 5

73

74 Appendix B: Register Assignments

Register 8 (STATUS/CONTROL)
7 6 5 4 3 2 1 0

Output | Output
X|X[X]|X]X]| X | Enable | Enable
B A

Qutput enable A = Enable output on port A
- Output enable B = Enable output on port B

Note: CONTROL allowed only if switch S2 segment 4 is setto 1. If not set to 1, an error will result.

Register 9 (STATUS/CONTROL) Enable Output Inhibit
7 6 5 4 3 2 1 0

XXX X} X]| X]| X] Inhibit
Inhibit — Inhibits output of data (1 = enabled)

Register 16 (Write Only)
7 6 5 4 3 2 1 O

EOL

EOL = Number of End of Line characters

Registers 17 Through 23 (Write Only)
EOL Character

Appendix C

GPIO (I70 ROM) Statements

The following statements are available in the I/O ROM for use with the HP 82940A GPIO Interface:

Statement

Description

REORETIO

HESERT

CLEAR

COMTREOL

EMHABLE IMTE

EMTER
HALT

OUTFUT
FESET

SEHD

STATUEG
TEAMSFER

Aborts any interrupt transfer in progress, sets all CTL lines to the false state, places
ports A and B in the high-impedance state, and sets ports C and D to the off state.

Immediately writes a value to Control Register 2, placing the CTL and RES lines in
the specified states.

Pulses RES line(s). CL.EAF % pulses both RESA and RESB. i EMRE &M
pulses RESA; “L.EFAF <1 pulses RESB (assuming that 4 is the interface select
code).

Writes values to the interface control registers.
Writes enable mask to control register 1. Used to select event interrupts.
Enters data from a port to the BASIC program.

Stops any interrupt transfer in progress, leaving all handshake lines in their
current state. Thus, = THTLIZ can be used to troubleshoot a faulty handshake
sequence.

Outputs data from the BASIC program to a port.

Places interface in the power-on state. CTL lines are false, OUTA and OUTB
indicate output, ports A and B are put in high-impedance state, ports C and D are
off.

SEMDL..CMD can set primary address or puise RES line(s) with Device Clear.
SEMD..DATHA outputs data bytes and EOL if specified. SEMI. LIZTEHM or
SEMDL.. THL.K can set primary address. UNL, UNT, MLA, MTA are ignored; SCG
generates error 111. '

Reads values from interface status registers.

Moves data from a port to a buffer or from a buffer to a port. Interrupt or fast
handshake may be used.

75

Appendix D

GPIO Interface Errors

The following errors are specific to GPIO Interface operations:

Error No.

Possible Cause

110

111

113

114

115

116

/0 card failed self test.

lllegal operation.

Word cut in haif during a 16-bit
operation.

FHS transfer was aborted by
STO.

Output to Port A or Port B is not
allowed.

CTL line not in proper state to
start handshake.

77

Cord not completely plugged in, or
faulty.

Attempted operation is not used
with this interface.

Odd byte count specified in an
image or COUNT parameter. Also
beware of odd-length buffers and
free-field format.

True state on STO. See FHS and
INTR Transfers.

Using the wrong primary address
in an output operation. Not
enabling the proper bit in Register
8: Attempting to write to Register 8
when switch 4 is not properly set.
Switch 4 is explained in the
Installation section of this manual.
A previous AZSERT or
COMTREL statement that left
CTL in the true state. CTL must be
in the false state at the start of a
handshake operation.

A cacicano

Personal Computer Division
1010 N.E. Circle Bivd., Corvallis, OR 97330 U.S.A

Reorder Number Printed in U.S.A.9/82
82940-90011 ’ 82940-90014

